Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101046
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor梁文傑zh_TW
dc.contributor.advisorMan-Kit Leungen
dc.contributor.author李珮雯zh_TW
dc.contributor.authorPei-Wen Lien
dc.date.accessioned2025-11-26T16:36:03Z-
dc.date.available2025-11-27-
dc.date.copyright2025-11-26-
dc.date.issued2025-
dc.date.submitted2025-07-25-
dc.identifier.citation(1) Baltag, O. History of Plasma Display Reflected by Patents. Current Journal of Applied Science and Technology 2021, 40, 68-81.
(2) Li, Y.-L.; Li, N.-N.; Wang, D.; Chu, F.; Lee, S.-D.; Zheng, Y.-W.; Wang, Q.-H. Tunable liquid crystal grating based holographic 3D display system with wide viewing angle and large size. Light: Science & Applications 2022, 11 (1), 188.
(3) Hua, T.; Cao, X.; Miao, J.; Yin, X.; Chen, Z.; Huang, Z.; Yang, C. Deep-blue organic light-emitting diodes for ultrahigh-definition displays. Nature Photonics 2024, 18 (11), 1161-1169.
(4) Parker, C.; Hatchard, C. Delayed fluorescence from solutions of anthracene and phenanthrene. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 1962, 269 (1339), 574-584.
(5) Tang, C. W.; VanSlyke, S. A. Organic electroluminescent diodes. Applied physics letters 1987, 51 (12), 913-915.
(6) Burroughes, J. H.; Bradley, D. D.; Brown, A.; Marks, R.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Light-emitting diodes based on conjugated polymers. nature 1990, 347 (6293), 539-541.
(7) Qiu, X.; Gong, X.; Zhang, X.; Zheng, W. Ink-jet printing towards ultra-high resolution: a review. Coatings 2022, 12 (12), 1893.
(8) Šípoš, R.; Šima, J. JABLONSKI DIAGRAM REVISITED. Revista cubana de física 2020, 37 (2).
(9) Nowsherwan, G. A.; Ali, Q.; Ali, U. F.; Ahmad, M.; Khan, M.; Hussain, S. S. Advances in organic materials for next-generation optoelectronics: potential and challenges. Organics 2024, 5 (4), 520-560.
(10) Di, D.; Yang, L.; Richter, J. M.; Meraldi, L.; Altamimi, R. M.; Alyamani, A. Y.; Credgington, D.; Musselman, K. P.; MacManus‐Driscoll, J. L.; Friend, R. H. Efficient triplet exciton fusion in molecularly doped polymer light‐emitting diodes. Advanced Materials 2017, 29 (13), 1605987.
(11) Wu, C.; Shi, K.; Li, S.; Yan, J.; Feng, Z.-Q.; Tong, K.-N.; Zhang, S.-W.; Zhang, Y.; Zhang, D.; Liao, L.-S. Design strategies of iridium (III) complexes for highly efficient saturated blue phosphorescent OLEDs with improved lifetime. EnergyChem 2024, 6 (2), 100120.
(12) Park, H. J.; Jang, J.-H.; Lee, J.-H.; Hwang, D.-H. Highly efficient deep-blue phosphorescent OLEDs based on a trimethylsilyl-substituted tetradentate Pt (II) complex. ACS applied materials & interfaces 2022, 14 (30), 34901-34908.
(13) Li, G.; Ameri, L.; Dorame, B.; Zhu, Z. Q.; Li, J. Improved Operational Stability of Blue Phosphorescent OLEDs by Functionalizing Phenyl‐Carbene Groups of Tetradentate Pt (II) Complexes. Advanced Functional Materials 2024, 34 (42), 2405066.
(14) Jiang, H.; Tao, P.; Wong, W.-Y. Recent advances in triplet–triplet annihilation-based materials and their applications in electroluminescence. ACS Materials Letters 2023, 5 (3), 822-845.
(15) Franca, L. G.; Bossanyi, D. G.; Clark, J.; Dos Santos, P. L. Exploring the versatile uses of triplet states: working principles, limitations, and recent progress in phosphorescence, TADF, and TTA. ACS Applied Optical Materials 2024, 2 (12), 2476-2500.
(16) Xing, L.; Zhu, Z.-L.; He, J.; Qiu, Z.; Yang, Z.; Lin, D.; Chen, W.-C.; Yang, Q.; Ji, S.; Huo, Y. Anthracene-based fluorescent emitters toward superior-efficiency nondoped TTA-OLEDs with deep blue emission and low efficiency roll-off. Chemical Engineering Journal 2021, 421, 127748.
(17) Mahato, P.; Monguzzi, A.; Yanai, N.; Yamada, T.; Kimizuka, N. Fast and long-range triplet exciton diffusion in metal–organic frameworks for photon upconversion at ultralow excitation power. Nature materials 2015, 14 (9), 924-930.
(18) Liao, Q.; Li, Q.; Li, Z. The key role of molecular packing in luminescence property: from adjacent molecules to molecular aggregates. Advanced Materials 2023, 2306617.
(19) Ieuji, R.; Goushi, K.; Adachi, C. Triplet–triplet upconversion enhanced by spin–orbit coupling in organic light-emitting diodes. Nature communications 2019, 10 (1), 5283.
(20) Zhang, T.; Xiao, Y.; Wang, H.; Kong, S.; Huang, R.; Ka‐Man Au, V.; Yu, T.; Huang, W. Highly twisted thermally activated delayed fluorescence (TADF) molecules and their applications in organic light‐emitting diodes (OLEDs). Angewandte Chemie International Edition 2023, 62 (39), e202301896.
(21) Lee, Y. H.; Lee, W.; Lee, T.; Jung, J.; Yoo, S.; Lee, M. H. Achieving over 36% EQE in blue OLEDs using rigid TADF emitters based on spiro-donor and spiro-B-heterotriangulene acceptors. Chemical Engineering Journal 2023, 452, 139387.
(22) Tankelevičiūtė, E.; Samuel, I. D.; Zysman-Colman, E. The blue problem: OLED stability and degradation mechanisms. The Journal of Physical Chemistry Letters 2024, 15 (4), 1034-1047.
(23) Sun, M.; Ma, C.; Xie, M.; Chu, L.; Sun, Q.; Yang, W.; Xue, S. Highly efficient deep blue electroluminescent material with high and towards balanced carrier transmission performance based on hybrid local and charge-transfer (HLCT) excited state. Chemical Engineering Journal 2024, 480, 148107.
(24) Yin, Y.; Lai, X.; Ma, Q.; Ma, H.; Zhu, W.; Lee, J. Y.; Wang, Y. HLCT‐Type Acceptor Molecule‐Based Exciplex System for Highly Efficient Solution‐Processable OLEDs with Suppressed Efficiency Roll‐Offs. Advanced Materials 2024, 36 (19), 2313656.
(25) Xie, Y.; Hua, L.; Wang, Z.; Liu, Y.; Ying, S.; Liu, Y.; Ren, Z.; Yan, S. Constructing an efficient deep-blue TADF emitter by host-guest interactions towards solution-processed OLEDs with narrowband emission. Science China Chemistry 2023, 66 (3), 826-836.
(26) Liu, D.; He, Y.; Qiu, W.; Peng, X.; Li, M.; Li, D.; Pu, J.; Yang, J.; Gan, Y.; Yang, G. Management of Host–Guest Triplet Exciton Distribution for Stable, High‐Efficiency, Low Roll‐Off Solution‐Processed Blue Organic Light‐Emitting Diodes by Employing Triplet‐Energy‐Mediated Hosts. Advanced Functional Materials 2023, 33 (32), 2301327.
(27) Jiang, P.; Miao, J.; Cao, X.; Xia, H.; Pan, K.; Hua, T.; Lv, X.; Huang, Z.; Zou, Y.; Yang, C. Quenching‐resistant multiresonance TADF emitter realizes 40% external quantum efficiency in narrowband electroluminescence at high doping level. Advanced Materials 2022, 34 (3), 2106954.
(28) Wang, J.; Yang, Y.; Sun, X.; Li, X.; Zhang, L.; Li, Z. Management of triplet excitons transition: fine regulation of Förster and dexter energy transfer simultaneously. Light: Science & Applications 2024, 13 (1), 35.
(29) Zou, X.; Gan, N.; Dong, M.; Huo, W.; Lv, A.; Yao, X.; Yin, C.; Wang, Z.; Zhang, Y.; Chen, H. Narrowband organic afterglow via phosphorescence Förster resonance energy transfer for multifunctional applications. Advanced Materials 2023, 35 (36), 2210489.
(30) Mubarok, H.; Amin, A.; Lee, T.; Jung, J.; Lee, J. H.; Lee, M. H. Triptycene‐fused sterically shielded multi‐resonance TADF emitter enables high‐efficiency deep blue OLEDs with reduced dexter energy transfer. Angewandte Chemie 2023, 135 (32), e202306879.
(31) Sachnik, O.; Tan, X.; Dou, D.; Haese, C.; Kinaret, N.; Lin, K.-H.; Andrienko, D.; Baumgarten, M.; Graf, R.; Wetzelaer, G.-J. A. Elimination of charge-carrier trapping by molecular design. Nature Materials 2023, 22 (9), 1114-1120.
(32) Lin, C.; Wu, Z.; Ma, H.; Liu, J.; You, S.; Lv, A.; Ye, W.; Xu, J.; Shi, H.; Zha, B. Charge trapping for controllable persistent luminescence in organics. Nature Photonics 2024, 18 (4), 350-356.
(33) Yang, J.; Li, H.; Yang, J.; Sun, B.; Bao, Q.; Tang, Z.; Ma, Z. ITO electrode with a tunable work function for organic photovoltaic devices. ACS Applied Electronic Materials 2022, 4 (8), 4104-4112.
(34) Zheng, X.; Zuo, L.; Zhao, F.; Li, Y.; Chen, T.; Shan, S.; Yan, K.; Pan, Y.; Xu, B.; Li, C. Z. High‐efficiency ITO‐free organic photovoltaics with superior flexibility and upscalability. Advanced Materials 2022, 34 (17), 2200044.
(35) Yahya, M.; Fadavieslam, M. Effect of oxygen plasma on ITO surface and OLED physical properties. Microelectronics Reliability 2023, 144, 114981.
(36) Weber, D.; Heimburger, R.; Schondelmaier, G.; Junghans, T.; Zetzl, A.; Zahn, D. R.; Schondelmaier, D. Cost-effective equipment for surface pre-treatment for cleaning and excitation of substrates in semiconductor technology. SN Applied Sciences 2023, 5 (1), 21.
(37) Bauri, J.; Choudhary, R. B.; Mandal, G. Recent advances in efficient emissive materials-based OLED applications: a review. Journal of Materials Science 2021, 56 (34), 18837-18866.
(38) Penconi, M.; Cazzaniga, M.; Panzeri, W.; Mele, A.; Cargnoni, F.; Ceresoli, D.; Bossi, A. Unraveling the degradation mechanism in firpic-based blue OLEDs: II. Trap and detect molecules at the interfaces. Chemistry of Materials 2019, 31 (7), 2277-2285.
(39) Sanderson, S.; Philippa, B.; Vamvounis, G.; Burn, P. L.; White, R. D. Understanding charge transport in Ir (ppy) 3: CBP OLED films. The Journal of chemical physics 2019, 150 (9).
(40) Su, N.; Li, S.; Yang, K.; Zhou, F.; Song, J.; Zhou, L.; Qu, J. High efficiency electroluminescence of orange-red iridium (III) complexes for OLEDs with an EQE over 30%. Dyes and Pigments 2021, 195, 109733.
(41) Lee, J.-H.; Chen, C.-H.; Lee, P.-H.; Lin, H.-Y.; Leung, M.-k.; Chiu, T.-L.; Lin, C.-F. Blue organic light-emitting diodes: current status, challenges, and future outlook. Journal of Materials Chemistry C 2019, 7 (20), 5874-5888.
(42) Guo, S.; Jin, X.; Zhang, D.; Zhou, H.; Wang, G.; Miao, Y.; Huang, J.; Zhang, Z.; Wang, H.; Su, J. Phenanthrene-based deep-blue fluorophores with balanced carrier transport ability for high-performance OLEDs with a CIE y< 0.04. Journal of Materials Chemistry C 2022, 10 (39), 14711-14721.
(43) Liu, B.; Yu, Z.-W.; He, D.; Li, M.-D.; Xie, W.-F.; Tong, Q.-X. Productive harvesting of triplet excitons in anthracene-based emitters toward high-performance deep-blue nondoped organic light-emitting diodes. Materials Today Chemistry 2022, 23, 100630.
(44) Liu, F.; Cheng, Z.; Wan, L.; Gao, L.; Yan, Z.; Hu, D.; Ying, L.; Lu, P.; Ma, Y. Anthracene-based emitters for highly efficient deep blue organic light-emitting diodes with narrow emission spectrum. Chemical Engineering Journal 2021, 426, 131351.
(45) Kim, H. S.; Cheon, H. J.; Lee, D.; Lee, W.; Kim, J.; Kim, Y.-H.; Yoo, S. Toward highly efficient deep-blue OLEDs: Tailoring the multiresonance-induced TADF molecules for suppressed excimer formation and near-unity horizontal dipole ratio. Science Advances 2023, 9 (22), eadf1388.
(46) Liu, Y.; Man, X.; Bai, Q.; Liu, H.; Liu, P.; Fu, Y.; Hu, D.; Lu, P.; Ma, Y. Highly efficient blue organic light-emitting diode based on a pyrene [4, 5-d] imidazole-pyrene molecule. CCS Chemistry 2022, 4 (1), 214-227.
(47) Chen, C. H.; Tierce, N. T.; Leung, M. k.; Chiu, T. L.; Lin, C. F.; Bardeen, C. J.; Lee, J. H. Efficient triplet–triplet annihilation upconversion in an electroluminescence device with a fluorescent sensitizer and a triplet‐diffusion singlet‐blocking layer. Advanced Materials 2018, 30 (50), 1804850.
(48) Chen, C.-H.; Lee, P.-H.; Lin, H.-Y.; Lin, B.-Y.; Leung, M.-k.; Chiu, T.-L.; Lee, J.-H. Hyper triplet-triplet fusion blue fluorescent organic light-emitting diode. 2022.
(49) Tian, X.; Sheng, J.; Zhang, S.; Xiao, S.; Gao, Y.; Liu, H.; Yang, B. A novel deep blue LE-dominated HLCT excited state design strategy and material for OLED. Molecules 2021, 26 (15), 4560.
(50) Qu, C.; Xia, G.; Xu, Y.; Zhu, Y.; Liang, J.; Zhang, H.; Wang, J.; Zhang, Z.; Wang, Y. Boron-containing D–A–A type TADF materials with tiny singlet–triplet energy splittings and high photoluminescence quantum yields for highly efficient OLEDs with low efficiency roll-offs. Journal of Materials Chemistry C 2020, 8 (11), 3846-3854.
(51) Huang, J.-J.; Hung, Y.-H.; Ting, P.-L.; Tsai, Y.-N.; Gao, H.-J.; Chiu, T.-L.; Lee, J.-H.; Chen, C.-L.; Chou, P.-T.; Leung, M.-k. Orthogonally substituted benzimidazole-carbazole benzene as universal hosts for phosphorescent organic light-emitting diodes. Organic Letters 2016, 18 (4), 672-675.
(52) Chou, K. F.; Dennis, A. M. Förster resonance energy transfer between quantum dot donors and quantum dot acceptors. Sensors 2015, 15 (6), 13288-13325.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101046-
dc.description.abstract本研究著重於開發具有潛力之藍光有機發光材料,針對芘並咪唑(Pyrene[4,5-d]imidazole)與菲並咪唑(Phenanthrene[9,10-d]imidazole)為核心結構,於3,5號位引入1-位取代芘基、2-位取代芘基,以及和芘基同樣具有TTA-UC特性的蒽基。設計並合成六種新穎衍生物,包括Pyi35d1-Py、Pyi35d2-Py、Pyi35dAn、Phi35d1-Py、Phi35d2-Py及Phi35dAn。藉由結構修飾,探討這些分子之熱穩定性、光電性質與分子堆疊行為,並進一步探討其在有機發光二極體(OLED)元件中作為發光材料的表現。
於物性方面,熱重分析(TGA)與差示掃描量熱儀(DSC)結果顯示,所有化合物皆具有良好的熱穩定性。紫外-可見光吸收光譜與螢光光譜分析指出,這些化合物在溶液中可發出明亮藍光,具高量子產率。另透過循環伏安法(CV)探討其電化學行為,並結合密度泛函理論(DFT)計算,分析分子軌域分布與HOMO/LUMO能階之對應關係。單晶X-ray繞射分析進一步顯示,部分化合物因具扭曲構型,可有效抑制分子間的π – π堆疊,進而降低激子淬熄現象,有助於提升發光表現。
在應用層面,將本研究所合成之材料Pyi35d1-Py製程元件,並進一步探討其於不同摻混比例下,搭配客發光體DPaNIF時的元件發光表現。實驗結果顯示,Pyi35d1-Py在特定混摻比例可顯著提升元件的電流效率與亮度,展現良好的元件特性。由此可知,適當的分子設計與混摻條件調控,有助於提升元件效率,進一步實現藍光材料於OLED應用上的實用性。
zh_TW
dc.description.abstractThis study focuses on the development of promising blue-emitting organic materials. Using pyrene[4,5-d]imidazole and phenanthrene[9,10-d]imidazole as core structures, derivatives were designed by introducing substituents at the 3,5-positions, including 1-substituted pyrene, 2-substituted pyrene, and anthracene—an emitter exhibiting triplet–triplet annihilation upconversion (TTA-UC) properties similar to pyrene. Six compounds were synthesized : Pyi35d1-Py, Pyi35d2-Py, Pyi35dAn, Phi35d1-Py, Phi35d2-Py, and Phi35dAn. Through structural modification, their thermal stability, photophysical and electrochemical properties, and molecular packing behavior were systematically investigated, along with their performance as emissive materials in organic light-emitting diodes (OLEDs).
In terms of physical properties, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) revealed that all compounds possess excellent thermal stability. UV–vis absorption and photoluminescence spectra indicated that these compounds emit intense blue fluorescence in solution with high quantum yields. Electrochemical properties were further explored using cyclic voltammetry (CV), and density functional theory (DFT) calculations were employed to analyze the molecular orbital distribution and HOMO/LUMO energy levels. Single crystal X-ray diffraction showed that certain compounds adopt twisted conformations, which effectively suppress π–π stacking and thus reduce exciton quenching, enhancing solid-state emission efficiency.
For device applications, Pyi35d1-Py was employed for device fabrication. Further investigations were conducted on the device’s electroluminescent performance when blended with the guest emitter DPaNIF at different doping ratios. The experimental results showed that Pyi35d1-Py could significantly enhance the current efficiency and luminance of the devices at specific blending ratios, demonstrating favorable device characteristics. This indicates that appropriate molecular design and blending condition optimization can effectively improve device efficiency, thereby advancing the practical use of blue-emitting materials in OLED applications.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:36:03Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-11-26T16:36:03Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
謝辭 ii
摘要 iii
Abstract iv
化合物結構與編號 vi
目次 vii
圖次 x
表次 xiii
流程次 xiv
第一章 緒論 1
1.1 前言 1
1.2 有機發光二極體之研究發展史 2
1.3 有機分子之發光機制 4
1.4 有機發光二極體元件之工作原理 6
1.5 主客發光系統之工作原理 11
1.6 有機發光二極體之各層材料介紹 14
第二章 研究動機 18
2.1 文獻回顧 18
2.2 分子設計 24
2.3 合成方法 26
2.3.1 Pyi35d1-Py、Pyi35d2-Py與Pyi35dAn之合成 26
2.3.2 Phi35d1-Py、Phi35d2-Py與Phi35dAn之合成 28
第三章 實驗結果與討論 30
3.1 熱性質分析 30
3.2 光物理性質分析 35
3.3 電化學性質分析 39
3.4 X-ray晶體結構分析 43
3.4.1 化合物Pyi35d1-Py之晶體結構解析 44
3.4.2 化合物Pyi35dAn之晶體結構解析 46
3.4.3 化合物Phi35d1-Py之晶體結構解析 48
3.4.4 化合物Phi35dAn之晶體結構解析 50
3.5 理論計算結果 52
3.6 能量轉移 54
3.7 元件製備表現與優化 57
第四章 結論 62
第五章 實驗部分 63
5.1 實驗儀器 63
5.1.1 核磁共振儀(Nuclear Magnetic Resonance Spectrometer, NMR) 63
5.1.2 基質輔助雷射脫附游離飛行時間質譜儀(MALDI-TOF/TOF Mass Spectrometer) 64
5.1.3 電噴灑高解析度質譜儀(ESI-TOF MS) 64
5.1.4 熱重分析儀(Thermogravimetric Analyzer, TGA) 64
5.1.5 示差掃描卡計儀(Differential Scanning Calorimeter, DSC) 64
5.1.6 紫外光-可見光分光光譜儀(UV-Visible Spectrophotometer) 64
5.1.7 螢光光譜儀(Spectrofluorophotometer) 64
5.1.8 循環伏安儀(Cyclic Voltammetry Instrument, CV) 64
5.1.9 單晶X-ray繞射儀(Single Crystal X-ray Diffractometer, SXRD) 65
5.1.10 旋轉塗佈機(Spin coater) 65
5.1.11 膜厚計(Rate / Thickness Monitor) 65
5.1.12 光度計(Luminance Meter) 65
5.2 實驗試劑 66
5.3 合成步驟 67
參考文獻 76
附錄 81
附錄一. 化合物之1H與13C核磁共振光譜 81
附錄二. 化合物Pyi35d1-Py於不同摻混比例之元件特性 98
附錄三. 化合物Pyi35dAn於不同摻混比例之元件特性 99
附錄四. 化合物Phi35d1-Py於不同摻混比例之元件特性 100
附錄五. 化合物Phi35dAn於不同摻混比例之元件特性 101
附錄六. 化合物X-ray晶體參數表、鍵長與鍵角數據 102
-
dc.language.isozh_TW-
dc.subject芘並咪唑-
dc.subject苯並咪唑-
dc.subject芘-
dc.subject蒽-
dc.subject三重態-三重態湮滅上轉換(TTA-UC)-
dc.subject藍色螢光有機發光二極體-
dc.subjectpyrene[4,5-d]imidazole-
dc.subjectphenanthrene[9,10-d]imidazole-
dc.subjectpyrene-
dc.subjectanthracene-
dc.subjecttriplet-triplet annihilation upconversion (TTA-UC)-
dc.subjectblue organic light emitting diode-
dc.title芘並咪唑和菲並咪唑在3,5號位不同取代衍生物之合成、性質探討與應用zh_TW
dc.titleSynthesis, Properties, and Applications of 3,5-Substituted Derivatives of Pyrene[4,5-d]imidazole and Phenanthrene[9,10-d]imidazoleen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李君浩;邱天隆;李怡葶zh_TW
dc.contributor.oralexamcommitteeJiun-Haw Lee;Tien-Lung Chiu;Yi-Ting Leeen
dc.subject.keyword芘並咪唑,苯並咪唑芘蒽三重態-三重態湮滅上轉換(TTA-UC)藍色螢光有機發光二極體zh_TW
dc.subject.keywordpyrene[4,5-d]imidazole,phenanthrene[9,10-d]imidazolepyreneanthracenetriplet-triplet annihilation upconversion (TTA-UC)blue organic light emitting diodeen
dc.relation.page131-
dc.identifier.doi10.6342/NTU202502359-
dc.rights.note未授權-
dc.date.accepted2025-07-29-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
dc.date.embargo-liftN/A-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf
  未授權公開取用
6.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved