請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101045完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉如熹 | zh_TW |
| dc.contributor.advisor | Ru-Shi Liu | en |
| dc.contributor.author | 陳世恩 | zh_TW |
| dc.contributor.author | Shih-En Chen | en |
| dc.date.accessioned | 2025-11-26T16:35:48Z | - |
| dc.date.available | 2025-11-27 | - |
| dc.date.copyright | 2025-11-26 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-09-04 | - |
| dc.identifier.citation | (1) Newton, I. Opticks, or, a Treatise of the Reflections, Refractions, Inflections & Colours of Light; Dover Publications, 1952.
(2) Zghal, M.; Bouali, H.-E.; Ben Lakhdar, Z.; Hamam, H. The First Steps for Learning Optics: Ibn Sahl's, Al-Haytham's and Young's Works on Refraction as Typical Examples; SPIE, 2007. (3) Young, T. Ii. The Bakerian Lecture. On the Theory of Light and Colours. Philosophical Transactions of the Royal Society of London 1802, 92, 12–48. (4) Donnevert, J. Maxwell ́S Equations; Springer, 2020. (5) Maxwell, J. C. III. On Physical Lines of Force. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1862, 23, 12–24. (6) Maxwell, J. C. II. A Dynamical Theory of the Electromagnetic Field. Proceedings of the Royal Society of London 1864, 531–536. (7) Planck, M. Ueber Das Gesetz Der Energieverteilung Im Normalspectrum. Ann. Phys. 1901, 309, 553–563. (8) Einstein, A. A Heuristic Point of View About the Generation and Transformation of Light. Ann. Phys. 1905, 17, 132. (9) Nassau, K. Chapter 1–Fundamentals of Color Science. In Azimuth, Nassau, K. Ed.; Vol. 1; North-Holland, 1998; pp 1–30. (10) Sherman, W. R.; Craig, A. B. Chapter 3–the Human in the Loop. In Understanding Virtual Reality (Second Edition), Sherman, W. R., Craig, A. B. Eds.; Morgan Kaufmann, 2018; pp 108–188. (11) Ozaki, Y.; Huck, C.; Tsuchikawa, S.; Engelsen, S. B. Near-Infrared Spectroscopy: Theory, Spectral Analysis, Instrumentation, and Applications; Springer Nature, 2020. (12) Sliney, D. H. What Is Light? The Visible Spectrum and Beyond. Eye 2016, 30, 222–229. (13) Gan, X.; Tian, B.; Wang, Z.; Xu, Y.; Li, L.; Wang, L.; Xu, C. Fabrication of Er3+: YAlO3 Fibers by Electrospinning Method for Upconversion Luminescence Applications. Int. J. Appl. Ceram. Technol. 2024, 21, 1199–1207. (14) Hsiao, Y. H.; Chen, K. C.; Chien, C. L.; Huang, W.-T.; Majewska, N.; Kamiński, M.; Mahlik, S.; Leniec, G.; Mijowska, E.; Huang, S. L.; Liu, R. S. Broadband Near-Infrared Cr4+-Doped Garnet Phosphors through Divalent Calcium Charge Compensation for Advanced Crystal Fiber Amplifiers. Adv. Opt. Mater. 2024, 12, 2401543. (15) Przybylek, P. Application of Near-Infrared Spectroscopy to Measure the Water Content in Liquid Dielectrics. In Energies, 2022; Vol. 15. (16) Oparin, R. D.; Kiselev, M. G. Near Infrared Spectroscopy as an Effective Way of Studying Hydrogen Bonding in a LiCl–H2O–CO2 Ternary Mixture. Russ. J. Phys. Chem. A 2022, 96, 724–731. (17) Marin, T.; Moore, J. Understanding Near-Infrared Spectroscopy. Advances in Neonatal Care 2011, 11, 382–388. (18) Tan, X.; Zhang, H.; Li, J.; Wan, H.; Guo, Q.; Zhu, H.; Liu, H.; Yi, F. Non-Dispersive Infrared Multi-Gas Sensing Via Nanoantenna Integrated Narrowband Detectors. Nat. Commun. 2020, 11, 5245. (19) Popa, D.; Udrea, F. Towards Integrated Mid-Infrared Gas Sensors. Sensors 2019, 19, 2076. (20) Ishigane, G.; Toda, K.; Tamamitsu, M.; Shimada, H.; Badarla, V. R.; Ideguchi, T. Label-Free Mid-Infrared Photothermal Live-Cell Imaging Beyond Video Rate. Light Sci. Appl. 2023, 12, 174. (21) Leitis, A.; Tseng, M. L.; John‐Herpin, A.; Kivshar, Y. S.; Altug, H. Wafer‐Scale Functional Metasurfaces for Mid‐Infrared Photonics and Biosensing. Adv. Mater. 2021, 33, 2102232. (22) Mendes, E.; Duarte, N. Mid-Infrared Spectroscopy as a Valuable Tool to Tackle Food Analysis: A Literature Review on Coffee, Dairies, Honey, Olive Oil and Wine. Foods 2021, 10, 477. (23) Rodriguez-Saona, L.; Ayvaz, H. Infrared and Raman Spectroscopy. In Nielsen's Food Analysis, Springer, 2024; pp 95–116. (24) Liang, A.; Turnbull, R.; Bandiello, E.; Yousef, I.; Popescu, C.; Hebboul, Z.; Errandonea, D. High-Pressure Spectroscopy Study of Zn(IO3)2 Using Far-Infrared Synchrotron Radiation. Crystals 2020, 11, 34. (25) Farrah, D.; Smith, K. E.; Ardila, D.; Bradford, C. M.; Dipirro, M.; Ferkinhoff, C.; Glenn, J.; Goldsmith, P.; Leisawitz, D.; Nikola, T. Far-Infrared Instrumentation and Technological Development for the Next Decade. J. Astron. Telesc. Instrum. Syst. 2019, 5, 020901–020901. (26) Harries, J.; Carli, B.; Rizzi, R.; Serio, C.; Mlynczak, M.; Palchetti, L.; Maestri, T.; Brindley, H.; Masiello, G. The Far-Infrared Earth. Rev. Geophys. 2008, 46. (27) Tamura, Y.; Mawatari, K.; Hashimoto, T.; Inoue, A. K.; Zackrisson, E.; Christensen, L.; Binggeli, C.; Matsuda, Y.; Matsuo, H.; Takeuchi, T. T. Detection of the Far-Infrared [O Iii] and Dust Emission in a Galaxy at Redshift 8.312: Early Metal Enrichment in the Heart of the Reionization Era. The Astrophysical Journal 2019, 874, 27. (28) Xiao, E. C.; Cao, Z.; Li, J.; Li, X. H.; Liu, M.; Yue, Z.; Chen, Y.; Chen, G.; Song, K.; Zhou, H. Crystal Structure, Dielectric Properties, and Lattice Vibrational Characteristics of Linipo4 Ceramics Sintered at Different Temperatures. J. Am. Ceram. Soc. 2020, 103, 2528–2539. (29) Kindereit, U.; Weger, A. J.; Stellari, F.; Song, P.; Deslandes, H.; Lundquist, T.; Sabbineni, P. Near-Infrared Photon Emission Spectroscopy of a 45 nm SOI Ring Oscillator. In 2012 IEEE International Reliability Physics Symposium (IRPS), 2012; IEEE: pp 2D. 2.1–2D. 2.7. (30) Huang, W. T.; Su, T. Y.; Chuang, J. H.; Lu, K. M.; Hu, S. F.; Liu, R. S. Plant Growth Modeling and Response from Broadband Phosphor-Converted Lighting for Indoor Agriculture. ACS Appl. Mater. Interfaces 2023, 15, 32589–32596. (31) Fang, M. H.; De Guzman, G. N. A.; Bao, Z.; Majewska, N.; Mahlik, S.; Grinberg, M.; Leniec, G.; Kaczmarek, S. M.; Yang, C. W.; Lu, K. M.; Sheu, H. S.; Hu, S. F.; Liu, R. S. Ultra-High-Efficiency Near-Infrared Ga2O3:Cr3+ Phosphor and Controlling of Phytochrome. J. Mater. Chem. C 2020, 8, 11013–11017. (32) Huang, W. T.; Su, T. Y.; Chan, M. H.; Tsai, J. Y.; Do, Y. Y.; Huang, P. L.; Hsiao, M.; Liu, R. S. Near‐Infrared Nanophosphor Embedded in Mesoporous Silica Nanoparticle with High Light‐Harvesting Efficiency for Dual Photosystem Enhancement. Angew. Chem. Int. Ed. 2021, 60, 6955–6959. (33) Barbin, D. F.; Felicio, A. L. d. S. M.; Sun, D. W.; Nixdorf, S. L.; Hirooka, E. Y. Application of Infrared Spectral Techniques on Quality and Compositional Attributes of Coffee: An Overview. Food Res. Int. 2014, 61, 23–32. (34) Badr Eldin, A. Near Infra Red Spectroscopy. In Wide Spectra of Quality Control, Akyar, I. Ed.; IntechOpen, 2011. (35) Almajidy, R. K.; Mankodiya, K.; Abtahi, M.; Hofmann, U. G. A Newcomer's Guide to Functional Near Infrared Spectroscopy Experiments. IEEE Rev. Biomed. Eng. 2020, 13, 292–308. (36) Rahman, M. A.; Ahmad, M. Identifying Appropriate Feature to Distinguish between Resting and Active Condition from Fnirs. In 2016 3rd International Conference on Signal Processing and Integrated Networks (SPIN), 2016; IEEE: pp 671–675. (37) Taylor Williams, M.; Spicer, G.; Bale, G.; Bohndiek, S. E. Noninvasive Hemoglobin Sensing and Imaging: Optical Tools for Disease Diagnosis. J. Biomed. Opt. 2022, 27, 080901. (38) Jiang, Y.; Sanyal, M.; Hussein, N. A.; Baghdasaryan, A.; Zhang, M.; Wang, F.; Ren, F.; Li, J.; Zhu, G.; Meng, Y.; Adamska, J. Z.; Mellins, E.; Dai, H. A SARS-CoV-2 Vaccine on an NIR-II/SWIR Emitting Nanoparticle Platform. Sci. Adv. 2025, 11, eadp5539. (39) Rogers, S. C.; Brummet, M.; Safari, Z.; Wang, Q.; Rowden, T.; Boyer, T.; Doctor, A. Covid-19 Impairs Oxygen Delivery by Altering Red Blood Cell Hematological, Hemorheological, and Oxygen Transport Properties. Front. Physiol. 2024, 14. (40) Li, X.; Zhang, J.; Yue, C.; Tang, X.; Gao, Z.; Jiang, Y.; Du, C.; Deng, Z.; Jia, H.; Wang, W.; Chen, H. High Performance Visible-SWIR Flexible Photodetector Based on Large-Area InGaAs/InP Pin Structure. Sci. Rep. 2022, 12, 7681. (41) Zhang, Y.; Miao, S.; Liang, Y.; Liang, C.; Chen, D.; Shan, X.; Sun, K.; Wang, X. J. Blue LED-Pumped Intense Short-Wave Infrared Luminescence Based on Cr3+-Yb3+ Co-Doped Phosphors. Light Sci. Appl. 2022, 11, 136. (42) Ma, L.; Liu, Y.; Liu, L.; Jiang, A.; Mao, F.; Liu, D.; Wang, L.; Zhou, J. Simultaneous Activation of Short-Wave Infrared (SWIR) Light and Paramagnetism by a Functionalized Shell for High Penetration and Spatial Resolution Theranostics. Adv. Funct. Mater. 2018, 28, 1705057. (43) Zhao, Y.; Pilvar, A.; Tank, A.; Peterson, H.; Jiang, J.; Aster, J. C.; Dumas, J. P.; Pierce, M. C.; Roblyer, D. Shortwave-Infrared Meso-Patterned Imaging Enables Label-Free Mapping of Tissue Water and Lipid Content. Nat. Commun. 2020, 11, 5355. (44) Tang, X.; Ackerman, M. M.; Chen, M.; Guyot Sionnest, P. Dual-Band Infrared Imaging Using Stacked Colloidal Quantum Dot Photodiodes. Nat. Photonics 2019, 13, 277–282. (45) López Maestresalas, A.; Keresztes, J. C.; Goodarzi, M.; Arazuri, S.; Jarén, C.; Saeys, W. Non-Destructive Detection of Blackspot in Potatoes by Vis-NIR and SWIR Hyperspectral Imaging. Food Control 2016, 70, 229–241. (46) Akter, T.; Faqeerzada, M. A.; Kim, Y.; Pahlawan, M. F. R.; Aline, U.; Kim, H.; Kim, H.; Cho, B. K. Hyperspectral Imaging with Multivariate Analysis for Detection of Exterior Flaws for Quality Evaluation of Apples and Pears. Postharvest Biol. Technol. 2025, 223. (47) Liu, B. M.; Gu, S. M.; Huang, L.; Zhou, R. F.; Zhou, Z.; Ma, C. G.; Zou, R.; Wang, J. Ultra-Broadband and High-Efficiency Phosphors to Brighten NIR-II Light Source Applications. Cell Rep. Phys. Sci. 2022, 3, 101078. (48) Liu, B. M.; Guo, X. X.; Huang, L.; Zhou, R. F.; Zou, R.; Ma, C. G.; Wang, J. A Super-Broadband NIR Dual-Emitting Mg2SnO4:Cr3+,Ni2+ Phosphor for Ratiometric Phosphor-Converted NIR Light Source Applications. Adv. Mater. Technol. 2023, 8, 2201181. (49) Hong, G.; Antaris, A. L.; Dai, H. Near-Infrared Fluorophores for Biomedical Imaging. Nat. Biomed. Eng. 2017, 1, 0010. (50) Qu, J.; Golovynska, I.; Liu, J.; Qu, J.; Golovynskyi, S. Optical Transparency Windows in Near-Infrared and Short-Wave Infrared for the Skin, Skull, and Brain: Fluorescence Bioimaging Using PbS Quantum Dots. J. Biophotonics 2024, 17, e202400171. (51) Wang, F.; Zhong, Y.; Bruns, O.; Liang, Y.; Dai, H. In Vivo NIR-II Fluorescence Imaging for Biology and Medicine. Nat. Photonics 2024, 18, 535–547. (52) Feng, Z.; Tang, T.; Wu, T.; Yu, X.; Zhang, Y.; Wang, M.; Zheng, J.; Ying, Y.; Chen, S.; Zhou, J.; Fan, X.; Zhang, D.; Li, S.; Zhang, M.; Qian, J. Perfecting and Extending the ear-Infrared Imaging Window. Light Sci. Appl. 2021, 10, 197. (53) Youssef, P. N.; Sheibani, N.; Albert, D. M. Retinal Light Toxicity. Eye 2011, 25, 1–14. (54) Bird, R. E.; Hulstrom, R. L.; Lewis, L. J. Terrestrial Solar Spectral Data Sets. Sol. Energy 1983, 30, 563–573. (55) 中村, 修. Gan系発光素子の現状と将来. 応用物理 1996, 65, 676-686. (56) Huang, P.; Zhou, B.; Zheng, Q.; Tian, Y.; Wang, M.; Wang, L.; Li, J.; Jiang, W. Nano Wave Plates Structuring and Index Matching in Transparent Hydroxyapatite-YAG:Ce Composite Ceramics for High Luminous Efficiency White Light-Emitting Diodes. Adv. Mater. 2020, 32, 1905951. (57) Zhuo, Y.; Mansouri Tehrani, A.; Oliynyk, A. O.; Duke, A. C.; Brgoch, J. Identifying an Efficient, Thermally Robust Inorganic Phosphor Host Via Machine Learning. Nat. Commun. 2018, 9, 4377. (58) Xiao, R.; Guo, N.; Qu, S.; Hu, D.; Xin, Y.; Lv, W.; Ouyang, R. Enhancing Antithermal-Quenching Properties of Terbium-Doped Phosphors through Nb/Ta Substitution: Insights into the Role of Intervalence Charge Transfer and Excitation-Driven Modulation. Ceram. Int. 2024, 50, 28257–28265. (59) Yang, C.; Xin, Y.; Liu, J.; Zhao, Y.; Ouyang, R.; Guo, N. Defect Compensation and Intervalence Charge Transfer State-Based Pr3+-Doped Niobate Antithermal Quenching Phosphors. Chem. Commun. 2024, 60, 6687-6690. (60) Li, L.; Pan, Y.; Wang, W.; Zhang, W.; Wen, Z.; Leng, X.; Wang, Q.; Zhou, L.; Xu, H.; Xia, Q.; Liu, L.; Xiang, H.; Liu, X. O2−-V5+ Charge Transfer Band, Chemical Bond Parameters and R/O of Eu3+ Doped Ca(VO3)2 and Ca3(VO4)2: A Comparable Study. J. Alloys Compd. 2017, 726, 121–131. (61) Chinen, A. B.; Guan, C. M.; Ferrer, J. R.; Barnaby, S. N.; Merkel, T. J.; Mirkin, C. A. Nanoparticle Probes for the Detection of Cancer Biomarkers, Cells, and Tissues by Fluorescence. Chem. Rev. 2015, 115, 10530–10574. (62) Chakraborty, B.; Pan, Y. On Franck-Condon Factor Calculations. Appl. Spectrosc. Rev. 1973, 7, 283–311. (63) Ghosh, S.; Dixit, M. K.; Bhattacharyya, S. P.; Tembe, B. L. Franck–Condon Factors for Diatomics: Insights and Analysis Using the Fourier Grid Hamiltonian Method. J. Chem. Educ. 2013, 90, 1463–1471. (64) Omary, M. A.; Patterson, H. H. Luminescence Theory. In Encyclopedia of Spectroscopy and Spectrometry, Lindon, J. C. Ed.; Elsevier, 1999; pp 1186–1207. (65) Kao, K. C. 3 - Optical and Electro-Optic Processes. In Dielectric Phenomena in Solids, Kao, K. C. Ed.; Academic Press, 2004; pp 115–212. (66) Pieper, J.; Freiberg, A. Electron–Phonon and Exciton–Phonon Coupling in Light Harvesting, Insights from Line-Narrowing Spectroscopies. In The Biophysics of Photosynthesis, Golbeck, J., van der Est, A. Eds.; Springer New York, 2014; pp 45–77. (67) Chen, L.; Skibitzki, O.; Pedesseau, L.; Létoublon, A.; Stervinou, J.; Bernard, R.; Levallois, C.; Piron, R.; Perrin, M.; Schubert, M. A.; Moréac, A.; Durand, O.; Schroeder, T.; Bertru, N.; Even, J.; Léger, Y.; Cornet, C. Strong Electron–Phonon Interaction in 2d Vertical Homovalent III–V Singularities. ACS Nano 2020, 14, 13127–13136. (68) de Jong, M.; Seijo, L.; Meijerink, A.; Rabouw, F. T. Resolving the Ambiguity in the Relation between Stokes Shift and Huang–Rhys Parameter. Physical Chemistry Chemical Physics 2015, 17, 16959–16969. (69) Wang, S.; Song, Z.; Kong, Y.; Liu, Q. Relationship of Stokes Shift with Composition and Structure in Ce3+/Eu2+-Doped Inorganic Compounds. J. Lumin. 2019, 212, 250–263. (70) Henderson, B.; Imbusch, G. F. Optical Spectroscopy of Inorganic Solids; Oxford University Press, 2006. (71) Sriramoju, V.; Alfano, R. R. Laser Tissue Welding Analyzed Using Fluorescence, Stokes Shift Spectroscopy, and Huang-Rhys Parameter. J. Biophotonics 2012, 5, 185–193. (72) Hariyani, S.; Sójka, M.; Setlur, A.; Brgoch, J. A Guide to Comprehensive Phosphor Discovery for Solid-State Lighting. Nat. Rev. Mater. 2023, 8, 759–775. (73) Benz, F.; Gonser, A.; Völker, R.; Walther, T.; Mosebach, J. T.; Schwanda, B.; Mayer, N.; Richter, G.; Strunk, H. P. Concentration Quenching of the Luminescence from Trivalent Thulium, Terbium, and Erbium Ions Embedded in an Aln Matrix. J. Lumin. 2014, 145, 855–858. (74) Xiao, W.; Basore, E. T.; Zheng, G.; Liu, X.; Xu, B.; Qiu, J. Suppressed Concentration Quenching Brightens Short-Wave Infrared Emitters. Adv. Mater. 2023, 35, 2306517. (75) Liu, Q.; Li, X.; Zhang, B.; Wang, L.; Zhang, Q.; Zhang, L. Structure Evolution and Delayed Quenching of the Double Perovskite NaLaMgWO6:Eu3+ Phosphor for White Leds. Ceram. Int. 2016, 42, 15294–15300. (76) Ozawa, L. Determination of Self‐Concentration Quenching Mechanisms of Rare Earth Luminescence from Intensity Measurements on Powdered Phosphor Screens. J. Electrochem. Soc. 1979, 126, 106. (77) Bie, S. R.; She, D. S.; Yue, W. Luminescence Mechanism and Optical Properties of Apatite-Type Ca10(PO4)6F2:Eu3+ Phosphors. J. Lumin. 2025, 281, 121173. (78) Jia, Z.; Xia, M. Blue-Green Tunable Color of Ce3+/Tb3+ Coactivated NaBa3La3Si6O20 Phosphor Via Energy Transfer. Sci. Rep. 2016, 6, 33283. (79) Zhang, L.; Xu, Y.; Wu, X.; Yin, S.; You, H. Strong and Pure Red-Emitting Eu3+-Doped Phosphor with Excellent Thermal Stability for Warm Wleds. Mater. Adv. 2022, 3, 2591–2597. (80) Chen, J.; Liu, Y.; Mei, L.; Liu, H.; Fang, M.; Huang, Z. Crystal Structure and Temperature-Dependent Luminescence Characteristics of KMg4(PO4)3:Eu2+ Phosphor for White Light-Emitting Diodes. Sci. Rep. 2015, 5, 9673. (81) Qiao, J.; Zhao, J.; Liu, Q.; Xia, Z. Recent Advances in Solid-State LED Phosphors with Thermally Stable Luminescence. J. Rare Earths 2019, 37, 565–572. (82) Chen, J.; Liu, Y.; Mei, L.; Peng, P.; Cheng, Q.; Liu, H. Design of a Yellow-Emitting Phosphor with Enhanced Red Emission Via Valence State-Control for Warm White LEDs Application. Sci. Rep. 2016, 6, 31199. (83) Chen, F.; Akram, M. N.; Chen, X. Improved Photoluminescence Performance of Eu3+-Doped Y2(MoO4)3 Red-Emitting Phosphor Via Orderly Arrangement of the Crystal Lattice. Molecules 2023, 28, 1014. (84) Rajendran, V.; Chang, C. Y.; Huang, M. H.; Chen, K. C.; Huang, W. T.; Kamiński, M.; Lesniewski, T.; Mahlik, S.; Leniec, G.; Lu, K. M.; Wei, D. H.; Chang, H.; Liu, R. S. Chromium Cluster Luminescence: Advancing Near-Infrared Light-Emitting Diode Design for Next-Generation Broadband Compact Light Sources. Adv. Opt. Mater. 2024, 12, 2302645. (85) Rajendran, V.; Fang, M. H.; Huang, W. T.; Majewska, N.; Lesniewski, T.; Mahlik, S.; Leniec, G.; Kaczmarek, S. M.; Pang, W. K.; Peterson, V. K.; Lu, K. M.; Chang, H.; Liu, R. S. Chromium Ion Pair Luminescence: A Strategy in Broadband Near-Infrared Light-Emitting Diode Design. J. Am. Chem. Soc. 2021, 143, 19058–19066. (86) Majewska, N.; Tsai, Y. T.; Zeng, X. Y.; Fang, M. H.; Mahlik, S. Advancing near-Infrared Light Sources: Enhancing Chromium Emission through Cation Substitution in Ultra-Broadband Near-Infrared Phosphors. Chem. Mater. 2023, 35, 10228–10237. (87) Du, J.; Li, K.; Van Deun, R.; Poelman, D.; Lin, H. Near‐Infrared Persistent Luminescence and Trap Reshuffling in Mn4+ Doped Alkali‐Earth Metal Tungstates. Adv. Opt. Mater. 2022, 10, 2101714. (88) Long, J.; Yuan, X.; Ma, C.; Du, M.; Ma, X.; Wen, Z.; Ma, R.; Wang, Y.; Cao, Y. Strongly Enhanced Luminescence of Sr4Al14O25:Mn4+ Phosphor by Co-Doping B3+ and Na+ Ions with Red Emission for Plant Growth LEDs. RSC Adv. 2018, 8, 1469–1476. (89) Liao, Z.; Xu, H.; Zhao, W.; Yang, H.; Zhong, J.; Zhang, H.; Nie, Z.; Zhou, Z. K. Energy Transfer from Mn4+ to Mn5+ and Near Infrared Emission with Wide Excitation Band in Ca14Zn6Ga10O35:Mn Phosphors. Chem. Eng. J. 2020, 395, 125060. (90) Li, M.; Jin, Y.; Yuan, L.; Wang, B.; Wu, H.; Hu, Y.; Wang, F. Near-Infrared Long Afterglow in Fe3+-Activated Mg2SnO4 for Self-Sustainable Night Vision. ACS Appl. Mater. Interfaces 2023, 15, 13186–13194. (91) Yan, L.; Zhu, G.; Ma, S.; Li, S.; Li, Z.; Luo, X.; Dong, B. Emerging Fe3+ Doped Broad Nir‐Emitting Phosphor Ca2.5Hf2.5(Ga,Al)3O12:Fe3+ for LWUV Pumped NIR LED. Laser Photonics Rev. 2024, 18, 2301200. (92) Cheng, K.; Huang, W.; Liu, X.; Gong, X.; Deng, C. Cr3+-Free Broadband near-Infrared Phosphors Naal5o8:Fe3+. J. Alloys Compd. 2023, 964, 171240. (93) Tang, Z.; Zhang, Q.; Cao, Y.; Li, Y.; Wang, Y. Eu2+-Doped Ultra-Broadband Vis-NIR Emitting Phosphor. Chem. Eng. J. 2020, 388, 124231. (94) Zhu, Y.; Wang, X.; Qiao, J.; Molokeev, M. S.; Swart, H. C.; Ning, L.; Xia, Z. Regulating Eu2+ Multisite Occupation through Structural Disorder toward Broadband Near-Infrared Emission. Chem. Mater. 2023, 35, 1432–1439. (95) Huang, W.; Zhang, J.; Fan, J.; Chen, P.; Zhou, L.; Zhang, X. From Ancient Blue Pigment to Unconventional NIR Phosphor: A Thermal-Stable Near-Infrared I/II Broadband Emission from Ca1–xSrxCuSi4O10 Solid Solution. Inorg. Chem. 2024, 63, 812–823. (96) Li, Y. J.; Ye, S.; Wang, C. H.; Wang, X. M.; Zhang, Q. Y. Temperature-Dependent near-Infrared Emission of Highly Concentrated Cu2+ in CaCuSi4O10 Phosphor. J. Mater. Chem. C 2014, 2, 10395–10402. (97) Xie, X.; Ge, W.; Tian, Y.; Zhang, Q.; Yang, M.; Wu, C.; He, P.; Yin, H. La3Sc2Ga3O12:Cr3+,Nd3+ near-Infrared Phosphor for Nondestructive Detection and Luminescence Thermometry. Ceram. Int. 2024, 50, 46098–46106. (98) Fan, F.; Yu, S.; Li, Y.; Xu, Y.; Song, Y.; Yan, Y.; Wu, H.; Wang, W.; Zhao, L. Enhancement of the NIR Emission of Cr3+–Yb3+ Co-Doped La3GaGe5O16 Phosphors by Doping Nd3+ Ions Via Efficient Energy Transfer for Nir Spectroscopy Regulation. Inorg. Chem. 2022, 61, 13618–13626. (99) Song, Z.; Lü, W.; Kang, X.; Zhu, Z. Pr3+ Ions, Another Alternative near-Infrared Luminescence Emitter Though Energy Transfer from Eu2+ for NIR Pc-LEDs. J. Alloys Compd. 2024, 981, 173760. (100) Chen, J.; Guo, C.; Yang, Z.; Li, T.; Zhao, J. Li2SrSiO4:Ce3+,Pr3+ Phosphor with Blue, Red, and Near‐Infrared Emissions Used for Plant Growth LED. J. Am. Ceram. Soc. 2016, 99, 218–225. (101) Li, Y.; Gai, S.; Zhu, H.; Yin, J.; Guo, W.; Molokeev, M. S.; Lu, X.; Xia, M.; Zhou, Z. Abnormal Bi3+ Activated NIR Phosphor toward Multifunctional LED Applications. Ceram. Int. 2023, 49, 39671–39680. (102) Zhou, Z.; Wang, X.; Yi, X.; Ming, H.; Ma, Z.; Peng, M. Rechargeable and Sunlight-Activated Sr3Y2Ge3O12:Bi3+ UV–Visible-NIR Persistent Luminescence Material for Night-Vision Signage and Optical Information Storage. Chem. Eng. J. 2021, 421, 127820. (103) Chang, Y.; Chen, H.; Xie, X.; Wan, Y.; Li, Q.; Wu, F.; Yang, R.; Wang, W.; Kong, X. Bright Tm3+-Based Downshifting Luminescence Nanoprobe Operating around 1800 nm for NIR-IIb and C Bioimaging. Nat. Commun. 2023, 14, 1079. (104) Huang, W.; Peng, H.; Huang, J.; Yang, Y.; Wei, Q.; Ke, B.; Khan, M. S.; Zhao, J.; Zou, B. Efficient Near-Infrared Emission in Lanthanum Ion Doped Double Perovskite CsNaScCl6 Via Cr3+ Sensitization under Visible Light Excitation. EcoMat 2024, 6, e12437. (105) Balaji, S.; Gupta, G.; Biswas, K.; Ghosh, D.; Annapurna, K. Role of Yb3+ Ions on Enhanced ~2.9 µm Emission from Ho3+ Ions in Low Phonon Oxide Glass System. Sci. Rep. 2016, 6, 29203. (106) Huang, W.; Peng, H.; Wei, Q.; Wang, J.; Ke, B.; Liang, W.; Zhao, J.; Zou, B. Efficient Near-Infrared Luminescence with Near-Unity Photoluminescence Quantum Yield in Erbium-Doped Double Perovskites Cs2NaYCl6 under Green Light Excitation. Chem. Mater. 2024, 36, 2483–2494. (107) Liddle, S. T. Die Renaissance Der Nichtwässrigen Uranchemie. Angew. Chem. 2015, 127, 8726–8764. (108) Ford, D. Molecular Term Symbols by Group Theory. J. Chem. Educ. 1972, 49, 336. (109) Kuhn, H.; Waldeck, D. H.; Försterling, H. D. Principles of Physical Chemistry; John Wiley & Sons, 2024. (110) Atkins, P. Concepts in Physical Chemistry; Royal Society of Chemistry, 2024. (111) Atkins, P. W.; De Paula, J.; Keeler, J. Atkins' Physical Chemistry; Oxford university press, 2023. (112) Halstead, J. A. Teaching the Spin Selection Rule: An Inductive Approach. J. Chem. Educ. 2013, 90, 70–75. (113) Walsh, B. M. Judd-Ofelt Theory: Principles and Practices. In Advances in Spectroscopy for Lasers and Sensing, Dordrecht, 2006; Di Bartolo, B., Forte, O., Eds.; Springer Netherlands: pp 403–433. (114) Mulak, J.; Gajek, Z. The Effective Crystal Field Potential; Elsevier, 2000. (115) Pauling, L. General Chemistry; Courier Corporation, 1988. (116) Liu, Y.; Sun, J.; Sun, Z.; Meng, H.; Han, Y.; Han, S.; Cai, L.; Zhang, Y.; Zhang, X. Ti4+/Cr3+ Co-Doped Zinc Gallogermanates with Persistent NIR Emission with Modifiable Intensity and Enhanced Luminescence Mechanism. CrystEngComm 2025. (117) Yao, L.; Shao, Q.; Shi, M.; Shang, T.; Dong, Y.; Liang, C.; He, J.; Jiang, J. Efficient Ultra-Broadband Ga4GeO8:Cr3+ Phosphors with Tunable Peak Wavelengths from 835 to 980 nm for NIR Pc-LED Application. Adv. Opt. Mater. 2022, 10, 2102229. (118) Chang, C. Y.; Majewska, N.; Chen, K. C.; Huang, W. T.; Leśniewski, T.; Leniec, G.; Kaczmarek, S. M.; Pang, W. K.; Peterson, V. K.; Cherng, D. H.; Lu, K. M.; Mahlik, S.; Liu, R. S. Broadening Phosphor-Converted Light-Emitting Diode Emission: Controlling Disorder. Chem. Mater. 2022, 34, 10190–10199. (119) Dai, X.; Zou, X.; Wei, M.; Zhang, X.; Dong, B.; Li, X.; Cong, Y.; Li, D.; Zhao, J.; Molokeev, M. S.; Lei, B. Efficient and Thermally Stable Cr3+-Doped Phosphor Achieved by Cation Substitution: Plant Lighting Application. Adv. Opt. Mater. 2024, 12, 2401608. (120) Tchougréeff, A. L.; Dronskowski, R. Nephelauxetic Effect Revisited. Int. J. Quantum Chem. 2009, 109, 2606–2621. (121) Rajendran, V.; Chang, H.; Liu, R. S. Recent Progress on Broadband near-Infrared Phosphors-Converted Light Emitting Diodes for Future Miniature Spectrometers. Opt. Mater.: X 2019, 1, 100011. (122) Kettle, S. F. Symmetry and Structure: Readable Group Theory for Chemists; John Wiley & Sons, 2008. (123) Dalal, M. A Textbook of Physical Chemistry–Volume 1; Dalal Institute, 2018. (124) Huang, W. T.; Chen, K. C.; Huang, M. H.; Liu, R. S. Tunable Spinel Structure Phosphors: Dynamic Change in near-Infrared Windows and Their Applications. Adv. Opt. Mater. 2023, 11, 2301166. (125) Sójka, M.; Zhong, J.; Brgoch, J. Developing Broadband Cr3+-Substituted Phosphor-Converted near-Infrared Light Sources. ACS Appl. Opt. Mater. 2023, 1, 1138–1149. (126) Liu, S.; Du, J.; Song, Z.; Ma, C.; Liu, Q. Intervalence Charge Transfer of Cr3+-Cr3+ Aggregation for NIR-II Luminescence. Light Sci. Appl. 2023, 12, 181. (127) Huang, M. H.; Chen, K. C.; Majewska, N.; Kamiński, M.; Leniec, G.; Mijowska, E.; Kong Pang, W.; Peterson, V. K.; Cherng, D. H.; Lu, K. M.; Mahlik, S.; Liu, R. S. Spinel-Type Structured Phosphor Near-Infrared-II Emission: Intervalence Charge Transfer and Hetero-Valent Chromium Pairs. Angew. Chem. Int. Ed. 2024, 63, e202412815. (128) MacCraith, B. D.; Imbusch, G. F.; Glynn, T. J.; Remeika, J. P.; Wood, D. L. Luminescence from LiGa5O8:Cr3+ with Varying Concentrations of Chromium. J. Lumin. 1981, 24, 269–271. (129) Zhou, H.; Cai, H.; Zhao, J.; Song, Z.; Liu, Q. Crystallographic Control for Cr4+ Activators toward Efficient NIR-II Luminescence. Inorg. Chem. Front. 2022, 9, 1912–1919. (130) Kshetri, Y. K.; Chaudhary, B.; Dhakal, D. R.; Regmi, C.; Murali, G.; Lee, S. W.; Kim, T. H. Ultraviolet and Visible Upconversion in Yb/Er CaSiO3 Β-Wollastonite Phosphors. Ceram. Int. 2023, 49, 7489–7499. (131) Wei, G.; Li, P.; Li, R.; Wang, Y.; He, S.; Li, J.; Shi, Y.; Suo, H.; Yang, Y.; Wang, Z. How to Achieve Excellent Luminescence Properties of Cr Ion-Doped Near-Infrared Phosphors. Adv. Opt. Mater. 2023, 11, 2301794. (132) Bokov, D.; Turki Jalil, A.; Chupradit, S.; Suksatan, W.; Javed Ansari, M.; Shewael, I. H.; Valiev, G. H.; Kianfar, E. Nanomaterial by Sol-Gel Method: Synthesis and Application. Adv. Mater. Sci. Eng. 2021, 2021, 5102014. (133) Wei, L. L.; Lin, C. C.; Fang, M. H.; Brik, M. G.; Hu, S. F.; Jiao, H.; Liu, R. S. A Low-Temperature Co-Precipitation Approach to Synthesize Fluoride Phosphors K2MF6:Mn4+ (M = Ge, Si) for White Led Applications. J. Mater. Chem. C 2015, 3, 1655–1660. (134) Chang, C. Y.; Huang, M. H.; Chen, K. C.; Huang, W. T.; Kamiński, M.; Majewska, N.; Klimczuk, T.; Chen, J. H.; Cherng, D. H.; Lu, K. M.; Pang, W. K.; Peterson, V. K.; Mahlik, S.; Leniec, G.; Liu, R. S. Ultrahigh Quantum Efficiency Near-Infrared-II Emission Achieved by Cr3+ Clusters to Ni2+ Energy Transfer. Chem. Mater. 2024, 36, 3941–3948. (135) Deyneko, D. V.; Nikiforov, I. V.; Spassky, D. A.; Berdonosov, P. S.; Dzhevakov, P. B.; Lazoryak, B. I. Sr8MSm1-xEux(PO4)7 Phosphors Derived by Different Synthesis Routes: Solid State, Sol-Gel and Hydrothermal, the Comparison of Properties. J. Alloys Compd. 2021, 887, 161340. (136) Yao, L.; Jia, Q.; Yu, S.; Liang, C.; Jiang, J.; Shao, Q. Simultaneous Absorption and near-Infrared Emission Enhancement of Cr3+ Ions in MgGa2O4 Spinel Oxide Via Anionic F-Substitution. Adv. Opt. Mater. 2023, 11, 2202458. (137) Shannon, R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallographica Section A 1976, 32, 751–767. (138) Banco, D. P.; Miller, E.; Beaudoin, A.; Miller, M. P.; Chatterjee, K. Quantifying Dynamic Signal Spread in Real-Time High-Energy X-Ray Diffraction. Integr. Mater. Manuf. Innovation 2022, 11, 568–586. (139) Le Bail, A. Whole Powder Pattern Decomposition Methods and Applications: A Retrospection. Powder Diffr. 2005, 20, 316–326. (140) Louër, D. Powder X-Ray Diffraction, Applications. In Encyclopedia of Spectroscopy and Spectrometry (Third Edition), Lindon, J. C., Tranter, G. E., Koppenaal, D. W. Eds.; Academic Press, 2017; pp 723–731. (141) Renske Marjan Van der, V. Ultrafast X-Ray and Optical Spectroscopy of Binuclear Molecular Complexes. EPFL: 2010. (142) Zhang, L.; Si, R.; Liu, H.; Chen, N.; Wang, Q.; Adair, K.; Wang, Z.; Chen, J.; Song, Z.; Li, J.; Banis, M. N.; Li, R.; Sham, T. K.; Gu, M.; Liu, L. M.; Botton, G. A.; Sun, X. Atomic Layer Deposited Pt-Ru Dual-Metal Dimers and Identifying Their Active Sites for Hydrogen Evolution Reaction. Nat. Commun. 2019, 10, 4936. (143) Ruska, E. The Development of the Electron Microscope and of Electron Microscopy (Nobel Lecture). Angew. Chemi. Int.l Ed. 1987, 26, 595-605. (144) Chang, C. Y.; Majewska, N.; Chen, K. C.; Huang, W. T.; Leśniewski, T.; Leniec, G.; Kaczmarek, S. M.; Pang, W. K.; Peterson, V. K.; Cherng, D. H.; Lu, K. M.; Mahlik, S.; Liu, R. S. Broadening Phosphor-Converted Light-Emitting Diode Emission: Controlling Disorder. Chem. Mater. 2022, 34, 10190–10199. (145) Majewska, N.; Muñoz, A.; Liu, R. S.; Mahlik, S. Influence of Chemical and Mechanical Pressure on the Luminescence Properties of Near-Infrared Phosphors. Chem. Mater. 2023, 35, 4680–4690. (146) Mikenda, W. N-Lines in the Luminescence Spectra of Cr3+-Doped Spinels (III) Partial Spectra. J. Lumin. 1981, 26, 85–98. (147) Brik, M. G.; Papan, J.; Jovanović, D. J.; Dramićanin, M. D. Luminescence of Cr3+ Ions in ZnAl2O4 and MgAl2O4 Spinels: Correlation between Experimental Spectroscopic Studies and Crystal Field Calculations. J. Lumin. 2016, 177, 145–151. (148) Hu, H.; Lyu, Z.; Sun, D.; Wei, S.; Liu, J.; Wang, X.; Zhou, L.; You, H. Tunable Broadband NIR-II Emission Via Cr4+-Er3+ Energy Transfer in CaMgGeO4:Cr4+,Er3+ Phosphors for Nondestructive Analysis. ACS Appl. Mater. Interfaces 2024, 16, 62402–62410. (149) Mashkovtsev, M. A.; Kosykh, A. S.; Ishchenko, A. V.; Chukin, A. V.; Kukharenko, A. I.; Troshin, P. A.; Zhidkov, I. S. Unraveling Oxygen Vacancies Effect on Chemical Composition, Electronic Structure and Optical Properties of Eu Doped Sno2. Nanomaterials 2024, 14, 1675. (150) Park, J. H.; Alshammari, F. H.; Wang, Z.; Alshareef, H. N. Interface Engineering for Precise Threshold Voltage Control in Multilayer-Channel Thin Film Transistors. Adv. Mater. Interfaces 2016, 3, 1600713. (151) Yuan, S.; Mu, Z.; Lou, L.; Zhao, S.; Zhu, D.; Wu, F. Broadband Nir-Ii Phosphors with Cr4+ Single Activated Centers Based on Special Crystal Structure for Nondestructive Analysis. Ceram. Int. 2022, 48, 26884–26893. (152) Du, P.; Ran, W.; Wang, C.; Luo, L.; Li, W. Facile Realization of Boosted near-Infrared-Visible Light Driven Photocatalytic Activities of BiOF Nanoparticles through Simultaneously Exploiting Doping and Upconversion Strategy. Adv. Mater. Interfaces 2021, 8, 2100749. (153) Gan, W.; Cao, L.; Gu, S.; Lian, H.; Xia, Z.; Wang, J. Broad-Band Sensitization in Cr3+–Er3+ Co-Doped Cs2AgInCl6 Double Perovskites with 1.5 µm Near-Infrared Emission. Chem. Mater. 2023, 35, 5291–5299. (154) Huang, W.; Peng, H.; Huang, J.; Yang, Y.; Wei, Q.; Ke, B.; Khan, M. S.; Zhao, J.; Zou, B. Efficient Near-Infrared Emission in Lanthanum Ion Doped Double Perovskite CsNaScCl Via Cr3+ Sensitization under Visible Light Excitation. EcoMat 2024, 6, e12437. (155) Zhong, C.; Xu, Y.; Wu, X.; Yin, S.; Zhang, X.; Zhou, L.; You, H. Near-Infrared Sr7NaGa(PO4)6:Cr3+,Ln3+ (Ln = Nd, Er, and Yb) Phosphors with Different Energy Transfer Paths: Photoluminescence Enhancement and Versatility. J. Mater. Chem. C 2023, 11, 3375–3385. (156) Sun, J.; Zheng, W.; Huang, P.; Zhang, M.; Zhang, W.; Deng, Z.; Yu, S.; Jin, M.; Chen, X. Efficient Near-Infrared Luminescence in Lanthanide-Doped Vacancy-Ordered Double Perovskite Cs2ZrCl6 Phosphors Via Te4+ Sensitization. Angew. Chem. Int. Ed. 2022, 61, e202201993. (157) Lin, H.; Fang, S.; Lang, T.; Yu, J.; Cheng, H.; Ou, J.; Ye, Z.; Xu, R.; Shui, X.; Qu, H.; Wang, L. Unlocking Non-Characteristic Near-Infrared Emission of Rare Earth Ions for Photosynthetic Bacteria Cultivation and Vein Imaging Applications. J. Mater. Chem. C 2024, 12, 15070–15081. (158) MacCraith, B. D.; Imbusch, G. F.; Glynn, T. J.; Remeika, J. P.; Wood, D. L. Luminescence from LiGa5O8 : Cr3+ with Varying Concentrations of Chromium. J. Lumin. 1981, 24–25, 269–271. (159) Su, S.; Sun, Y.; Liu, G.; Gong, K.; Wang, M.; Ding, S.; Dong, H.; Wang, W.; Teng, B.; Hu, C. CaLaLiTeO6: Mn4+, Tm3+ Phosphors with Multiband Near-Infrared Emission Towards Multifunctional Applications. J. Lumin. 2024, 267, 120394. (160) Chen, Z.; Zhang, W.; Wen, T.; Yu, X.; Li, Z.; Xin, C.; Yan, L. Effective Red Emission of Sb3+ Sensitized Ho3+ Doped Cs2NaGdCl6 Perovskite under Blue Excitation. J. Alloys Compd. 2024, 1003, 175577. (161) Jiang, L.; Zhang, L.; Jiang, X.; Xie, J.; Lv, G.; Su, Y. Cr3+-Yb3+-Ni2+ Tri-Doped NIR Phosphors with Spectral Output Covering NIR-I and NIR-II Regions. Adv. Mater. Technol. 2024, 9, 2301495. (162) Gong, C.; Xue, X.; Zhu, Q.; Li, P.; Wang, X.; Li, J. G. Simultaneously Strong NIR-II and NIR-III Luminescence Induced by Cr3+-Yb3+-Er3+ Energy Transfer in KScP2O7 for Nir Thermometry, NIR Pc-LED and Night-Vision Applications. Ceram. Int. 2024, 50, 35465–35473. (163) Lin, Y.; Lin, H.; Wang, P.; Xu, J.; Cheng, Y.; Wang, Y. CaLu2Mg2Si3O12:Ce3+, Cr3+, Nd3+ Phosphor-in-Glass Film for Laser-Driven Ultra-Broadband Near-Infrared Lighting with Watt-Level Output. Laser Photonics Rev. 2024, 18, 2400995. (164) Zhang, Z.; Xiao, S.; Yang, X. Broadband Near Infrared Emission in Cr3+,Yb3+, Li+ Tri-Doped In2TeO6. Mater. Res. Bull. 2024, 175, 112789. (165) Shih, Y. H.; Chen, Y. L.; Tan, J. H.; Chang, S. H.; Uen, W. Y.; Chen, S. L.; Lin, M. Y.; Chen, Y. C.; Tu, W. C. Low-Power, Large-Area and High-Performance CdSe Quantum Dots/Reduced Graphene Oxide Photodetectors. IEEE Access 2020, 8, 95855–95863. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101045 | - |
| dc.description.abstract | 短波紅外線(shortwave infrared; 1000–1700 nm)區段因其波長範圍與現今高靈敏度InGaAs 成像偵測器相匹配,近年已於非破壞性產品檢測、生醫影像、安全等領域中嶄露頭角。發光二極體則因其具低功耗、高穩定性、體積小、波長可調性等優勢,故成為目前應用於螢光粉材料之主流光源。故開發具高量子效率且可應用於商業藍光發光二極體之短波紅外光螢光粉轉換材料,為本研究之主要核心目標。
本研究第一部分致力於探討 Cr3+與Er3+共摻雜部分反尖晶石結構之MgGa2O4螢光粉,將分析Cr3+與Er3+兩者發光中心間能量轉移行為。當此主體結構摻雜高濃度Cr3+時,將促使Cr3+形成離子對及離子團簇,進而生成多樣化之Cr3+放光能階與寬譜放光性質,同時兼具高量子效率於近紅外光一區。隨後進一步引入具短波紅外線放光能力之Er3+,雖其發光受限於嚴謹之Laporte 禁制躍遷,導致吸收截面狹窄與低放光效率,然藉Cr3+團簇所形成之多重能量轉移路徑,可有效補償Er3+固有之低吸收截面缺點,顯著提升近紅外放光效率。 本研究之第二部分則聚焦於 Cr3+、Ni2+及Er3+之多摻雜MgGa2O4 螢光粉系統,將進一步引入第二種具短波紅外線放光能力之Ni2+離子,使第一部分研究殘餘之Cr3+放光能量有效轉移至短波紅外線區段,實現全域寬譜放光特性。Ni2+之摻雜將調控系統內部能量轉移路徑,重新建立整體放光表現,可生成寬譜且高量子效率之短波紅外線放光,展現獨特之應用潛力。 本研究之新穎性除系統性研究螢光粉之結構性質、放光性質及探討活化劑間複雜能量轉移行為外,亦將兩研究之短波紅外線螢光粉封裝於發光二極體中,藉比較具高強度窄譜放光與強度均勻化之寬譜放光螢光粉特性,於實際應用中展現彼此差異性,實現應用為導向之短波紅外線螢光粉之設計策略,為未來開發短波紅外線轉換材料提供潛在之應用實例與研究方向。 | zh_TW |
| dc.description.abstract | The shortwave infrared (SWIR, 1000–1700 nm) region has attracted considerable attention due to its excellent compatibility with high-sensitivity InGaAs detectors, demonstrating great potential for non-destructive testing, biomedical imaging, and security applications. Light-emitting diodes (LEDs), featuring low power consumption, high stability, compact size, and wavelength tunability, are widely used as excitation sources for phosphor-converted materials. Therefore, developing high-performance SWIR phosphors applicable to LED integration is the primary goal of this study.
In the first part, Cr3+ and Er3+ co-doped partially inverse spinel MgGa2O4 phosphors are investigated. High-concentration Cr3+ doping leads to forming Cr3+ ion pairs and clusters, resulting in diversified energy levels and broad emissions ranging from 700 to 1100 nm, with high efficiency in the first near-infrared region. Er3+ ions are further introduced, though low absorption cross-sections inherently limit their luminescence due to Laporte-forbidden transitions. However, the Cr3+ clusters offer multiple energy transfer pathways, effectively compensating for the weak absorptionof Er3+ and significantly enhancing its emission efficiency. In the second part, Ni2+ ions are introduced to further transfer the residual Cr3+ emission energy into the SWIR region, achieving broadband, full-spectrum emission. Ni2+ doping modulates internal energy transfer routes and results in intensity-balanced broadband emission, demonstrating potential for advanced applications. The novelty of this study lies not only in systematically analyzing the structural and luminescent properties and energy transfer mechanisms but also in demonstrating LED devices based on two phosphors with distinct emission characteristics, achieving an application-driven SWIR phosphor design strategy. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:35:48Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-11-26T16:35:48Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract iv 目次 v 圖次 ix 表次 xv 1 第一章 緒論 1 1.1 光之起源與分類 1 1.1.1 紅外光(Infrared) 2 1.1.2 短波紅外光(Shortwave Infrared; SWIR)之應用 4 1.1.3 發光機制之種類 8 1.1.4 固態發光材料變革 9 1.1.5 發光二極體介紹 10 1.1.6 無機螢光粉(Inorganic Phosphors) 12 1.2 無機螢光粉之放光機制 14 1.2.1 賈布朗斯基圖(Jabłoński Diagram) 14 1.2.2 法蘭克–康登原理(Franck–Condon Principle) 16 1.2.3 電子–聲子耦合效應(Election-Phonon Coupling Effect)與斯托克斯位移(Stokes Shift) 18 1.2.4 螢光淬滅效應(Quenching Effect) 21 1.3 調控活化劑放光波長之策略 25 1.3.1 選擇定則(Selection Rule) 27 1.3.2 晶場理論(Crystal Field Theory; CFT) 30 1.3.3 電子雲擴散效應(Nephelauxetic Effect) 32 1.3.4 田邊–菅野圖(Tanabe Sugano Diagram) 33 1.3.5 Cr3+活化劑之放光特性 36 1.3.6 Ni2+活化劑之放光特性 39 1.3.7 Er3+活化劑之放光特性 39 1.3.8 能量轉移(Energy Transfer) 40 1.4 研究動機與目的 42 2 第二章 實驗儀器 44 2.1 化學品 44 2.2 短波紅外螢光粉合成方法 45 2.2.1 雙摻雜活化劑系統MgGa2O4:Cr3+,Er3+螢光粉配製 46 2.2.2 多摻雜活化劑系統MgGa2O4:Cr3+,Ni2+,Er3+螢光粉配製 48 2.3 分析儀器總覽 49 2.4 晶體結構分析(Crystal Structure Analysis) 50 2.4.1 粉末X光繞射儀(Powder X-Ray Diffraction; PXRD) 50 2.4.2 同步輻射X光繞射(Synchrotron X-Ray Diffraction; SXRD) 53 2.4.3 結構精修(Structure Refinement) 55 2.4.4 X光吸收光譜(X-Ray Absorption Spectroscopy; XAS) 57 2.4.5 高解析穿透電子顯微鏡(High-Resolution Transmission Electron microscopy; HR-TEM) 61 2.4.6 電磁順磁共振光譜(Electron Paramagnetic Resonance; EPR) 62 2.4.7 X光光電子能譜(X-ray Photoelectron Spectroscopy; XPS) 64 2.5 放光性質鑑定 65 2.5.1 光致發光譜儀(Photoluminescence Spectroscopy; PL) 65 2.5.2 UV-NIR絕對螢光量子效率光譜儀(Absolute Photoluminescence Quantum Yield Spectroscopy; PLQY) 66 2.5.3 時間解析螢光光譜(Time-Resolved Photoluminescence Spectroscopy; TRPL) 67 2.5.4 變溫螢光光譜(Temperature-Dependent Photoluminescence Spectroscopy; TDPL) 69 2.5.5 變壓螢光光譜(Pressure-Dependent Photoluminescence Spectroscopy; PDPL) 70 2.6 封裝測試與應用 71 2.6.1 螢光粉轉換發光二極體(Phosphor-Converted Light-Emitting Diode; pc-LED) 71 2.6.2 活體影像系統(In Vivo Imaging System; IVIS) 72 3 第三章 結果與討論 74 3.1 第一部分:雙摻雜活化劑系統MgGa2O4:Cr3+,Er3+螢光粉 74 3.1.1 MgGa2O4部分反尖晶石螢光粉結構分析 74 3.1.2 雙摻雜活化劑系統MgGa2O4:Cr3+,Er3+螢光粉放光性質分析 96 3.1.3 雙摻雜活化劑系統MgGa2O4:Cr3+,Er3+螢光粉能量轉移機制 103 3.1.4 雙摻雜活化劑系統MgGa2O4:Cr3+,Er3+螢光粉變壓光譜 110 3.2 第二部分:多摻雜活化劑系統MgGa2O4:Cr3+,Ni2+,Er3+螢光粉 111 3.2.1 多摻雜活化劑系統MgGa2O4:Cr3+,Ni2+,Er3+螢光粉結構分析 111 3.2.2 多摻雜活化劑系統MgGa2O4:Cr3+,Ni2+,Er3+螢光粉放光性質分析 126 3.2.3 多摻雜活化劑系統MgGa2O4:Cr3+,Ni2+,Er3+螢光粉能量轉移機制 130 3.2.4 多摻雜活化劑系統MgGa2O4:Cr3+,Ni2+,Er3+螢光粉變壓光譜 133 3.3 兩系列螢光粉之應用研究 135 第四章 結論 144 參考文獻 146 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 螢光粉 | - |
| dc.subject | 短波紅外線 | - |
| dc.subject | 能量轉移 | - |
| dc.subject | Cr3+團簇 | - |
| dc.subject | 稀土元素 | - |
| dc.subject | phosphors | - |
| dc.subject | shortwave infrared | - |
| dc.subject | energy transfer | - |
| dc.subject | Cr3+ cluster | - |
| dc.subject | rare-earth elements | - |
| dc.title | 應用於短波紅外線發光二極體之高效鉺摻雜尖晶石螢光粉 | zh_TW |
| dc.title | High-Performance Er3+-Doped Spinel Phosphors for Shortwave Infrared Converted Light-Emitting Diodes | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 楊吉水;廖秋峯;陳錦明;劉偉仁 | zh_TW |
| dc.contributor.oralexamcommittee | Jye-Shane Yang;Chiou-Feng Liaw;Jin-Ming Chen;Wei-Ren Liu | en |
| dc.subject.keyword | 螢光粉,短波紅外線能量轉移Cr3+團簇稀土元素 | zh_TW |
| dc.subject.keyword | phosphors,shortwave infraredenergy transferCr3+ clusterrare-earth elements | en |
| dc.relation.page | 164 | - |
| dc.identifier.doi | 10.6342/NTU202501201 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-09-04 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| dc.date.embargo-lift | 2025-11-27 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 9.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
