Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101047
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳昭岑zh_TW
dc.contributor.advisorChao-Tsen Chenen
dc.contributor.author蔡袁裕盛zh_TW
dc.contributor.authorYu-Sheng Tsai Yuanen
dc.date.accessioned2025-11-26T16:36:17Z-
dc.date.available2025-11-27-
dc.date.copyright2025-11-26-
dc.date.issued2025-
dc.date.submitted2025-08-20-
dc.identifier.citation1.2025中華民國內政部統計處,統計查詢網-戶政-人口-人口數三段年齡組https://statis.moi.gov.tw/micst/webMain.aspx?sys=100&funid=defjsp8
2.Roberts, T. C.; Langer, R.; Wood, M. J. A., Advances in oligonucleotide drug delivery. Nat. Rev. Drug. Discov. 2020, 19, 673-694.
3.Porensky, P. N.; Mitrpant, C.; McGovern, V. L.; Bevan, A. K.; Foust, K. D.; Kaspar, B. K.; Wilton, S. D.; Burghes, A. H. M., A single administration of morpholino antisense oligomer rescues spinal muscular atrophy in the mouse. Hum. Mol. Genet. 2012, 21, 1625-1638.
4.Hua, Y.; Sahashi, K.; Rigo, F.; Hung, G.; Horev, G.; Bennett, F. C.; Krainer, A. R., Peripheral SMN restoration is essential for the long-term rescue of a severe spinal muscular atrophy mouse model. Nature 2011, 478, 123-126.
5.Kordasiewicz, H. B.; Stanek, L. M.; Wancewicz, E. V.; Mazur, C.; McAlonis, M. M.; Pytel, K. A.; Artates, J. W.; Weiss, A.; Cheng, S. H.; Shihabuddin, L. S.; Hung, G.; Bennett, C. F.; Cleveland, D. W., Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis. Neuron 2012, 74, 1031-1044.
6.Carroll, J. B.; Warby, S. C.; Southwell, A. L.; Doty, C. N.; Greenlee, S.; Skotte, N.; Hung, G.; Bennett, C. F.; Freier, S. M.; Hayden, M. R., Potent and selective antisense oligonucleotides targeting single-nucleotide polymorphisms in the Huntington disease gene/allele-specific silencing of mutant huntingtin. Mol. Ther. 2011, 19, 2178-2185.
7.Smith, R. A.; Miller, T. M.; Yamanaka, K.; Monia, B. P.; Condon, T. P.; Hung, G.; Lobsiger, C. S.; Ward, C. M.; McAlonis-Downes, M.; Wei, H.; Wancewicz, E. V.; Bennett, C. F.; Cleveland, Don. W., Antisense oligonucleotide therapy for neurodegenerative disease. J. Clin. Invest. 2006, 116, 2290-2296.
8.Chauhan, N. B.; Siegel, G. J., Antisense inhibition at the β-secretase-site of β-amyloid precursor protein reduces cerebral amyloid and acetyl cholinesterase activity in Tg2576. Neuroscience 2007, 146, 143-151.
9.Crooke, S. T., Molecular mechanisms of action of antisense drugs. Biochim. Biophys. Acta. 1999, 1489, 31-44.
10.Wu, H.; Lima, W. F.; Zhang, H.; Fan, A.; Sun, H.; Crooke, S. T., Determination of the role of the human RNase H1 in the pharmacology of DNA-like antisense drugs. J. Biol. Chem. 2004, 279, 17181-17189.
11.Boiziau, C.; Kurfurst, R.; Cazenave, C.; Roig, V.; Thuong, N. T.; Toulmé, J.-J., Inhibition of translation initiation by antisense oligonucleotides via an RNase-H independent mechanism. Nucleic Acids Res. 1991, 19, 1113-1119.
12.Liang, X.-H.; Shen, W.; Sun, H.; Migawa, M. T.; Vickers, T. A.; Crooke, S. T., Translation efficiency of mRNAs is increased by antisense oligonucleotides targeting upstream open reading frames. Nat. Biotechnol. 2016, 34, 875-880.
13.Liu, J.; Carmell, M. A.; Rivas, F. V.; Marsden, C. G.; Thomson, J. M.; Song, J.-J.; Hammond, S. M.; Leemor J.-T.; and Hannon, G. J., Argonaute2 is the catalytic engine of mammalian RNAi. Science 2004, 305, 1437-1441.
14.Roberts, T. C., The microRNA machinery. Adv. Exp. Med. Biol. 2015, 887, 15-30.
15.Schürmann, N.; Trabuco, L. G.; Bender, C.; Russell, R. B.; Grimm, D., Molecular dissection of human Argonaute proteins by DNA shuffling. Nat. Struct. Mol. Biol. 2013, 20, 818-826.
16.Rozema, D. B.; Lewis, D. L.; Wakefield, D. H.; Wolff, J. A., Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc. Natl. Acad. Sci. U.S.A. 2007, 32, 12982-12987.
17.Freier, S. M.; Kierzek, R.; Jaeger, J. A.; Turner, D. H., Improved free-energy parameters for predictions of RNA duplex stability. Proc. Nati. Acad. Sci. U.S.A. 1986, 83, 9373-9377.
18.Wan, W. B.; Seth, P. P., The Medicinal Chemistry of Therapeutic Oligonucleotides. J. Med. Chem. 2016, 59, 9645-9667.
19.Sharma V. K.; Sharmab, R. K.; Singh, S. K., Antisense oligonucleotides: modifications and clinical trials. Med. Chem. Commun. 2014, 5, 1454-1471.
20.Sagi, J.; Szemzo, A.; Otvos, L.; Vorlickova, M.; Kypr, J., Destabilization of the Duplex and the High-Salt Z-form of Poly(dG-methyl5dC) by Substitution of Ethyl for the 5-Methyl Group. Int. J. Biol. Macromol. 1991, 13, 329-336.
21.Yiran, Y.; Leiqun, C.; Xin, X.; Dan, L.; Yiran, D.; Lan, L.; Bingjie, Z.; Haixia, J.; Liang, S.; Yiwen, H.; Yunhua, X.; Lifang, M., NSUN2/ALYREF axis‑driven m5C methylation enhances PD‑L1 expression and facilitates immune evasion in non‑small‑cell lung cancer. Cancer Immunol. Immunother. 2025, 74, 132.
22.Azizi, H.; Renner, T. M.; Agbayani, G.; Simard, B.; Dudani, R.; Harrison, B. A.; Iqbal, U.; Jia, Y.; McCluskie, M. J.; Akache, B., Self-amplifying RNAs generated with the modified nucleotides 5-methylcytidine and 5-methyluridine mediate strong expression and immunogenicity in vivo. NAR Molecular Medicine 2024, 1, ugae004.
23.Wagner, R. W.; Matteucci, M. D.; Lewis, J. G.; Gutierrez, A. J.; Moulds, C.; Froehler, B. C., Antisense Gene Inhibition by Oligonucleotides Containing C-5 propyne pyrimidines. Science 1993, 260, 1510-1513.
24.Gutierrez, A. J.; Terhorst, T. J.; Matteucci, M. D.; Froehler, B. C., 5-Heteroaryl-2’-deoxyuridine Analogs. Synthesis and Incorporation into High-Affinity Oligonucleotides. J. Am. Chem. Soc. 1994, 116, 5540-5544.
25.Ostergaard, M. E.; Southwell, A. L.; Kordasiewicz, H.; Watt, A. T.; Skotte, N. H.; Doty, C. N.; Vaid, K.; Villanueva, E. B.; Swayze, E. E.; Bennett, C. F.; Hayden, M. R.; Seth, P. P., Rational Design of Antisense Oligonucleotides Targeting Single Nucleotide Polymorphisms for Potent and Allele Selective Suppression of Mutant Huntingtin in the CNS. Nucleic Acids Res. 2013, 41, 9634-9650.
26.Switzer, C. Y.; Moroney, S. E.; Benner, S. A., Enzymatic Recognition of the Base Pair between Isocytidine and Isoguanosine. Biochemistry 1993, 32, 10489-10496.
27.Song, J.; Yi, C., Chemical modifications to RNA: A new layer of gene expression on regulation. ACS Chem. Biol. 2017, 12, 316-325.
28.Okamoto, I.; Seio, K.; Sekine, M., Improved synthesis of oligonucleotides containing 2-thiouridine derivatives by use of diluted iodine solution. Tetrahedron Lett. 2006, 47, 583-585.
29.Herdewijn, P., Heterocyclic Modifications of Oligonucleotides and Antisense Technology. Antisense Nucleic Acid Drug Dev. 2000, 10, 297-310.
30.Zhou, Yan.; Xu, X.; Wei, Y.; Cheng, Y.; Guo, Y.; Khudyakov, I.; Liu, F.; He, P.; Song, Z.; Li, Z.; Gao, Y.; Ang, E. L.; Zhao, H.; Zhang, Y.; Zhao, S., A widespread pathway for substitution of adenine by diaminopurine in phage genomes. Science 2021, 372, 512-516.
31.Liu, J.; Pendergraff, H.; Narayanannair, K. J.; Lackey, J. G.; Kuchimanchi, S.; Rajeev, K. G.; Manoharan, M.; Hu, J.; Corey, D. R., RNA duplexes with abasic substitutions are potent and allele-selective inhibitors of huntingtin and ataxin-3 expression. Nucleic Acids Res. 2013, 41, 8788-8801.
32.Cummins, L. L.; Owens, S. R.; Risen, L. M.; Lesnik, E. A.; Freier, S. M.; McGee, D.; Guinosso, C. J.; Cook, P. D., Characterization of fully 2-modified oligoribonucleotide hetero- and homoduplex hybridization and nuclease sensitivity. Nucleic Acids Res. 1995, 23, 2019-2024.
33.Lesnik, E. A.; Guinosso, C. J.; Kawasaki, A. M.; Sasmor, H.; Zounes, M.; Cummins, L. L.; Ecker, D. J.; Cook, P. D.; Freier, S. M., Oligodeoxynucleotides Containing 2'-O-Modified Adenosine: Synthesis and Effects on Stability of DNA: RNA Duplexes. Biochemistry 1993, 32, 7832-7838.
34.Manoharan, M., 2’-Carbohydrate modifications in antisense oligonucleotide therapy: importance of conformation, configuration and conjugation. Biochim. Biophys. Acta. 1999, 1489, 117-130.
35.Veedu, R. N.; Wengel, J., Locked nucleic acid as a novel class of therapeutic agents. RNA Biol. 2009, 6, 321-323.
36.Vester, B.; Wengel, J., LNA (locked nucleic acid): high-affinity targeting of complementary RNA and DNA. Biochemistry 2004, 43, 13233-13241.
37.Morita, K.; Hasegawa, C.; Kaneko, M.; Tsutsumi, S.; Sone, J.; Ishikawa, T.; Imanishic, T.; Koizumi, M., 2’-O,4’-C-ethylene-bridged nucleic acids (ENA): highly nuclease-resistant and thermodynamically stable oligonucleotides for antisense drug. Bioorg. Med. Chem. Lett. 2002, 12, 73-76.
38.Hong, D.; Kurzrock, R.; Kim, Y.; Woessner, R.; Younes, A.; Nemunaitis, J.; Fowler, N.; Zhou, T.; Schmidt, J.; MacLeod, A. R., AZD9150, a next-generation antisense oligonucleotide inhibitor of STAT3 with early evidence of clinical activity in lymphoma and lung cancer. Sci. Transl. Med. 2015, 7, 314ra18.
39.Moulton, J. D., Using morpholinos to control gene expression. Curr. Protoc. Nucleic Acid. Chem. 2017, 68, 4.30.1–4.30.29.
40.Iversen, P. L. Phosphorodiamidate morpholino oligomers: favorable properties for sequence-specific gene inactivation. Curr. Opin. Mol. Ther. 2001, 3, 235-238.
41.Larsen, H. J.; Bentin, T.; Nielsen, P. E., Antisense properties of peptide nucleic acid. Biochim. Biophys. Acta. 1999, 1489, 159-166.
42.Saarbach, J.; Sabale, P. M.; Winssinger, N., Peptide nucleic acid (PNA) and its applications in chemical biology, diagnostics, and therapeutics. Curr. Opin. Chem. Biol. 2019, 52, 112-124.
43.Renneberg, D.; Leumann, C. J., Watson–Crick base-pairing properties of tricyclo-DNA. J. Am. Chem. Soc. 2002, 124, 5993-6002.
44.Freier, S. M.; Altmann, K.-H., The ups and downs of nucleic acid duplex stability: structure–stability studies on chemically-modified DNA: RNA duplexes. Nucleic Acids Res. 1997, 25, 4429-4443.
45.Koshkin, A. A.; Singh, S. K.; Nielsen, P.; Rajwanshi, V. K.; Kumar, R.; Meldgaard, M.; Olsen, C. E.; Wengel, J., LNA (locked nucleic acids): synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerization, and unprecedented nucleic acid recognition. Tetrahedron 1998, 54, 3607-3630.
46.Swayze, E. E.; Siwkowski, A. M.; Wancewicz, E. V.; Migawa, M. T.; Wyrzykiewicz, T. K.; Hung, G.; Monia, B. P.; Bennett, C. F., Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals. Nucleic Acids Res. 2007, 35, 687-700.
47.Goyenvalle, A.; Griffith, G.; Babbs, A.; Andaloussi, S. E.; Ezzat, K.; Avril, A.; Dugovic, B.; Chaussenot, R.; Ferry, A.; Voit, T.; Amthor, H.; Bühr, C.; Schürch, S.; Wood, M. J. A.; Davies, K. E.; Vaillend, C.; Leumann, C.; Garcia, L. Functional correction in mouse models of muscular dystrophy using exon-skipping tricyclo-DNA oligomers. Nat. Med. 2015, 21, 270-275.
48.Vasquez, G.; Freestone, G. C.; Wan, W. B.; Low A.; Hoyos, C. L. D.; Yu, J.; Prakash, T. P.; Ǿstergaard, M. E.; Liang, X.-H.; Crooke, S. T.; Swayze, E. E.; Migawa, M. T., Seth, P. P., Site-specific incorporation of 5’-methyl DNA enhances the therapeutic profile of gapmer ASOs. Nucleic Acids Res. 2021, 49, 1828-1839.
49.Eckstein, F., Phosphorothioates, essential components of therapeutic oligonucleotides. Nucleic Acid. Ther. 2014, 24, 374-38.
50.Knouse, K. W.; deGruyter, J. N.; Schmidt, M. A.; Zheng, B.; Vantourout, J. C.; Kingston, C.; Mercer, S. E.; Mcdonald, I. M.; Olson, R. E.; Zhu, Y.; Hang, C.; Zhu, J.; Yuan, C.; Wang, Q.; Park, P.; Eastgate, M. D.; Baran, P. S., Unlocking P(V): Reagents for chiral phosphorothioate synthesis. Science 2018, 361, 1234-238.
51.Huang, Y.; Knouse, K. W.; Qiu, S.; Hao, W.; Padial, N. M.; Vantourout, J. C.; Zheng, B.; Mercer, S. E.; Javier, L.-O.; Narayan, R.; Olson, R. E.; Blackmond, D. G.; Eastgate, M. D.; Schmidt, M. A.; McDonald, I. M.; Baran, P. S., A P(V) platform for oligonucleotide synthesis. Science 2021, 373, 1265-1270.
52.Nassir, M.; Ociepa, M.; Zhang, H.-J.; Grant, L. N.; Simmons, B. J.; Oderinde, M. S.; Kawamata, Y.; Cauley, A. N.; Schmidt, M. A.; Eastgate, M. D.; Baran, P. S., Stereocontrolled Radical Thiophosphorylation. J. Am. Chem. Soc. 2023, 145, 15088-15093.
53.Obexer, R.; Nassir, M.; Moody, E. R.; Baran, P. S; Lovelock, S. L., Modern approaches to therapeutic oligonucleotide manufacturing. Science 2024, 384, 174, eadl4015.
54.Gaus, H. J.; Gupta, R.; Chappell, A. E.; Østergaard, M. E.; Swayze, E. E.; Seth, P. P., Characterization of the interactions of chemically-modified therapeutic nucleic acids with plasma proteins using a fluorescence polarization assay. Nucleic Acids Res. 2019, 47, 1110-1122.
55.Braasch, D. A.; Jensen, S.; Liu, Y.; Kaur, K.; Arar, K.; White, M. A.; Corey, D. R., RNA interference in mammalian cells by chemically modified RNA. Biochemistry 2003, 42, 7967-7975.
56.Hall, A. H. S.; Wan, J.; Shaughnessy, E. E.; Ramsay, S. B.; Alexander, K. A., RNA interference using boranophosphate siRNAs: structure-activity relationships. Nucleic Acids Res. 2004, 32, 5991-600.
57.Koziolkiewicz, M.; Krakowiak, A.; Kwinkowski, M.; Boczkowska, M.; Wojciech, J. S., Stereodifferentiation—the effect of P chirality of oligo(nucleoside phosphorothioates) on the activity of bacterial RNase H. Nucleic Acids Res. 1995, 23, 5000-5005.
58.Koziolkiewicz, M.; Wojcik, M.; Kobylanska, A.; Karwowski, B.; Rebowska, B.; Guga, P.; Wojciech, J. S., Stability of Stereoregular 01igo(nucleoside Phosphorothioate)s in Human Plasma: Diastereoselectivity of Plasma 3'-Exonuclease. Antisense Nucleic Acid Drug Dev. 1997, 7, 43-48.
59.Okruszek, A., Oxathiaphospholane Method of the Stereocontrolled Synthesis of Phosphorothioate Analogues of Oligonucleotides. RNA Biochemistry and Biotechnology 1999, 325-334.
60.Pruzan, R.; Zielinska, D.; Rebowska-Kocon, B.; Nawrotb, B.; Gryaznov, S. M., Stereopure oligonucleotide phosphorothioates as human telomerase substrate. New J. Chem. 2010, 34, 870-874.
61.Wan, B. W.; Migawa, M. T.; Vasquez, G.; Murray, H. M.; Nichols, J. G.; Gaus, H.; Berdeja, A.; Lee, S.; Hart, C. E.; Lima, W. F.; Swayze, E. E.; Seth, P. P., Synthesis, biophysical properties and biological activity of second-generation antisense oligonucleotides containing chiral phosphorothioate linkages. Nucleic Acids Res. 2014, 42, 13456-13468.
62.Iwamoto, N.; Butler, D. C. D.; Svrzikapa, N.; Mohapatra, S.; Zlatev, I.; Sah, D. W. Y.; Meena; Standley, S. M.; Lu, G.; Apponi, L. H.; Frank-Kamenetsky, M.; Zhang, J. J.; Vargeese, C.; Verdine, G., Control of phosphorothioate stereochemistry substantially increases the efficacy of antisense oligonucleotides. Nat. Biotechnol. 2017, 35, 845-851.
63.Byrne, M.; Vathipadiekal, V.; Apponi, L.; Iwamoto, N.; Kandasamy, P.; Longo, K.; Liu, F.; Looby, R.; Norwood, L.; Shah, A.; Shelke, J. D.; Shivalila, C.; Yang, H.; Yin, Y.; Guo, L.; Bowman, K.; Vargeese, C., Stereochemistry Enhances Potency, Efficacy, and Durability of Malat1 Antisense Oligonucleotides In Vitro and In Vivo in Multiple Species. Trans. Vis. Sci. Tech. 2021, 10, 23.
64.Iwamoto, N.; Liu, Y.; Frank-Kamenetsky, M.; Maguire, A.; Chou, W. T.; Taborn, K.; Kothari, N.; Akhtar, A.; Bowman, K.; Shelke, J. D.; Lamattina, A.; Shelley, X. H.; Jang, H. G.; Kandasamy, P.; Liu, F.; Longo, K.; Looby, R.; Meena; Metterville, J.; Pan, Q.; Purcell-Estabrook, E.; Shimizu, M.; Prakasha, P. S.; Standley, S.; Upadhyay, H.; Yang, H.; Yin, Y.; Zhao, A.; Francis, C.; Byrne, M.; Dale, E.; Verdine, G. L.; Vargeese, C., Preclinical evaluation of stereopure antisense oligonucleotides for allele-selective lowering of mutant HTT. Mol. Ther. Nucleic Acids 2024, 35, 102246.
65.Le, B. T.; Chen, S.; Veedu, R. N., Rational Design of Chimeric Antisense Oligonucleotides on a Mixed PO–PS Backbone for Splice-Switching Applications. Biomolecules 2024, 14, 883.
66.Pon, R. T.; Solid-Phase Supports for Oligonucleotide Synthesis. Curr. Protoc. Nucleic Acid Chem. 2000, 3.1.1-3.1.28.; Guzaev, A. P. Solid-Phase Supports for Oligonucleotide Synthesis. Curr. Protoc. Nucleic Acid Chem. 2013, 3.1.1-3.1.60.
67.Sakamuri, S.; Liu, D.; Eltepu, L.; Liu, B.; Reboton, L. J.; Preston, R.;Bradshaw, C. W., Identification of a Tricyclic PIII Chiral Auxiliary for Solid-Supported Synthesis of Stereopure Phosphorothioate-Containing Oligonucleotides. ChemBioChem. 2020, 21, 1298-1303.
68.Kandasamy, P.; McClorey, G.; Shimizu, M.; Kothari, N.; Alam, R.; Iwamoto, N.; Kumarasamy, J.; Bommineni, G. R.; Bezigian, A.; Chivatakarn, O.; Butler, D. C. D.; Byrne, M.; Chwalenia, K.; Davies, K. E.; Desai, J.; Shelke, J. D.; Durbin, A. F.; Ellerington, R.; Edwards, B.; Godfrey, J.; Hoss, A.; Liu, F.; Longo, K.; Lu, G.; Marappan, S.; Oieni, J.; Paik, I.-H.; Estabrook, E. P.; Shivalila, C.; Tischbein, M.; Kawamoto, T.; Rinaldi, C.; Raj˜ao-Saraiva, J.; Tripathi, S.; Yang, H.; Yin, Y.; Zhao, X.; Zhou, C.; Zhang, J.; Apponi, L.; Wood, M. J. A.; Vargeese, C., Control of backbone chemistry and chirality boost oligonucleotide splice switching activity. Nucleic Acids Res. 2022, 50, 5443-5466.
69.Featherston, A. L.; Kwon, Y.; Pompeo, M. M.; Eng, O. D.; Leahy, D. K.; Miller, S. J., Catalytic asymmetric and stereodivergent oligonucleotide synthesis. Science 2021, 371, 702-707.
70.Allen, T. M., The use of glycolipids and hydrophilic polymers in avoiding rapid uptake of liposomes by the mononuclear phagocyte system. Adv. Drug Delivery Rev. 1994, 13, 285-309.
71.Sahay, G.; Querbes, W.; Alabi, C.; Eltoukhy, A.; Sarkar, S.; Zurenko, C.; Karagiannis, E.; Love, K.; Chen, D.; Zoncu, R.; Buganim, Y.; Schroeder, A.; Langer, R.; Anderson, D. G., Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat. Biotechnol. 2013, 31, 653-658.
72.Lorenz, C.; Hadwiger, P.; John, M.; Vornlocher, H.-P.; Unverzagt, C., Steroid and lipid conjugates of siRNAs to enhance cellular uptake and gene silencing in liver cells. Bioorg. Med. Chem. Lett. 2004, 14, 4975-4977.
73.Wolfrum, C.; Shi, S.; Jayaprakash, K. N.; Jayaraman, M.; Wang, G.; Pandey, R. K.; Rajeev, K. G.; Nakayama, T.; Charrise, K.; Ndungo, E. M.; Zimmermann, T.; Koteliansky, V.; Manoharan, M.; Stoffel, M.; Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat. Biotechnol. 2007, 25, 1149-1157.
74.Nair, J. K.; Willoughby, J. L. S.; Chan, A.; Charisse, K.; Rowshon, Md. A.; Wang, Q.; Hoekstra, M.; Kandasamy, P.; Kel’in, A. V.; Milstein, S.; Taneja, N.; O’Shea, J.; Shaikh, S.; Zhang, L.; Sluis, R. J.; Jung, M. E.; Akinc, A.; Hutabarat, R.; Kuchimanchi, S.; Fitzgerald, K.; Zimmermann, T.; Theo, J. C.; Maier, M. A.; Rajeev, K. G.; Manoharan, M., Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J. Am. Chem. Soc. 2014, 136, 16958-16961.
75.Matsuda, S.; Keiser, K.; Nair, J. K.; Charisse, K.; Manoharan, R. M.; Kretschmer, P.; Peng, C. G.; Kel’in, A. V.; Kandasamy, P.; Willoughby, J. L. S.; Liebow, A.; Querbes, W.; Yucius, K.; Nguyen, T.; Milstein, S.; Maier, M. A.; Rajeev, K. G.; Manoharan, M., siRNA conjugates carrying sequentially assembled trivalent N-acetylgalactosamine linked through nucleosides elicit robust gene silencing in vivo in hepatocytes. ACS Chem. Biol. 2015, 10, 1181-1187.
76.Betts, C.; Saleh, A. F.; Arzumanov, A. A.; Hammond, S. M.; Godfrey, C.; Coursindel, T.; Gait, M. J.; Wood, M. J., Pip6–PMO, a new generation of peptide–oligonucleotide conjugates with improved cardiac exon skipping activity for DMD treatment. Mol. Ther. Nucleic Acids 2012, 1, e38.
77.Ämmälä, C.; Drury, W. J.; Stillemark-Billton, A. P.; Wennberg-Huldt, C.; Andersson, E.-M.; Valeur, E.; Jansson-Löfmark, R.; Andersson, S., Targeted delivery of antisense oligonucleotides to pancreatic β-cells. Sci. Adv. 2018, 4, eaat3386.
78.Song, E.; Zhu, P.; Lee, S.-K.; Chowdhury, D.; Kussman, S.; Dykxhoorn, D. M.; Feng, Yi.; Palliser, D.; Weiner, D. B.; Shankar, P.; Marasco, W. A.; Lieberman, J., Antibody-mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat. Biotechnol. 2005, 23, 709-717.
79.Soutschek, J.; Akinc, A.; Bramlage, B.; Charisse, K.; Constien, R.; Donoghue, M.; Elbashir, S.; Geick, A.; Hadwiger, P.; Harborth, J.; John, M.; Kesavan, V.; Lavine, G.; Pandey, R. K.; Racie, T.; Rajeev, K. G.; Röhl, I.; Toudjarska, I.; Wang, G.; Wuschko, S.; Bumcrot, D.; Koteliansky, V.; Limmer, S.; Manoharan, M.; Vornlocher, H.-P., Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 2004, 432, 173-178.
80.Nishina, K.; Unno, T.; Uno, Y.; Kubodera, T.; Kanouchi, T.; Mizusawa, H.; Yokota, T., Efficient in vivo delivery of siRNA to the liver by conjugation of α-tocopherol. Mol. Ther. 2008, 16, 734-740.
81.Spiess, M., The asialoglycoprotein receptor: a model for endocytic transport receptors. Biochemistry 1990, 29,10009-10018.
82.Prakash, T. P.; Graham, M. J.; Yu, J.; Carty, R.; Low, A.; Chappell, A.; Schmidt, K.; Zhao, C.; Aghajan, M.; Murray, H. F.; Riney, S.; Booten, S. L.; Murray, S. F.; Gaus, H.; Crosby, J.; Lima, W. F.; Guo, S.; Monia, B. P.; Swayze, E. E.; Seth, P. P., Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice. Nucleic Acids Res. 2014, 42, 8796-8807.
83.Viney, N. J.; Capelleveen, J. C.; Geary, R. S.; Xia, S.; Tami, J. A.; Yu, R. Z.; Marcovina, S. M.; Hughes, S. G.; Graham, M. J.; Crooke, R. M.; Crooke, S. T.; Witztum, J. L.; Stroes, E. S.; Tsimikas, S., Antisense oligonucleotides targeting apolipoprotein(a) in people with raised lipoprotein(a): two randomized, double-blind, placebo-controlled, dose-ranging trials. Lancet. 2016, 388, 2239-225.
84.McClorey, G.; Banerjee, S., Cell-penetrating peptides to enhance delivery of oligonucleotide-based therapeutics. Biomedicines 2018, 6, 51.
85.Gait, M. J.; Arzumanov, A. A.; McClorey, G.; Godfrey, C.; Betts, C.; Hammond, S.; Wood, M. J. A., Cell-penetrating peptide conjugates of steric blocking oligonucleotides as therapeutics for neuromuscular diseases from a historical perspective to current prospects of treatment. Nucleic Acid. Ther. 2019, 29, 1-12.
86.Neuman, B. W.; Stein, D. A.; Kroeker, A. D.; Bestwick, R. K.; Iversen, P. L.; Moulton, H. M.; Buchmeier, M. J., Inhibition and escape of SARS-CoV treated with antisense morpholino oligomers. Adv. Exp. Med. Biol. 2006, 581, 567-571.
87.Enterlein, S.; Warfield, K. L.; Swenson, D. L.; Stein, D. A.; Smith, J. L.; Gamble, C. S.; Kroeker, A. D.; Iversen, P. L.; Bavari, Sina.; Mühlberger, E., VP35 knockdown inhibits Ebola virus amplification and protects against lethal infection in mice. Antimicrob. Agents Chemother. 2006, 50, 984-993.
88.Kapadia, C. H.; Melamed, J. R.; Day, E. S., Spherical nucleic acid nanoparticles: therapeutic potential. BioDrugs 2018, 32, 297-309.
89.Jensen, S. A.; Day, E. S.; Ko, C. H.; Hurley, L. A.; Luciano, J. P.; Kouri, F. M.; Merkel, T. J.; Luthi, A. J.; Patel, P. C.; Cutler, J. I.; Daniel, W. L.; Scott, A. W.; Rotz, M. W.; Meade, T. J.; Giljohann, D. A.; Mirkin, C. A.; Stegh, A. H., Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci. Transl Med. 2013, 5, 209ra152.
90.Anna, P.; Elzbieta, K.; Karol, P.; Douglas, H. T.; Ryszard, K., A chemical synthesis of LNA-2,6-diaminopurine riboside, and the influence of 2’-O-methyl-2,6-diaminopurine and LNA-2,6-diaminopurine ribosides on the thermodynamic properties of 2’-O-methyl RNA/RNA heteroduplexes. Nucleic Acids Res. 2007, 35, 4055-4063.
91.Dalibor, O.; Jesper, B. B.; Romualdas, S.; Claus, B.; Jorgen, K.; Joachim, W. E., Synthesis of 2’-O-modified adenosine building blocks and application for RNA interference. Bioorg. Med. Chem. 2008, 16, 518-529.
92.Christoph, R.; Daniel, S. P.; Miriam, F.; Flemming, R. J.; Susan, A.; Sine, L.; Troels, K., LNA guanine and 2,6-diaminopurine. Synthesis, characterization and hybridization properties of LNA 2,6-diaminopurine containing oligonucleotides. Bioorg. Med. Chem. 2004, 12, 2385-2396.
93.Yong, G.; Lu, C.; Wei, Z.; Rhys, S., Transglycosylation in the Modification and Isotope Labeling of Pyrimidine Nucleosides. Org. Lett. 2020, 22, 5577-5581.
94.Gregory, L. B.; Michael, S. B.; Benjamin, M. C.; Junying, F.; Jonathan, M.; and Chris, S., Follow the Silyl Cation: Insights into the Vorbrüggen Reaction. Org. Process Res. Dev. 2019, 23, 2050-2056.
95.Amy, L. A.; Patricia, L. G.; Melissa, L. P. P.; Stephanie, A. H.; Jose, C. J.; Fernando, D.; Robert, J. T.; David, E. S.; Bruce, G.; Yingbo, L.; Weiru, W.; Steven, E., Synthesis and Evaluation of Multisubstrate Bicyclic Pyrimidine Nucleoside Inhibitors of HumanThymidine Phosphorylase. J. Med. Chem. 2006, 49, 7807-7815.
96.William, P. G.; Gregory, L. B.; Tyler, J. W.; Prashant, P. D., Selective opening of nucleoside derived acetals to form highly functionalized vinyl ethers. Tetrahedron Lett. 2020, 61, 151750.
97.Bruce, S. R.; Quanlai, S.; Mingming, H., Kilo-Scale Synthesis Process For 2’-O-(2-methoxyethyl)-pyrimidine Derivatives. Nucleosides Nucleotides Nucleic Acids, 2005, 24, 815-818.
98.Elodie, D.; Anastasia, L.; François, H.; Jonathan, H., Increased Affinity of 2’-O-(2-Methoxyethyl)-Modified Oligonucleotides to RNA through Conjugation of Spermine at Cytidines. Helv. Chim. Acta. 2019, 102, e1900222.
99.Vanessa, P.; Demetra, S. M. C.; Stella, M.; Stamatina, B.; Panagiotis, M.; Dimitra-Niki, G.; Eleni, K.; Anastassia, L. K.; Vassiliki, T. S.; Spyridon, E. Z.; Panagiotis, Z.; Nikolaos. A. A. B.; Dimitris, K.; Demetres, D. L., Triazole pyrimidine nucleosides as inhibitors of Ribonuclease A. Synthesis, biochemical, and structural evaluation. Bioorg. Med. Chem. 2012, 20, 7184-7193.
100.Martin, M.; Daniel, G.; Tobias, B.; Mirko, W.; Veronika, W.; Stylianos, M.; Markus, M.; Martin, B.; Thomas, C., Quantification of the Sixth DNA Base Hydroxymethylcytosine in the Brain. Angew. Chem. Int. Ed. 2010, 49, 5375-5377.
101.Hisatsugu, Y.; Yuya, K.; Kazuhito, T.; Takeo, I.; Sei-ichi, N., Anthraquinone-Sensitized Photooxidation of 5-Methylcytosine in DNA Leading to Piperidine-Induced Efficient Strand Cleavage. Chem. Eur. J. 2011, 17, 2225-2235.
102.Kikkeri, J. D.; Chitra, M. S.; Mulla, Y. A.; Deepak, V. Z.; Sakina, M.; Sitabkhan; Bruce, S. R.; Yogesh, S. S., Commercial-Scale Synthesis of Protected 2’-Deoxycytidine and Cytidine Nucleosides. Nucleosides Nucleotides Nucleic Acids, 2003, 22, 1321-1325.
103.Satoru, K.; Kohei, Y.; Kenji, K.; Yuko, I.; Shinji, S.; Noriyuki, A.; Hiroyuki, H.; Daisuke, N.; Eiichi, K.; Masao, M.; Hiroaki, M.; Hiroshi, O., Design, Efficient Synthesis, and Anti‐HIV Activity of 4’‐C‐Cyano‐ and 4’‐C‐Ethynyl‐2’‐deoxy Purine Nucleosides. Nucleosides Nucleotides Nucleic Acids, 2004, 23, 671-690.
104.Kenichi, M.; Ryuji, T.; Akihiro, O.; Haruhiko, T.; Kohji, S.; Tomofumi, S.; Mitsuo, S., Synthesis and Properties of a New Fluorescent Bicyclic 4-N-Carbamoyl deoxycytidine Derivative. Org. Lett. 2006, 8, 1545-1548.
105.Masahiro, M.; Kenichi, M.; Kohji, S.; Tomofumi, S.; Mitsuo, S., Synthesis of fluorescent cyclic cytosine nucleosides and their fluorescent properties upon incorporation into oligonucleotides. Nucleic Acids Symposium Series, 2006, 50, 19-20.
106.Masahiro, M.; Kohji, S.; Kenichi, M.; Mitsuo, S., Fluorescent Pyrimidopyrimi- doindole Nucleosides: Control of Photophysical Characterizations by Substituent Effects. J. Org. Chem. 2007, 72, 5046-5055.
107.Assignee: Beijing Ribio Pharma Co., Ltd. World Intellectual Property Organization, Cost-effective preparation of 2'-substituted pyrimidine nucleosides. WO2023138079 A1 2023-07-27
108.Jennifer, D.; Lorenzo, D. N.; Giovanni, D. F.; Daniela, M., 2-(Phenylthio)ethyl as a Novel Two-Stage Base Protecting Group for Thymidine Analogues. Synlett. 2006, 6, 845-848.
109.Grzegorz, F.; Zofia, G.; Maria, G.; Jerzy, B., A reinvestigated mechanism of ribosylation of adenine under silylating conditions. Tetrahedron 2006, 62, 10123-10129.
110.Jose’-Luis, A.; Barbara, L. G.; Roger, A. J., 15N-Multilabeled Adenine and Guanine Nucleosides. Syntheses of [1,3,NH2-15N3]- and [2-13C-1,3,NH2-15N3]-Labeled Adenosine, Guanosine, 2’-Deoxyadenosine, and 2’-Deoxyguanosine. J. Org. Chem. 1999, 64, 6575-6582.
111.Vita, O.; Tina, P.; Salo, G.; Anna-Britta, H., On the Syntheses of 8-Heteroaryl-substituted 9-(β-D-Ribofuranosyl)-2,6-diaminopurines through Pg-Catalyzed Coupling in the Presence of Cupric Oxide. J. Heterocyclic Chem. 1995, 32, 863.
112.Chengyuan, L.; Weihui, J.; Shunjun, D.; Han, S.; Gennian, M., Effective Synthesis of Nucleosides Utilizing O-Acetyl-Glycosyl Chlorides as Glycosyl Donors in the Absence of Catalyst: Mechanism Revision and Application to Silyl-Hilbert-Johnson Reaction. Molecules 2017, 22, 84.
113.Li, M.; Lightfoot, H. L.; Halloy, F.; Malinowska, A. L.; Berk, C.; Behera, A.; Schümperlib, D.; Hall, J., Synthesis and cellular activity of stereochemically pure 2’-O-(2-methoxyethyl)-phosphorothioate oligonucleotides. Chem. Commun. 2017, 53, 541.
114.Kierzek, R., The Synthesis of 5’-O-Dimethoxytrityl-N-Acyl-2’-Deoxynucleosides. Improved “Transient Protection” Approach. Nucleosides Nucleotides, 1985, 4, 641-649.
115.Shabbir, A. S.; Taj; Narayanan, S.; Meenakshi, S. S.; Yogesh; Sanghvi, S.; Ross, B. S.; Ravikumar, V. T., Process Research on the Preparation of DMT Protected 2’-O-Methoxyethylguanosine for Oligonucleotide Synthesis in Therapeutic Applications. Nucleosides Nucleotides Nucleic Acids, 2008, 27, 1024-1033.
116.Andrew, K. M.; Daniel, C.; Lijian, C.; Philip, O.; An Improved Process for the Manufacture of 5’‑O‑(4,4’-Dimethoxytrityl)‑N2‑isobutyryl-2’‑O‑(2-methoxyeth- yl)guanosine. Org. Process Res. Dev. 2020, 24, 2583-2590.
117.Reddy,M. P.; Rampal, J. B.; Beaucage, S. L.; Road, P. M.; Alto, P., An Efficient Procedure For The Solid Phase Tritylation Of Nucleosides And Nucleotides. Tetrahedron Lett. 1987, 28, 23-26.
118.Bednarek, S.; Madan, V.; Sikorski, P. J.; Bartenschlager, R.; Kowalska, J.; Jemielity, J.; mRNAs biotinylated within the 5’ cap and protected against decapping: new tools to capture RNA-protein complexes. Phil. Trans. R. Soc. B, 2018, 373, 167.
119.Wilbanks, B.; Pearson, K.; Byrne, S. R.; Bickart, L. B.; Dedon, P. C.; Maher, L. J., DNA Modifications Enabling Proximity Biotinylation. Bioconjugate Chem. 2023, 34, 611-615.
120.Morozova, N. G.; Maslov, M. A.; Petukhova, O. A.; Andronova, S. V.; Grishaeva, A. O.; Serebrennikova, G. A, Synthesis of lipid mediators based on 1,2-dialkylglycerol and cholesterol for targeted delivery of oligo- and polynucleotides into hepatocytes. Russian Chemical Bulletin, 2010, 59, 251-259.
121.Wang, R.; Chen, Y. Q., Protein Lipidation Types: Current Strategies for Enrichment and Characterization. Int. J. Mol. Sci. 2022, 23, 2365.
122.Sekine, M.; Okada, K.; Seio, K.; Obata, T.; Sasaki, T.; Kakeyae, H.; Osada, H., Synthesis of a biotin-conjugate of phosmidosine O-ethyl ester as a G1 arrest antitumor drug. Bioorg. Med. Chem. 2004, 12, 6343-6349.
123.Nagata, T.; Dwyer, C. A.; Yoshida-Tanaka, K.; Ihara, K.; Ohyagi, M.; Kaburagi, H.; Miyata, H.; Ebihara, S.; Yoshioka, K.; Ishii, T.; Miyata, K.; Miyata, K.; Powers, B.; Igari, T.; Yamamoto, S.; Arimura, N.; Hirabayashi, H.; Uchihara, T.; Hara, R. I.; Wada, T.; Bennett, C. F.; Seth, P. P.; Rigo, F.; Yokota, T., Cholesterol-functionalized DNA/RNA heteroduplexes cross the blood–brain barrier and knock down genes in the rodent CNS. Nat. Biotechnol. 2021, 39, 1529-1536.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101047-
dc.description.abstract本論文旨在合成具有高立體選擇性、高反應性並適用五價磷 (P(V)) 固相合成的反義寡核苷酸 (antisense oligonucleotides, ASO) 建構單元 (building blocks),以提升固相核酸合成的反應效率與鏡像純度。其中,ASO可專一且有效的與目標信使核糖核酸 (messenger RNA, mRNA) 結合,並透過數種不同的機制調節目標蛋白質的表現活性,近期主要被應用於RNA層級來治療罕見遺傳疾病、免疫疾病與部分癌症等,屬於近年興起的新穎藥物開發領域。為了提升ASO專一且有效的結合力並增強ASO對核酸酶 (nuclease) 的耐受性,執行多項結構修飾策略。在天然含氮鹼基源的基礎上,亦引入了在互補配對時可多額外提供一組氫鍵的2-胺基腺嘌呤 (2-aminoadenine, Z) 以及具有免疫逃脫 (immune evasion) 效果的甲基胞嘧啶 (5-methylcytosine, 5MeC) 做為含氮鹼基,同時也在核糖醣體2’位引入甲氧基乙基 (Methoxyethyl, MOE) 取代,亦將磷酸酯 (phosphate, PO) 骨架更換為磷硫酯 (phosphorothioate, PS) 骨架。
根據各含氮鹼基的結構相似性與反應性,可將其分為四類。第一類為胸腺嘧啶 (T) 與尿嘧啶 (U) 作為含氮鹼基;當醣體為核醣骨架時,可利用核醣作為起始物,先對其四個羥基 (hydroxyl group) 進行乙醯基 (Acetyl, Ac) 保護,隨後與三甲基矽 (trimethylsilyl, TMS) 活化的含氮鹼基進行反應來建立醣苷鍵,接著去除乙醯基保護,再利用分子內脫水合環反應 (intramolecular dehydration ring closure reaction) 與路易士酸促進開環取代反應 (Lewis acid-promoted ring-opening substitution reaction),於核醣2’位引入與天然核醣立體組態一致的MOE取代,隨後對其5’位進行二甲氧基三苯基甲基 (dimethoxytrityl, DMTr) 保護,並在3’位引入掌性輔助基團 (chiral auxiliary),即可得對應建構單元;而在以去氧核醣為骨架的例子中,僅需引入5’位DMTr保護與3’掌性輔助基團即可得對應建構單元。第二類則是以胞嘧啶 (C) 與5-甲基胞嘧啶 (5MeC) 作為含氮鹼基時,不論是核醣骨架或是去氧核醣骨架,皆可將已進行5’位DMTr保護的尿嘧啶或胸腺嘧啶的化合物直接進行芳香環親核取代反應 (nucleophilic aromatic substitution reaction,SNAr),將其含氮鹼基上的氧元素置換為氮元素,隨後對氮元素進行苯甲醯基 (benzoyl, Bz) 保護後,於3’位引入掌性輔助基團,即可得對應建構單元。
第三類則為以腺嘌呤 (A) 與2-胺基腺嘌呤 (Z) 為含氮鹼基;當醣體為核醣骨架時,同樣可利用核醣作為起始物,先對其四個羥基進行Ac保護,隨後與三甲基矽活化的6-氯嘌呤 (6-chloropurine, 6-C-P) 或6-氯鳥糞嘌呤 (6-Chloroguanosine, 6-C-G) 進行反應來建立醣苷鍵,接著再將6-氯元素取代為6-氮元素,隨後於核醣2’位引入MOE取代,接著對含氮鹼基的氮元素進行Bz保護後,再對其5’位進行DMTr保護,隨後於3’位引入掌性輔助基團,即可得對應建構單元;而在去氧核醣為骨架的例子中,僅需直接引入含氮鹼基氮的Bz保護基與核醣5’位保護基,隨後於3’建立掌性輔助基團即可得對應建構單元。最後一類為以鳥糞嘌呤作為含氮鹼基時,不論是核醣骨架或是去氧核醣骨架,皆能利用市售可得的起始物,直接對其核醣5’位進行DMTr保護,並於3’位引入掌性輔助基團,即可得對應建構單元。
綜合上述,成功地建立一套ASO的建構單元合成平台,後續研究者可利用此平台配合目標序列進行客製化的組裝,製備高專一性的ASO藥物分子,實現更高度的精準靶向治療。此平台的建立亦可回應我國邁入超高齡社會所面臨的重大醫療挑戰,其服務範圍涵蓋多項神經退化性疾病,如家族性澱粉樣多發性神經病變與帕金森氏症,以及各類罕見疾病,期能做出實質社會貢獻,進一步增進全民健康福祉。
zh_TW
dc.description.abstractThis thesis aims to develop a synthetic platform for constructing antisense oligonucleotide (ASO) building blocks with high stereoselectivity, enhanced reactivity, and compatibility with phosphorus(V)-based (P(V)-based) solid-phase synthesis. These building blocks are designed to improve the reaction efficiency and diastereomeric purity in oligonucleotide assembly. ASOs specifically and effectively hybridize with target messenger RNA (mRNA) and regulate gene expression through various mechanisms. In recent years, ASOs have gained recognition as a promising class of RNA therapeutics, with expanding applications in the treatment of rare genetic disorders, immune-related diseases, and certain cancers. Several structural modifications were introduced to enhance ASO's binding specificity and nuclease resistance. These include the incorporation of 2-aminoadenine (Z), which provides an additional hydrogen bond within Watson-Crick base pairing, and 5-methylcytosine (5MeC), a nucleobase associated with immune evasion. Furthermore, a 2'-O-methoxyethyl (MOE) group was introduced at the sugar moiety to enhance duplex stability by raising the melting temperature (Tₘ), and the phosphate backbone was substituted with a phosphorothioate (PS) linkage to improve nuclease resistance.
The building blocks were categorized into four types based on nucleobase structure and reactivity. The first category includes thymine (T) and uracil (U) derivatives. Utilizing ribose as the sugar scaffold, all four hydroxyl groups were protected with acetyl (Ac) groups prior to glycosylation with trimethylsilyl (TMS)-activated nucleobases. Following deprotection, an intramolecular dehydration ring-closure reaction and a Lewis acid-promoted ring-opening substitution were employed to introduce 2'-OMOE in the natural ribo-configuration. Subsequently, 5'-dimethoxytrityl (DMTr) protection and 3'-chiral auxiliary installation yielded the final building blocks. In the case of deoxyribose scaffolds, only 5'-DMTr protection and 3'-auxiliary incorporation were required. The second category encompasses cytosine (C) and 5MeC nucleobases. In both ribose and deoxyribose series, the corresponding uracil or thymine intermediates bearing 5'-DMTr were subjected to nucleophilic aromatic substitution (SNAr) to facilitate oxygen-to-nitrogen replacement, followed by benzoyl (Bz) protection and 3'-chiral auxiliary installation, resulting in the corresponding final building blocks.
The third category includes adenine (A) and 2-aminoadenine (Z). Ribose derivatives were prepared by Ac-protecting ribose, followed by glycosylation with 6-chloropurine (6-C-P) or 6-chloroguanosine (6-C-G). Subsequently, SNAr reaction at the C6 position with an amino group was followed by MOE introduction at the 2'-position, N-benzoylation, 5'-DMTr protection, and 3'-chiral auxiliary attachment. For deoxyribose synthesis, the process necessitated only N-benzoylation protection, 5'-DMTr protection, and 3'-auxiliary installation, which were needed in the deoxyribose series. The fourth category comprises guanine derivatives, for which ribose and deoxyribose scaffolds were derived from commercially available starting materials. These were converted to the desired building blocks via standard 5'-DMTr protection and 3'-auxiliary attachment.
In conclusion, a modular synthesis platform for constructing ASOs has been successfully established. This platform enables subsequent researchers to assemble highly sequence-specific ASO drug molecules in a customizable manner according to target sequences, thereby facilitating the development of more precise and effective targeted therapies. The establishment of this platform also addresses critical healthcare challenges posed by Taiwan’s rapidly aging society. Its applications encompass a range of neurodegenerative diseases, such as familial amyloid polyneuropathy and Parkinson’s disease, as well as various rare diseases. It is anticipated that this platform will contribute meaningfully to society by advancing public health and improving overall well-being.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:36:17Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-11-26T16:36:17Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 I
Abstract III
目次 VII
圖次 IX
簡稱用語對照表 XII
第一章 緒論 1
1.1 ASO的作用機制 1
1.2 ASO常見的化學修飾 6
1.2.1含氮鹼基的修飾 7
1.2.2核醣骨架的修飾 10
1.2.3磷酸酯骨架的修飾 14
1.3磷硫酯立體中心對ASO的影響 16
1.4合成stereopure之磷硫酯ASO的困境與發展 18
1.5 ASO的藥物遞送策略 24
1.6研究動機與分子設計 27
第二章 合成不同的建構單元 31
2.1建構單元的合成策略 31
2.2嘧啶類建構單元的合成 34
2.2.1胸腺嘧啶 (T) 與尿嘧啶 (U) RNA建構單元的合成 34
2.2.2甲基胞嘧啶 (MeC) 與胞嘧啶 (C) RNA建構單元的合成 42
2.2.3胸腺嘧啶 (dT) 與甲基胞嘧啶 (dMeC) DNA建構單元的合成 46
2.3嘌呤類建構單元的合成 48
2.3.1腺嘌呤 (A) 與2-胺基腺嘌呤 (Z) RNA建構單元的合成 48
2.3.2腺嘌呤 (dA) 與2-胺基腺嘌呤 (dZ) DNA建構單元的合成 52
2.3.3鳥嘌呤 (G與dG) RNA與DNA建構單元的合成 54
2.4 核酸序列5’端修飾建構單元的合成 57
2.4.1核酸序列5’端生物素化建構單元的合成 57
2.4.2核酸序列5’端生物素化建構單元的合成 60
2.5以雙醣化為例確立磷硫酯的立體中心 62
2.6結論 65
實驗部分 (Experimental Section) 67
一般實驗處理與儀器設備(General method and instruments) 67
實驗步驟及光譜數據 (Synthetic procedures and spectral data) 69
參考文獻 203
附錄 1H、13C、19F與31P NMR圖譜 227
-
dc.language.isozh_TW-
dc.subject反義寡核苷酸-
dc.subject核苷酸建構單元合成-
dc.subject具立體選擇性的磷硫酯合成-
dc.subject2-胺基腺嘌呤-
dc.subject2'-甲氧基乙基核醣骨架-
dc.subjectAntisense oligonucleotides-
dc.subjectNucleotide building block synthesis-
dc.subjectStereoselective phosphorothioate synthesis-
dc.subject2-Aminoadenine-
dc.subject2'-Methoxyethyl ribose backbone-
dc.title開發新型化學修飾反義寡核苷酸以增強基因沉默功效zh_TW
dc.titleDevelopment of the novel chemically modified antisense oligonucleotides for enhancing gene silencing efficacyen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee簡敦誠;張智芬zh_TW
dc.contributor.oralexamcommitteeTun-Cheng Chien;Zee-Fen Changen
dc.subject.keyword反義寡核苷酸,核苷酸建構單元合成具立體選擇性的磷硫酯合成2-胺基腺嘌呤2'-甲氧基乙基核醣骨架zh_TW
dc.subject.keywordAntisense oligonucleotides,Nucleotide building block synthesisStereoselective phosphorothioate synthesis2-Aminoadenine2'-Methoxyethyl ribose backboneen
dc.relation.page422-
dc.identifier.doi10.6342/NTU202504421-
dc.rights.note未授權-
dc.date.accepted2025-08-21-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
dc.date.embargo-liftN/A-
Appears in Collections:化學系

Files in This Item:
File SizeFormat 
ntu-114-1.pdf
  Restricted Access
15.43 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved