Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101043
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉如熹zh_TW
dc.contributor.advisorRu-Shi Liuen
dc.contributor.author丁文婷zh_TW
dc.contributor.authorWen-Ting Tingen
dc.date.accessioned2025-11-26T16:35:18Z-
dc.date.available2025-11-27-
dc.date.copyright2025-11-26-
dc.date.issued2025-
dc.date.submitted2025-09-05-
dc.identifier.citation[1] Chae, S. R.; Moon, J.; Yoon, S.; Bae, S.; Levitz, P.; Winarski, R.; Monteiro, P. J. Advanced Nanoscale Characterization of Cement Based Materials Using X-Ray Synchrotron Radiation: A Review. Int. J. Concr. Struct. Mater. 2013, 7, 95-110.
[2] Saslow, W. M. Voltaic Cells for Physicists: Two Surface Pumps and an Internal Resistance. Am. J. Phys. 1999, 67, 574–583.
[3] Petrovic, S.; Petrovic, S. Nickel–Metal Hydride Batteries. Battery Technology Crash Course: A Concise Introduction 2021, 89–91.
[4] Feng, F.; Geng, M.; Northwood, D. Electrochemical Behaviour of Intermetallic-Based Metal Hydrides Used in Ni/Metal Hydride (Mh) Batteries: A Review. Int. J. Hydrogen Energy 2001, 26, 725–734.
[5] Shi, J. L., et al. High‐Capacity Cathode Material with High Voltage for Li‐Ion Batteries. Adv. Mater. 2018, 30, 1705575.
[6] Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. LixCoO2 (0< X<-1): A New Cathode Material for Batteries of High Energy Density. Mater. Res. Bull. 1980, 15, 783–789.
[7] Lyu, Y., et al. An Overview on the Advances of LiCoO2 Cathodes for Lithium‐Ion Batteries. Adv. Energy Mater. 2021, 11, 2000982.
[8] Antolini, E. LiCoO2: Formation, Structure, Lithium and Oxygen Nonstoichiometry, Electrochemical Behaviour and Transport Properties. Solid State Ionics 2004, 170, 159–171.
[9] Konar, R.; Maiti, S.; Shpigel, N.; Aurbach, D. Reviewing Failure Mechanisms and Modification Strategies in Stabilizing High-Voltage LiCoO2 Cathodes Beyond 4.55 V. Energy Storage Mater. 2023, 63, 103001.
[10] Zhang, J. C.; Liu, Z. D.; Zeng, C. H.; Luo, J. W.; Deng, Y. D.; Cui, X. Y.; Chen, Y. N. High-Voltage LiCoO2 Cathodes for High-Energy-Density Lithium-Ion Battery. Rare Met. 2022, 41, 3946–3956.
[11] Lin, Q.; Li, Q. a.; Gray, K. E.; Mitchell, J. F. Vapor Growth and Chemical Delithiation of Stoichiometric LiCoO2 Crystals. Crystal growth & design 2012, 12, 1232–1238.
[12] Reimers, J. N.; Dahn, J. Electrochemical and in Situ X‐Ray Diffraction Studies of Lithium Intercalation in LixCoO2. J. Electrochem. Soc. 1992, 139, 2091.
[13] Gabrisch, H.; Yazami, R.; Fultz, B. Hexagonal to Cubic Spinel Transformation in Lithiated Cobalt Oxide: Tem Investigation. J. Electrochem. Soc. 2004, 151, A891.
[14] She, X.; Zhu, K.; Wang, J.; Xue, Q. Product Control and a Study of the Structural Change Process During the Recycling of Lithium-Ion Batteries Based on the Carbothermic Reduction Method. J. Chem. Res. 2022, 46, 17475198211066533.
[15] Li, J. J.; Dai, Y.; Zheng, J. C. Strain Engineering of Ion Migration in LiCoO2. Front. Phys. 2021, 17, 13503.
[16] Salgado, R. M.; Danzi, F.; Oliveira, J. E.; El Azab, A.; Camanho, P. P.; Braga, M. H. The Latest Trends in Electric Vehicles Batteries. Molecules 2021, 26, 3188.
[17] Van der Ven, A.; Ceder, G. Lithium Diffusion Mechanisms in Layered Intercalation Compounds. J. Power Sources 2001, 97, 529–531.
[18] Ashton, T. E.; Baker, P. J.; Bauer, D.; Groves, A. R.; Sotelo Vazquez, C.; Kamiyama, T.; Matsukawa, T.; Kojima, K. M.; Darr, J. A. Multiple Diffusion Pathways in LiXNi0.77Co0.14Al0.09O2 (NCA) Li-Ion Battery Cathodes. J. Mater. Chem. A 2020, 8, 11545–11552.
[19] á deá Biasi, L.; á Schiele, A.; á Roca Ayats, M.; á Garcia, G.; á Brezesinski, T. P. Áhartmann, J. Ájanek. ChemSusChem 2019, 12, 2240.
[20] Britala, L.; Marinaro, M.; Kucinskis, G. A Review of the Degradation Mechanisms of NCM Cathodes and Corresponding Mitigation Strategies. J. Energy Storage 2023, 73, 108875.
[21] Wu, F.; Tian, J.; Su, Y.; Wang, J.; Zhang, C.; Bao, L.; He, T.; Li, J.; Chen, S. Effect of Ni2+ Content on Lithium/Nickel Disorder for Ni-Rich Cathode Materials. ACS Appl. Mater. Interfaces 2015, 7, 7702–7708.
[22] Sallard, S.; Nolte, O.; von Roemer, L.; Soltani, B.; Fandakov, A.; Mueller, K.; Kalogirou, M.; Sens, M. Exploring Thermal Runaway: Role of Battery Chemistry and Testing Methodology. World Electric Vehicle Journal 2025, 16, 153.
[23] Kim, J. H.; Myung, S. T.; Yoon, C.; Kang, S.; Sun, Y. K. Comparative Study of LiNi0.5Mn1.5O4-Δ and LiNi0.5Mn1.5O4 Cathodes Having Two Crystallographic Structures: Fd 3̄ M and P 4332. Chem. Mater. 2004, 16, 906–914.
[24] Sun, H., et al. Tailoring Disordered/Ordered Phases to Revisit the Degradation Mechanism of High‐Voltage LiNi0.5Mn1.5O4 Spinel Cathode Materials. Adv. Funct. Mater. 2022, 32, 2112279.
[25] Cabana, J.; Casas Cabanas, M.; Omenya, F. O.; Chernova, N. A.; Zeng, D.; Whittingham, M. S.; Grey, C. P. Composition-Structure Relationships in the Li-Ion Battery Electrode Material LiNi0.5Mn1.5O4. Chem. Mater. 2012, 24, 2952–2964.
[26] Chen, J.; Huang, Z.; Zeng, W.; Cao, F.; Ma, J.; Tian, W.; Mu, S. Synthesis, Modification, and Lithium‐Storage Properties of Spinel LiNi0.5Mn1.5O4. ChemElectroChem 2021, 8, 608–624.
[27] Fu, T., et al. Advances in Modification Methods and the Future Prospects of High-Voltage Spinel LiNi0.5Mn1.5O4—a Review. J. Mater. Chem. A 2023, 11, 13889–13915.
[28] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D. e.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. science 2004, 306, 666–669.
[29] Raccichini, R.; Varzi, A.; Wei, D.; Passerini, S. Critical Insight into the Relentless Progression toward Graphene and Graphene‐Containing Materials for Lithium‐Ion Battery Anodes. Adv. Mater. 2017, 29, 1603421.
[30] Li, P.; Kim, H.; Myung, S. T.; Sun, Y. K. Diverting Exploration of Silicon Anode into Practical Way: A Review Focused on Silicon-Graphite Composite for Lithium Ion Batteries. Energy Storage Mater. 2021, 35, 550–576.
[31] Popp, H.; Koller, M.; Jahn, M.; Bergmann, A. Mechanical Methods for State Determination of Lithium-Ion Secondary Batteries: A Review. J. Energy Storage 2020, 32, 101859.
[32] Lin, D.; Liu, Y.; Cui, Y. Reviving the Lithium Metal Anode for High-Energy Batteries. Nat. Nanotechnol. 2017, 12, 194–206.
[33] Marka, S. K.; Peruswamula, V. V. H.; Vadali, V. S. S. S. Graphene and Related Materials as Anode Materials in Li Ion Batteries: Science and Practicality. Nanocarbon Electrochemistry 2020, 85–121.
[34] Ershadi, M.; Javanbakht, M.; Mozaffari, S. A.; Zahiri, B. Preparing Graphene-Based Anodes with Enhanced Electrochemical Performance for Lithium-Ion Batteries. Ionics 2020, 26, 4877–4895.
[35] Hussain, S. Z.; Ihrar, M.; Hussain, S. B.; Oh, W. C.; Ullah, K. A Review on Graphene Based Transition Metal Oxide Composites and Its Application Towards Supercapacitor Electrodes. SN Appl. Sci. 2020, 2, 1–23.
[36] Ullah, K.; Ye, S.; Lei, Z.; Cho, K. Y.; Oh, W. C. Synergistic Effect of PTSE2 and Graphene Sheets Supported by TiO2 as Cocatalysts Synthesized Via Microwave Techniques for Improved Photocatalytic Activity. Catal. Sci. Technol. 2015, 5, 184–198.
[37] Hosseingholipourasl, A.; Hafizah Syed Ariffin, S.; Al Otaibi, Y. D.; Akbari, E.; Hamid, F. K.; Koloor, S. S. R.; Petrů, M. Analytical Approach to Study Sensing Properties of Graphene Based Gas Sensor. Sensors 2020, 20, 1506.
[38] Lavagna, L.; Meligrana, G.; Gerbaldi, C.; Tagliaferro, A.; Bartoli, M. Graphene and Lithium-Based Battery Electrodes: A Review of Recent Literature. Energies 2020, 13, 4867.
[39] Huang, G.; Cai, B.; Zhan, C.; Sun, P. Two-Dimensional Material as Anode for Lithium Ion Batteries: Recent Progress. Int. J. Electrochem. Sci. 2020, 15, 5416–5429.
[40] Lang, X.; Wang, X.; Liu, Y.; Cai, K.; Li, L.; Zhang, Q. Cobalt‐Based Metal Organic Framework (Co‐MOFs)/Graphene Oxide Composites as High‐Performance Anode Active Materials for Lithium‐Ion Batteries. Int. J. Energy Res. 2021, 45, 4811–4820.
[41] Guo, Y.; Li, H.; Zhai, T. Reviving Lithium‐Metal Anodes for Next‐Generation High‐Energy Batteries. Adv. Mater. 2017, 29, 1700007.
[42] Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J. G. Lithium Metal Anodes for Rechargeable Batteries. Energy Environ. Sci. 2014, 7, 513–537.
[43] Peled, E. The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—the Solid Electrolyte Interphase Model. J. Electrochem. Soc. 1979, 126, 2047.
[44] Peled, E.; Golodnitsky, D.; Ardel, G. Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes. J. Electrochem. Soc. 1997, 144, L208.
[45] Xu, K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev. 2004, 104, 4303–4418.
[46] Shi, X.; Liu, J.; Zhang, H.; Xue, Z.; Zhao, Z.; Zhang, Y.; Wang, G.; Akbar, L.; Li, L. Solid Electrolyte Interphase Recombination on Graphene Nanoribbons for Lithium Anode. ACS Nano 2024, 18, 8827–8838.
[47] Zhang, W. J. A Review of the Electrochemical Performance of Alloy Anodes for Lithium-Ion Batteries. J. Power Sources 2011, 196, 13–24.
[48] Winter, M.; Besenhard, J. O. Electrochemical Lithiation of Tin and Tin-Based Intermetallics and Composites. Electrochim. Acta 1999, 45, 31–50.
[49] Kasavajjula, U.; Wang, C.; Appleby, A. J. Nano- and Bulk-Silicon-Based Insertion Anodes for Lithium-Ion Secondary Cells. J. Power Sources 2007, 163, 1003–1039.
[50] Benedek, R.; Thackeray, M. M. In Lithium Reactions with Intermetallic-Compound Electrodes, J. Power Sources, 2002, 406–411.
[51] Park, C. M.; Yoon, S.; Lee, S. I.; Kim, J. H.; Jung, J. H.; Sohn, H. J. High-Rate Capability and Enhanced Cyclability of Antimony-Based Composites for Lithium Rechargeable Batteries. J. Electrochem. Soc. 2007, 154, A917.
[52] Park, C. M.; Sohn, H. J. A Mechano- and Electrochemically Controlled SnSb/C Nanocomposite for Rechargeable Li-Ion Batteries. Electrochim. Acta 2009, 54, 6367–6373.
[53] Thackeray, M. M.; Vaughey, J. T.; Johnson, C. S.; Kropf, A. J.; Benedek, R.; Fransson, L. M. L.; Edstrom, K. Structural Considerations of Intermetallic Electrodes for Lithium Batteries. J. Power Sources 2003, 113, 124–130.
[54] Fransson, L. M. L.; Vaughey, J. T.; Benedek, R.; Edström, K.; Thomas, J. O.; Thackeray, M. M. Phase Transitions in Lithiated Cu2Sb Anodes for Lithium Batteries: An in Situ X-Ray Diffraction Study. Electrochem. Commun. 2001, 3, 317–323.
[55] Ohara, S.; Suzuki, J.; Sekine, K.; Takamura, T. A Thin Film Silicon Anode for Li-Ion Batteries Having a Very Large Specific Capacity and Long Cycle Life. J. Power Sources 2004, 136, 303–306.
[56] Takamura, T.; Ohara, S.; Uehara, M.; Suzuki, J.; Sekine, K. A Vacuum Deposited Si Film Having a Li Extraction Capacity over 2000 mAh/G with a Long Cycle Life. J. Power Sources 2004, 129, 96–100.
[57] Jung, H. G.; Jang, M. W.; Hassoun, J.; Sun, Y. K.; Scrosati, B. A High-Rate Long-Life Li4Ti5O12/Li [Ni0.45Co0.1Mn1.45]O4 Lithium-Ion Battery. Nat. Commun. 2011, 2, 516.
[58] Deschanvres, A.; Raveau, B.; Sekkal, Z. Mise En Evidence Et Etude Cristallographique D'une Nouvelle Solution Solide De Type Spinelle Li1+XTi2−XO4 0 ⩽ X ⩽ 0, 333. Mater. Res. Bull. 1971, 6, 699–704.
[59] Tsai, P. c.; Hsu, W. D.; Lin, S. k. Atomistic Structure and Ab Initio Electrochemical Properties of Li4Ti5O12 Defect Spinel for Li Ion Batteries. J. Electrochem. Soc. 2014, 161, A439.
[60] Budiman, B. A.; Saputro, A.; Rahardian, S.; Aziz, M.; Sambegoro, P.; Nurprasetio, I. P. Mechanical Damages in Solid Electrolyte Battery Due to Electrode Volume Changes. J. Energy Storage 2022, 52, 104810.
[61] Ouyang, C. Y.; Zhong, Z. Y.; Lei, M. S. Ab Initio Studies of Structural and Electronic Properties of Li4Ti5O12 Spinel. Electrochem. Commun. 2007, 9, 1107–1112.
[62] Wang, Y., et al. In-Situ Differential Electrochemical Mass Spectrometry Study on the Effects of Negative/Positive Ratios on Gas Evolution in Lithium-Ion Full Batteries. J. Energy Storage 2024, 87, 111414.
[63] Belharouak, I.; Koenig, G. M.; Tan, T.; Yumoto, H.; Ota, N.; Amine, K. Performance Degradation and Gassing of Li4Ti5O12 /LiMn2O4 Lithium-Ion Cells. J. Electrochem. Soc. 2012, 159, A1165.
[64] Yuan, T.; Tan, Z.; Ma, C.; Yang, J.; Ma, Z. F.; Zheng, S. Challenges of Spinel Li4Ti5O12 for Lithium‐Ion Battery Industrial Applications. Adv. Energy Mater. 2017, 7, 1601625.
[65] Hsiao, K. C.; Liao, S. C.; Chen, J. M. Microstructure Effect on the Electrochemical Property of Li4Ti5O12 as an Anode Material for Lithium-Ion Batteries. Electrochim. Acta 2008, 53, 7242–7247.
[66] Park, K. S.; Benayad, A.; Kang, D. J.; Doo, S. G. Nitridation-Driven Conductive Li4Ti5O12 for Lithium Ion Batteries. J. Am. Chem. Soc. 2008, 130, 14930–14931.
[67] Shiiba, H.; Nakayama, M.; Nogami, M. Ionic Conductivity of Lithium in Spinel-Type Li4/3Ti5/3O4–LiMg1/2Ti¬O4 Solid-Solution System. Solid State Ionics 2010, 181, 994–1001.
[68] Zhao, H.; Li, Y.; Zhu, Z.; Lin, J.; Tian, Z.; Wang, R. Structural and Electrochemical Characteristics of Li4-xAlTi5O12 as Anode Material for Lithium-Ion Batteries. Electrochim. Acta 2008, 53, 7079–7083.
[69] Tian, B.; Xiang, H.; Zhang, L.; Li, Z.; Wang, H. Niobium Doped Lithium Titanate as a High Rate Anode Material for Li-Ion Batteries. Electrochim. Acta 2010, 55, 5453–5458.
[70] Yi, T. F.; Chen, B.; Shen, H. Y.; Zhu, R. S.; Zhou, A. N.; Qiao, H. B. Spinel Li4Ti5−XZrxO12 (0⩽X⩽0.25) Materials as High-Performance Anode Materials for Lithium-Ion Batteries. J. Alloys Compd. 2013, 558, 11–17.
[71] Zhao, Z.; Xu, Y.; Ji, M.; Zhang, H. Synthesis and Electrochemical Performance of F-Doped Li4Ti5O12 for Lithium-Ion Batteries. Electrochim. Acta 2013, 109, 645–650.
[72] Ding, Z.; Zhao, L.; Suo, L.; Jiao, Y.; Meng, S.; Hu, Y. S.; Wang, Z.; Chen, L. Towards Understanding the Effects of Carbon and Nitrogen-Doped Carbon Coating on the Electrochemical Performance of Li4Ti5O12 in Lithium Ion Batteries: A Combined Experimental and Theoretical Study. Physical Chemistry Chemical Physics 2011, 13, 15127–15133.
[73] Liu, Y. K.; Zhao, C. Z.; Du, J.; Zhang, X. Q.; Chen, A. B.; Zhang, Q. Research Progresses of Liquid Electrolytes in Lithium‐Ion Batteries. Small 2023, 19, 2205315.
[74] Peled, E.; Yamin, H. Solid Electrolyte Interphase (Sei) Electrodes. Part 1. The Kinetics of Lithium in LiAlCl4‐SOCl2. Isr. J. Chem. 1979, 18, 131–135.
[75] Chang, Z.; Qiao, Y.; Deng, H.; Yang, H.; He, P.; Zhou, H. A Stable High-Voltage Lithium-Ion Battery Realized by an in-Built Water Scavenger. Energy Environ. Sci. 2020, 13, 1197–1204.
[76] Zheng, Q.; Yamada, Y.; Shang, R.; Ko, S.; Lee, Y. Y.; Kim, K.; Nakamura, E.; Yamada, A. A Cyclic Phosphate-Based Battery Electrolyte for High Voltage and Safe Operation. Nat. Energy 2020, 5, 291–298.
[77] Su, C. C.; He, M.; Shi, J.; Amine, R.; Zhang, J.; Guo, J.; Amine, K. Superior Long-Term Cycling of High-Voltage Lithium-Ion Batteries Enabled by Single-Solvent Electrolyte. Nano Energy 2021, 89, 106299.
[78] Su, C. C.; He, M.; Shi, J.; Amine, R.; Yu, Z.; Cheng, L.; Guo, J.; Amine, K. Principle in Developing Novel Fluorinated Sulfone Electrolyte for High Voltage Lithium-Ion Batteries. Energy Environ. Sci. 2021, 14, 3029–3034.
[79] Chen, R.; Zhu, L.; Wu, F.; Li, L.; Zhang, R.; Chen, S. Investigation of a Novel Ternary Electrolyte Based on Dimethyl Sulfite and Lithium Difluoromono (Oxalato) Borate for Lithium Ion Batteries. J. Power Sources 2014, 245, 730–738.
[80] Zhou, M.; Qin, C.; Liu, Z.; Feng, L.; Su, X.; Chen, Y.; Xia, L.; Xia, Y.; Liu, Z. Enhanced High Voltage Cyclability of LiCoO2 Cathode by Adopting Poly [Bis-(Ethoxyethoxyethoxy) Phosphazene] with Flame-Retardant Property as an Electrolyte Additive for Lithium-Ion Batteries. Appl. Surf. Sci. 2017, 403, 260–266.
[81] Li, J.; Ma, C.; Chi, M.; Liang, C.; Dudney, N. J. Lithium-Ion Batteries: Solid Electrolyte: The Key for High-Voltage Lithium Batteries (Adv. Energy Mater. 4/2015). Adv. Energy Mater. 2015, 5.
[82] Bartsch, T.; Strauss, F.; Hatsukade, T.; Schiele, A.; Kim, A. Y.; Hartmann, P.; Janek, J. r.; Brezesinski, T. Gas Evolution in All-Solid-State Battery Cells. ACS Energy Lett. 2018, 3, 2539–2543.
[83] Bai, P.; Li, J.; Brushett, F. R.; Bazant, M. Z. Transition of Lithium Growth Mechanisms in Liquid Electrolytes. Energy Environ. Sci. 2016, 9, 3221–3229.
[84] Porz, L., et al. Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes. Adv. Energy Mater. 2017, 7, 1701003.
[85] Koerver, R., et al. Chemo-Mechanical Expansion of Lithium Electrode Materials–on the Route to Mechanically Optimized All-Solid-State Batteries. Energy Environ. Sci. 2018, 11, 2142–2158.
[86] Koerver, R.; Aygün, I.; Leichtweiß, T.; Dietrich, C.; Zhang, W.; Binder, J. O.; Hartmann, P.; Zeier, W. G.; Janek, J. r. Capacity Fade in Solid-State Batteries: Interphase Formation and Chemomechanical Processes in Nickel-Rich Layered Oxide Cathodes and Lithium Thiophosphate Solid Electrolytes. Chem. Mater. 2017, 29, 5574–5582.
[87] Famprikis, T.; Canepa, P.; Dawson, J. A.; Islam, M. S.; Masquelier, C. Fundamentals of Inorganic Solid-State Electrolytes for Batteries. Nat. Mater. 2019, 18, 1278–1291.
[88] Grill, J.; Steensen, S. K.; Castro, D. L. Q.; Castelli, I. E.; Popovic Neuber, J. Solid-State Inorganic Electrolytes for Next Generation Potassium Batteries. Commun. Mater. 2024, 5, 127.
[89] Zhu, X.; Wu, J.; Lu, J. Insight into Inorganic Solid‐State Electrolytes: Ionic Transport and Failure Mechanisms. Adv. Funct. Mater. 2024, 34, 2409547.
[90] Goodenough, J. B.; Hong, H. P.; Kafalas, J. Fast Na+-Ion Transport in Skeleton Structures. Mater. Res. Bull. 1976, 11, 203–220.
[91] Chen, S.; Wu, C.; Shen, L.; Zhu, C.; Huang, Y.; Xi, K.; Maier, J.; Yu, Y. Challenges and Perspectives for NASICON‐Type Electrode Materials for Advanced Sodium‐Ion Batteries. Adv. Mater. 2017, 29, 1700431.
[92] Rajagopalan, R.; Zhang, Z.; Tang, Y.; Jia, C.; Ji, X.; Wang, H. Understanding Crystal Structures, Ion Diffusion Mechanisms and Sodium Storage Behaviors of NASICON Materials. Energy Storage Mater. 2021, 34, 171–193.
[93] Zhang, J., et al. A Novel NASICON‐Type Na4MnCr(PO4)3 Demonstrating the Energy Density Record of Phosphate Cathodes for Sodium‐Ion Batteries. Adv. Mater. 2020, 32, 1906348.
[94] Lalère, F.; Leriche, J. B.; Courty, M.; Boulineau, S.; Viallet, V.; Masquelier, C.; Seznec, V. An All-Solid State NASICON Sodium Battery Operating at 200 C. J. Power Sources 2014, 247, 975–980.
[95] Pradel, A.; Ribes, M. Electrical Properties of Lithium Conductive Silicon Sulfide Glasses Prepared by Twin Roller Quenching. Solid State Ionics 1986, 18, 351–355.
[96] Kamaya, N., et al. A Lithium Superionic Conductor. Nat. Mater. 2011, 10, 682–686.
[97] Liu, H.; Liang, Y.; Wang, C.; Li, D.; Yan, X.; Nan, C. W.; Fan, L. Z. Priority and Prospect of Sulfide‐Based Solid‐Electrolyte Membrane. Adv. Mater. 2023, 35, 2206013.
[98] Lepley, N.; Holzwarth, N. Computer Modeling of Crystalline Electrolytes: Lithium Thiophosphates and Phosphates. J. Electrochem. Soc. 2012, 159, A538.
[99] Kimura, T.; Hotehama, C.; Sakuda, A.; Tatsumisago, M.; Hayashi, A. Structures and Conductivities of Stable and Metastable Li5GaS4 Solid Electrolytes. RSC Adv. 2021, 11, 25211–25216.
[100] Zhou, L.; Minafra, N.; Zeier, W. G.; Nazar, L. F. Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithium Batteries. Acc. Chem. Res. 2021, 54, 2717–2728.
[101] Iwasaki, R.; Hori, S.; Kanno, R.; Yajima, T.; Hirai, D.; Kato, Y.; Hiroi, Z. Weak Anisotropic Lithium-Ion Conductivity in Single Crystals of Li10GeP2S12. Chem. Mater. 2019, 31, 3694–3699.
[102] Ma, Z.; Xue, H.-G.; Guo, S.-P. Recent Achievements on Sulfide-Type Solid Electrolytes: Crystal Structures and Electrochemical Performance. J. Mater. Sci. 2018, 53, 3927-3938.
[103] Wright, P. V. Recent Trends in Polymer Electrolytes Based on Poly (Ethylene Oxide). J. Macromol. Sci., Chem. 1989, 26, 519–550.
[104] Gorecki, W.; Jeannin, M.; Belorizky, E.; Roux, C.; Armand, M. Physical Properties of Solid Polymer Electrolyte Peo (LiTFSI) Complexes. J. Phys.: Condens. Matter 1995, 7, 6823.
[105] Li, Z.; Fu, J.; Zhou, X.; Gui, S.; Wei, L.; Yang, H.; Li, H.; Guo, X. Ionic Conduction in Polymer‐Based Solid Electrolytes. Adv. Sci. 2023, 10, 2201718.
[106] Borodin, O.; Smith, G. D. Mechanism of Ion Transport in Amorphous Poly (Ethylene Oxide)/Litfsi from Molecular Dynamics Simulations. Macromolecules 2006, 39, 1620–1629.
[107] Li, X.; Liang, J.; Yang, X.; Adair, K. R.; Wang, C.; Zhao, F.; Sun, X. Progress and Perspectives on Halide Lithium Conductors for All-Solid-State Lithium Batteries. Energy Environ. Sci. 2020, 13, 1429–1461.
[108] Liang, J.; Li, X.; Adair, K. R.; Sun, X. Metal Halide Superionic Conductors for All-Solid-State Batteries. Acc. Chem. Res. 2021, 54, 1023–1033.
[109] Wang, S.; Bai, Q.; Nolan, A. M.; Liu, Y.; Gong, S.; Sun, Q.; Mo, Y. Lithium Chlorides and Bromides as Promising Solid‐State Chemistries for Fast Ion Conductors with Good Electrochemical Stability. Angew. Chem. Int. Ed. 2019, 58, 8039–8043.
[110] Park, K. H.; Kaup, K.; Assoud, A.; Zhang, Q.; Wu, X.; Nazar, L. F. High-Voltage Superionic Halide Solid Electrolytes for All-Solid-State Li-Ion Batteries. ACS Energy Lett. 2020, 5, 533–539.
[111] Zhang, Y.; Chen, R.; Liu, T.; Xu, B.; Zhang, X.; Li, L.; Lin, Y.; Nan, C. W.; Shen, Y. High Capacity and Superior Cyclic Performances of All-Solid-State Lithium Batteries Enabled by a Glass–Ceramics Solo. ACS Appl. Mater. Interfaces 2018, 10, 10029–10035.
[112] Schlem, R.; Banik, A.; Ohno, S.; Suard, E.; Zeier, W. G. Insights into the Lithium Sub-Structure of Superionic Conductors Li¬¬YCl6 and Li¬¬YBr6. Chem. Mater. 2021, 33, 327–337.
[113] Asano, T.; Sakai, A.; Ouchi, S.; Sakaida, M.; Miyazaki, A.; Hasegawa, S. Solid Halide Electrolytes with High Lithium‐Ion Conductivity for Application in 4 V Class Bulk‐Type All‐Solid‐State Batteries. Adv. Mater. 2018, 30, 1803075.
[114] Xu, Z.; Chen, X.; Liu, K.; Chen, R.; Zeng, X.; Zhu, H. Influence of Anion Charge on Li Ion Diffusion in a New Solid-State Electrolyte, Li3LaI6. Chem. Mater. 2019, 31, 7425–7433.
[115] Panneerselvam, T.; Murugan, R.; Sreejith, O. Highly Stable All-Solid-State Batteries with Li–LTO Composite Anode. SUSTAIN ENERG FUELS 2024, 8, 1704–1711.
[116] Eckert, M., Max Von Laue and the Discovery of X‐Ray Diffraction in 1912. WILEY‐VCH Verlag Berlin 2012, 524, A83–A85.
[117] Pope, C. G. X-Ray Diffraction and the Bragg Equation. J. Chem. Educ. 1997, 74, 129.
[118] Sutton, M. A.; Li, N.; Joy, D.; Reynolds, A. P.; Li, X. Scanning Electron Microscopy for Quantitative Small and Large Deformation Measurements Part I: Sem Imaging at Magnifications from 200 to 10,000. Exp. Mech. 2007, 47, 775–787.
[119] Das, P. Optical Properties of Low Dimensional Structures Using Cathodoluminescence in a High Resolution Scanning Electron Microscope. 2014.
[120] Araneda, A.; Bennuna, L.; Sanhuezab, V. A New Methodology Which Uses a Mathematical Procedure and Pure Substances for the Determination of a Txrf Spectrometer Sensitivity Curve. 2015.
[121] Kowalska, J. K.; Lima, F. A.; Pollock, C. J.; Rees, J. A.; DeBeer, S. A Practical Guide to High‐Resolution X‐Ray Spectroscopic Measurements and Their Applications in Bioinorganic Chemistry. Isr. J. Chem. 2016, 56, 803–815.
[122] Lazanas, A. C.; Prodromidis, M. I. Electrochemical Impedance Spectroscopy─ a Tutorial. ACS Meas. Sci. Au 2023, 3, 162–193.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101043-
dc.description.abstract隨著電動車與儲能設備快速發展,對高安全性與高能量密度之鋰離子電池需求日益提升。固態電解質因具備優異熱穩定性與阻燃性,成為液態電解質之潛在替代材料。為克服氧化還原電位不匹配與界面不穩定性問題,本研究針對鈦酸鋰進行鋰銦氯包覆處理,形成Li3InCl6@Li4Ti5O12 (LIC@LTO)複合陽極,以提升其於固態全電池中的穩定性與電化學性能。
本研究選用THF (tetrahydrofuran)作為反應溶劑進行LIC包覆,因其為非質子性極性溶劑,較不易與前驅物發生副反應,成功製備出不同含量之LIC@LTO樣品。經XRD、SEM、TEM及EDS分析證實5 wt% LIC包覆樣品具明顯包覆層,且仍保有LTO之結構。進一步以XPS與XANES光譜技術分析其化學狀態與氧化態,結果顯示5 wt% 樣品具最佳之化學性質。
電化學測試結果顯示,以THF合成之5 wt% LIC@LTO半電池於循環伏安法測試中,展現較小極化現象。將此改質陽極LIC@LTO與陰極LCO進行之全電池組裝後,其首圈放電容量達108 mAh/g,第五十圈放電容量仍可維持58 mAh/g,且電池阻抗亦明顯低於未包覆樣品,證實LIC包覆有助於降低界面阻抗與提升整體電池性能。
綜合而言,本研究證實以THF進行5 wt% Li3InCl6@Li4Ti5O12表面包覆可提升鋰離子電池陽極之界面穩定性與離子傳輸能力,為實現高性能固態鋰離子電池提供關鍵材料設計之策略。
zh_TW
dc.description.abstractWith the rapid development of electric vehicles and energy storage systems, the demand for lithium-ion batteries with high safety and high energy density is steadily increasing. Solid-state electrolytes, known for their excellent thermal stability and flame retardancy, have emerged as promising alternatives to conventional liquid electrolytes. To address issues related to redox potential mismatch and interfacial instability, this study applies a lithium indium chloride (Li3InCl6) coating on lithium titanate (Li4Ti5O12), forming a Li3InCl6@Li4Ti5O12 (LIC@LTO) composite anode, aiming to enhance the interfacial stability and electrochemical performance of solid-state full cells.
Tetrahydrofuran (THF), an aprotic polar solvent, was selected as the reaction medium for the LIC coating due to its low reactivity with precursors, enabling the successful synthesis of LIC@LTO samples with varying coating ratios. XRD, SEM, TEM, and EDS analyses confirmed that the 5 wt% LIC-coated sample exhibited a distinct coating layer while retaining the structural integrity of LTO. Further characterization using XPS and XANES techniques revealed that the 5 wt% sample possessed the most favorable chemical states and oxidation behavior.
Electrochemical tests demonstrated that the 5 wt% LIC@LTO half-cell synthesized via THF exhibited reduced polarization in cyclic voltammetry. When assembled into a full solid-state cell with LiCoO2 (LCO), the LIC@LTO anode delivered an initial discharge capacity of 108 mAh/g, maintaining 58 mAh/g after 50 cycles. Moreover, the interfacial resistance of the coated sample was significantly lower than that of the uncoated LTO, confirming the beneficial role of LIC coating in reducing impedance and improving overall battery performance.
In conclusion, this study confirms that a 5 wt% Li3InCl6 coating applied via THF effectively enhances the interfacial stability and lithium-ion transport capability of the LTO anode, offering a promising materials strategy for the development of high-performance solid-state lithium-ion batteries.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:35:18Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-11-26T16:35:18Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 I
謝誌 II
摘要 III
ABSTRACT IV
目次 V
圖次 VIII
表次 XIII
第一章 緒論 1
1.1 電池之原理與演變 1
1.2 鋰離子二次電池 7
1.3 鋰離子電池之陰極材料 9
1.3.1 鋰鈷氧化物 10
1.3.2 鎳鈷錳酸鋰 15
1.3.3 鎳錳酸鋰 18
1.4 鋰離子電池之陽極材料 21
1.4.1 石墨烯 22
1.4.2 鋰金屬 24
1.4.3 合金 26
1.4.4 鈦酸鋰 27
1.5 液態電解質 32
1.6 固態電解質 33
1.6.1 鈉超離子型固態電解質 36
1.6.2 硫化物型固態電解質 37
1.6.3 聚合物型固態電解質 39
1.6.4 鹵化物型固態電解質 40
1.7 研究動機與目的 42
第二章 實驗步驟與儀器分析原理 44
2.1 化學藥品 44
2.2 實驗步驟 45
2.2.1 鋰銦氯包覆鈦酸鋰陽極材料之設計與合成 45
2.2.2 鈦酸鋰複合陽極與鈷酸鋰複合陰極之設計與合成 47
2.2.3 液態鋰離子電池之組裝 49
2.2.4 固態鋰離子電池之組裝 50
2.3 儀器分析 52
2.3.1 X光繞射儀(X-Ray diffraction; XRD) 53
2.3.2 掃描式電子顯微鏡(scanning electron microscope; SEM) 55
2.3.3 穿透式電子顯微鏡(transmission electron microscope; TEM) 57
2.3.4 X光吸收光譜(X-ray absorption spectroscopy; XAS) 59
2.3.5 X射線光電子能譜儀 (X-ray photoelectron spectroscopy; XPS) 63
2.3.6 電化學阻抗譜 (electrochemical impedance spectroscopy; EIS) 64
2.3.7 充放電測試儀 (cycling test machine) 66
第三章 結果與討論 68
3.1 LI3INCL6包覆LI4TI5O12陽極材料之分析 68
3.1.1 以不同溶劑合成Li3InCl6包覆Li4Ti5O12陽極材料之X光繞射圖譜鑑定 68
3.1.2 Li3InCl6包覆Li4Ti5O12陽極材料之掃描式電子顯微鏡鑑定 71
3.1.3 Li3InCl6包覆Li4Ti5O12陽極材料之穿透式電子顯微鏡鑑定 72
3.1.4 Li3InCl6包覆Li4Ti5O12陽極材料之X光吸收光譜鑑定 77
3.1.5 Li3InCl6包覆Li4Ti5O12陽極材料之X光光電子能譜鑑定 79
3.2 LI3INCL6包覆LI4TI5O12之液態半電池鑑定 80
3.2.1 LI3INCL6包覆LI4TI5O12液態半電池之電化學阻抗鑑定 81
3.2.2 LI3INCL6包覆LI4TI5O12液態半電池之循環伏安法鑑定 84
3.2.3 Li3InCl6包覆Li4Ti5O12液態半電池之充放電測試 85
3.2.4 Li3InCl6包覆Li4Ti5O12液態半電池之掃描式電子顯微鏡鑑定 96
3.3 LI3INCL6包覆LI4TI5O12之液態全電池鑑定 98
3.3.1 LI3INCL6包覆LI4TI5O12液態全電池之電化學阻抗鑑定 99
3.3.2 LI3INCL6包覆LI4TI5O12液態全電池之充放電測試 100
3.4 LI3INCL6包覆LI4TI5O12之固態全電池鑑定 103
3.4.1 Li3InCl6包覆Li4Ti5O12固態全電池之充放電測試 103
第四章 結論 104
參考文獻 106
-
dc.language.isozh_TW-
dc.subject鈦酸鋰陽極-
dc.subject鹵化物型固態電解質包覆-
dc.subject全固態鋰 離子電池-
dc.subjectlithium titanate anode-
dc.subjecthalide solid-state electrolyte coating-
dc.subjectall-solid-state lithium-ion battery-
dc.title應用於固態鋰離子電池之鋰銦氯改質鈦酸鋰陽極zh_TW
dc.titleLithium Indium Chloride Modified Lithium Titanate Anode for Solid-State Lithium-Ion Batteriesen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee洪太峰;張仍奎;梁文傑;朱治偉zh_TW
dc.contributor.oralexamcommitteeTai-Feng Hung;Jeng-Kuei Chang;Man-Kit Leung;Chih-Wei Chuen
dc.subject.keyword鈦酸鋰陽極,鹵化物型固態電解質包覆全固態鋰 離子電池zh_TW
dc.subject.keywordlithium titanate anode,halide solid-state electrolyte coatingall-solid-state lithium-ion batteryen
dc.relation.page122-
dc.identifier.doi10.6342/NTU202504454-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-09-05-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
dc.date.embargo-lift2025-11-27-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
28.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved