Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101032
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐丞志zh_TW
dc.contributor.advisorCheng-Chih Hsuen
dc.contributor.author陳智翔zh_TW
dc.contributor.authorChih-Hsiang Chenen
dc.date.accessioned2025-11-26T16:32:42Z-
dc.date.available2025-11-27-
dc.date.copyright2025-11-26-
dc.date.issued2025-
dc.date.submitted2025-08-21-
dc.identifier.citation1. Yamada, R.; Okada, D.; Wang, J.; Basak, T.; Koyama, S., Interpretation of omics data analyses. J Hum Genet 2021, 66 (1), 93-102.
2. Chen, C.; Wang, J.; Pan, D.; Wang, X.; Xu, Y.; Yan, J.; Wang, L.; Yang, X.; Yang, M.; Liu, G. P., Applications of multi-omics analysis in human diseases. MedComm (2020) 2023, 4 (4), e315.
3. Calzone, K.; Wattendorf, D.; Dunn, B. K., The application of genetics and genomics to cancer prevention. Semin Oncol 2010, 37 (4), 407-18.
4. Wang, Z.; Gerstein, M.; Snyder, M., RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009, 10 (1), 57-63.
5. Al-Amrani, S.; Al-Jabri, Z.; Al-Zaabi, A.; Alshekaili, J.; Al-Khabori, M., Proteomics: Concepts and applications in human medicine. World J Biol Chem 2021, 12 (5), 57-69.
6. Han, Y.; Garcia, B. A., Combining genomic and proteomic approaches for epigenetics research. Epigenomics 2013, 5 (4), 439-52.
7. Rattray, N. J. W.; Deziel, N. C.; Wallach, J. D.; Khan, S. A.; Vasiliou, V.; Ioannidis, J. P. A.; Johnson, C. H., Beyond genomics: understanding exposotypes through metabolomics. Hum. Genomics 2018, 12 (1), 4.
8. Martins, T. G. D. S.; Sipahi, A. M.; Mendes, M. A.; Fowler, S. B.; Schor, P., Metaboloma use in ophthalmology. Revista Brasileira de Oftalmologia 2022, 81.
9. Johnson, C. H.; Ivanisevic, J.; Siuzdak, G., Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol 2016, 17 (7), 451-459.
10. Clish, C. B., Metabolomics: an emerging but powerful tool for precision medicine. Cold Spring Harb Mol Case Stud 2015, 1 (1), a000588.
11. Broeckling, C. D.; Beger, R. D.; Cheng, L. L.; Cumeras, R.; Cuthbertson, D. J.; Dasari, S.; Davis, W. C.; Dunn, W. B.; Evans, A. M.; Fernández-Ochoa, A.; Gika, H.; Goodacre, R.; Goodman, K. D.; Gouveia, G. J.; Hsu, P. C.; Kirwan, J. A.; Kodra, D.; Kuligowski, J.; Lan, R. S.; Monge, M. E.; Moussa, L. W.; Nair, S. G.; Reisdorph, N.; Sherrod, S. D.; Ulmer Holland, C.; Vuckovic, D.; Yu, L. R.; Zhang, B.; Theodoridis, G.; Mosley, J. D., Current Practices in LC-MS Untargeted Metabolomics: A Scoping Review on the Use of Pooled Quality Control Samples. Anal Chem 2023, 95 (51), 18645-18654.
12. Zhu, P.; Dubbelman, A.-C.; Hunter, C.; Genangeli, M.; Karu, N.; Harms, A.; Hankemeier, T., Development of an Untargeted LC-MS Metabolomics Method with Postcolumn Infusion for Matrix Effect Monitoring in Plasma and Feces. J. Am. Soc. Mass Spectrom. 2024, 35 (3), 590-602.
13. Jordan, M. I.; Mitchell, T. M., Machine learning: Trends, perspectives, and prospects. Science 2015, 349 (6245), 255-260.
14. LeCun, Y.; Bengio, Y.; Hinton, G., Deep learning. Nature 2015, 521 (7553), 436-444.
15. Rajkomar, A.; Dean, J.; Kohane, I., Machine Learning in Medicine. N. Engl. J. Med 2019, 380 (14), 1347-1358.
16. Arlot, S.; Celisse, A., A survey of cross-validation procedures for model selection. Stat. Surv. 2010, 4 (none), 40-79.
17. Breiman, L., Random Forests. Mach. Learn. 2001, 45 (1), 5-32.
18. Cortes, C.; Vapnik, V., Support-vector networks. Mach. Learn. 1995, 20 (3), 273-297.
19. Tibshirani, R., Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. Ser. B 1996, 58 (1), 267-288.
20. Friedman, J. H.; Hastie, T.; Tibshirani, R., Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 2010, 33 (1), 1 - 22.
21. Liu, Y.; Gao, Q.; Wei, K.; Huang, C.; Wang, C.; Yu, Y.; Qin, G.; Wang, T., High-dimensional generalized median adaptive lasso with application to omics data. Brief Bioinform 2024, 25 (2).
22. Erdem, C.; Gross, S. M.; Heiser, L. M.; Birtwistle, M. R., Multi-Omics Binary Integration via Lasso Ensembles (MOBILE) for identification of context-specific networks and new regulatory mechanisms. bioRxiv 2022, 2022.07.24.501297.
23. Burges, C. J. C., A Tutorial on Support Vector Machines for Pattern Recognition. Data Min. Knowl. Discov. 1998, 2 (2), 121-167.
24. Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V., Gene Selection for Cancer Classification using Support Vector Machines. Mach. Learn. 2002, 46 (1), 389-422.
25. Xue, W.; Li, F.; Li, X.; Liu, Y., A Support Vector Machine-Assisted Metabolomics Approach for Non-Targeted Screening of Multi-Class Pesticides and Veterinary Drugs in Maize. Molecules 2024, 29 (13), 3026.
26. Cipolla, S.; Gondzio, J., Training very large scale nonlinear SVMs using Alternating Direction Method of Multipliers coupled with the Hierarchically Semi-Separable kernel approximations. EURO J. Comput. Optim. 2022, 10, 100046.
27. Ben-Hur, A.; Ong, C. S.; Sonnenburg, S.; Schölkopf, B.; Rätsch, G., Support Vector Machines and Kernels for Computational Biology. PLoS Comput. Biol. 2008, 4 (10), e1000173.
28. Kursa, M. B.; Rudnicki, W. R., Feature Selection with the Boruta Package. J. Stat. Softw. 2010, 36 (11), 1 - 13.
29. Miettinen, T.; Nieminen, A. I.; Mäntyselkä, P.; Kalso, E.; Lötsch, J., Machine Learning and Pathway Analysis-Based Discovery of Metabolomic Markers Relating to Chronic Pain Phenotypes. Int. J. Mol. Sci. 2022, 23 (9), 5085.
30. Acharjee, A.; Larkman, J.; Xu, Y.; Cardoso, V. R.; Gkoutos, G. V., A random forest based biomarker discovery and power analysis framework for diagnostics research. BMC Med. Genomics 2020, 13 (1), 178.
31. Carretero, O. A.; Oparil, S., Essential Hypertension. Circulation 2000, 101 (3), 329-335.
32. Zhou, B., Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. The Lancet 2021, 398 (10304), 957-980.
33. Martino M.C, D.; Canu, L.; Bonaventura, I.; Vitiello, C.; Sparano, C.; Cozzolino, A., Hypertension and Cushing’s syndrome: hunt for the red flag. J. Endocrinol. Invest. 2025.
34. Sarathy, H.; Salman, L. A.; Lee, C.; Cohen, J. B., Evaluation and Management of Secondary Hypertension. Med Clin North Am 2022, 106 (2), 269-283.
35. Viera, A. J.; Neutze, D. M., Diagnosis of secondary hypertension: an age-based approach. Am Fam Physician 2010, 82 (12), 1471-8.
36. Young, W. F., Jr.; Calhoun, D. A.; Lenders, J. W. M.; Stowasser, M.; Textor, S. C., Screening for Endocrine Hypertension: An Endocrine Society Scientific Statement. Endocr. Rev. 2017, 38 (2), 103-122.
37. Byrd, J. B.; Turcu, A. F.; Auchus, R. J., Primary Aldosteronism: Practical Approach to Diagnosis and Management. Circulation 2018, 138 (8), 823-835.
38. Rossi, G. P.; Rossi, F. B.; Guarnieri, C.; Rossitto, G.; Seccia, T. M., Clinical Management of Primary Aldosteronism: An Update. Hypertension 2024, 81 (9), 1845-1856.
39. Lin, C.-H.; Lin, C.-H.; Chung, M.-C.; Hung, C.-S.; Tseng, F.-Y.; Er, L. K.; Jia-Yin Hou, C.; Lin, Y.-H.; Wu, V.-C.; Cheng, H.-M.; Kao, H.-L.; Wu, K.-D.; Lai, T.-S., Aldosterone-to-renin ratio (ARR) as a screening tool for primary aldosteronism (PA). J Formos Med Assoc 2024, 123, S98-S103.
40. Huang, C.-W.; Tu, K.-H.; Fan, K.-C.; Tsai, C.-H.; Wang, W.-T.; Wang, S.-Y.; Wu, C.-Y.; Hu, Y.-H.; Huang, S.-H.; Liu, H.-W.; Tseng, F.-Y.; Wu, W.-C.; Chang, C.-C.; Lin, Y.-H.; Wu, V.-C.; Hwu, C.-M., The role of confirmatory tests in the diagnosis of primary aldosteronism. J Formos Med Assoc 2024, 123, S104-S113.
41. Yang, J.; Bell, D. A.; Carroll, R.; Chiang, C.; Cowley, D.; Croker, E.; Doery, J. C. G.; Elston, M.; Glendenning, P.; Hetherington, J.; Horvath, A. R.; Lu-Shirzad, S.; Ng, E.; Mather, A.; Perera, N.; Rashid, M.; Sachithanandan, N.; Shen, J.; Stowasser, M.; Swarbrick, M. J.; Tan, H. L. E.; Thuzar, M.; Young, S.; Chong, W., Adrenal Vein Sampling for Primary Aldosteronism: Recommendations From the Australian and New Zealand Working Group. Clin Endocrinol (Oxf) 2025, 102 (1), 31-43.
42. Eisenhofer, G.; Kurlbaum, M.; Peitzsch, M.; Constantinescu, G.; Remde, H.; Schulze, M.; Kaden, D.; Müller, L. M.; Fuss, C. T.; Kunz, S.; Kołodziejczyk-Kruk, S.; Gruber, S.; Prejbisz, A.; Beuschlein, F.; Williams, T. A.; Reincke, M.; Lenders, J. W. M.; Bidlingmaier, M., The Saline Infusion Test for Primary Aldosteronism: Implications of Immunoassay Inaccuracy. J Clin Endocrinol Metab 2022, 107 (5), e2027-e2036.
43. Arlt, W.; Lang, K.; Sitch, A. J.; Dietz, A. S.; Rhayem, Y.; Bancos, I.; Feuchtinger, A.; Chortis, V.; Gilligan, L. C.; Ludwig, P.; Riester, A.; Asbach, E.; Hughes, B. A.; O’Neil, D. M.; Bidlingmaier, M.; Tomlinson, J. W.; Hassan-Smith, Z. K.; Rees, D. A.; Adolf, C.; Hahner, S.; Quinkler, M.; Dekkers, T.; Deinum, J.; Biehl, M.; Keevil, B. G.; Shackleton, C. H. L.; Deeks, J. J.; Walch, A. K.; Beuschlein, F.; Reincke, M., Steroid metabolome analysis reveals prevalent glucocorticoid excess in primary aldosteronism. JCI Insight 2017, 2 (8).
44. Gong, S.; Tetti, M.; Reincke, M.; Williams, T. A., Primary Aldosteronism: Metabolic Reprogramming and the Pathogenesis of Aldosterone-Producing Adenomas. Cancers 2021, 13 (15), 3716.
45. Wang, W.-C.; Huang, C.-H.; Chung, H.-H.; Chen, P.-L.; Hu, F.-R.; Yang, C.-H.; Yang, C.-M.; Lin, C.-W.; Hsu, C.-C.; Chen, T.-C., Metabolomics facilitates differential diagnosis in common inherited retinal degenerations by exploring their profiles of serum metabolites. Nat. Commun. 2024, 15 (1), 3562.
46. Ruttkies, C.; Schymanski, E. L.; Wolf, S.; Hollender, J.; Neumann, S., MetFrag relaunched: incorporating strategies beyond in silico fragmentation. J Cheminform 2016, 8 (1), 3.
47. Kumar, K.; Fornace, A. J.; Suman, S., 8-OxodG: A Potential Biomarker for Chronic Oxidative Stress Induced by High-LET Radiation. DNA 2024, 4 (3), 221-238.
48. Merrill, A. H., Don’t Be Surprised When These Surprise You: Some Infrequently Studied Sphingoid Bases, Metabolites, and Factors That Should Be Kept in Mind During Sphingolipidomic Studies. Int. J. Mol. Sci. 2025, 26 (2), 650.
49. Urbanowicz, T.; Gutaj, P.; Plewa, S.; Olasińska-Wiśniewska, A.; Spasenenko, I.; Krasińska, B.; Tykarski, A.; Filipiak, K. J.; Pakuła-Iwańska, M.; Krasiński, Z.; Grywalska, E.; Wender-Ożegowska, E.; Jemielity, M.; Matysiak, J., The Lower Concentration of Plasma Acetyl-Carnitine in Epicardial Artery Disease—A Preliminary Report. Int. J. Mol. Sci. 2025, 26 (3), 1318.
50. Tardelli, M., Monoacylglycerol lipase reprograms lipid precursors signaling in liver disease. World J Gastroenterol 2020, 26 (25), 3577-3585.
51. Zhao, S.; Mugabo, Y.; Iglesias, J.; Xie, L.; Delghingaro-Augusto, V.; Lussier, R.; Peyot, M.-L.; Joly, E.; Taïb, B.; Davis, Matthew A.; Brown, J. M.; Abousalham, A.; Gaisano, H.; Madiraju, S. R. M.; Prentki, M., α/β-Hydrolase Domain-6-Accessible Monoacylglycerol Controls Glucose-Stimulated Insulin Secretion. Cell Metab. 2014, 19 (6), 993-1007.
52. Tang, W. H. W.; Wang, Z.; Levison, B. S.; Koeth, R. A.; Britt, E. B.; Fu, X.; Wu, Y.; Hazen, S. L., Intestinal Microbial Metabolism of Phosphatidylcholine and Cardiovascular Risk. N. Engl. J. Med. 2013, 368 (17), 1575-1584.
53. Li, T.; Chiang, J. Y., Regulation of bile acid and cholesterol metabolism by PPARs. PPAR Res 2009, 2009, 501739.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101032-
dc.description.abstract目前多數的人體病理組織樣本皆採用福馬林固定石蠟包埋方式進行保存,其檢體具備長期穩定性,並廣泛應用於臨床與研究領域。而蛋白質體學在探討生物系統中扮演關鍵角色,因此蛋白質在福馬林固定石蠟包埋組織中的空間分布資訊,更可提供細胞功能與疾病機制的重要見解。質譜影像技術是一種能夠視覺化組織中蛋白質分布的強大工具。傳統上,以基質輔助雷射脫附游離飛行時間質譜為主流,但近年來,由於大氣游離技術如脫附電噴灑游離法具備免基質、樣本前處理需求低等優勢,亦逐漸受到重視。
然而,目前多數利用脫附電噴灑游離法進行蛋白質的質譜影像研究仍著重於新鮮冷凍組織中直接偵測完整蛋白,該方法不僅蛋白偵測數量有限,亦需低溫保存樣本,不利於長期應用。因此,本研究目標為建構一套整合脫附電噴灑游離法與組織內胰蛋白酶消化之質譜影像平台,以應用於福馬林固定石蠟包埋組織中蛋白質空間分布分析,提升可偵測蛋白的數量。
本研究首先以小鼠腦組織進行方法優化,接著應用於犬黑色素細胞瘤組織進行方法驗證。結果共鑑定出79條胜肽、對應61種蛋白,顯著高於先前報導之脫附電噴灑游離質譜影像的研究成果。犬腫瘤組織中觀察到的蛋白分布亦與既有文獻一致。綜合結果顯示,本研究成功建立一套結合胰蛋白酶消化與脫附電噴灑游離質譜影像進行福馬林固定石蠟包埋組織中蛋白質空間的分析平台,展現其於臨床保存樣本中進行蛋白質體學研究的高度潛力。
原發性高醛固酮症是因腎上腺過度分泌醛固酮所致的次發性高血壓,使腎臟大量再吸收鈉離子及水分,導致血液總量增加而使血壓升高,若能針對腎上腺問題進行治療,即能根治高血壓,因此診斷原發性高醛固酮症便十分重要。現今臨床上以周邊血液中的醛固酮與腎素濃度比值作為初步診斷指標。根據台灣醫療標準,當高血壓患者以藥物控制不佳且醛固酮與腎素濃度比值的數值大於35,即可能罹患原發性高醛固酮症,必須進一步接受確認性檢查,以決定後續的治療方式。
然而,此診斷方法存在諸多限制,例如醛固酮與腎素濃度比值的篩檢具有極高的偽陽性率,而後續的確認性試驗耗時且對於高血壓病人具有健康風險。因此,開發一套更簡便且準確的診斷方法相當重要。本研究旨在利用液相層析質譜儀針對原發性高醛固酮症患者進行非標靶代謝體分析,並結合統計與機器學習模型,篩選出能用於疾病診斷的關鍵代謝分子。
本研究收集163位原發性高血壓及156位原發性高醛固酮症患者的周邊血液樣本,經萃取流程後,以液相層析質譜儀分析其代謝體特徵,並利用統計方法及機器學習模型進行分析。結果顯示,兩組患者的代謝體特徵可有效區分,並透過統計方法找出多個具顯著差異的代謝物。此外,透過機器學習篩選出19個具診斷潛力的代謝分子,並在測試集中達到91.8%的正確率,證明本方法具有良好的診斷效能。本研究結果顯示,結合非標靶代謝體分析與機器學習可作為原發性高醛固酮症診斷之新穎方法,未來具高度臨床應用潛力,可望提高診斷的準確性與效率。
zh_TW
dc.description.abstractThe majority of human pathological specimens are preserved using the formalin-fixed, paraffin-embedded (FFPE) method due to its long-term stability and wide applicability in clinical and research settings. Proteomics plays a crucial role in understanding biological systems, and mapping the spatial distribution of proteins in FFPE tissues can provide valuable insights into cellular function and disease mechanisms. Mass spectrometry imaging (MSI) is a powerful technique for visualizing protein localization within tissue sections. While matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) has been widely used for protein MSI, ambient ionization techniques such as desorption electrospray ionization (DESI) are gaining more application due to their minimal sample preparation and matrix-free operation. However, most DESI-MSI studies have focused on intact proteins in fresh-frozen tissues, which limits protein coverage and requires stringent storage conditions. To overcome these challenges, we established a DESI-MSI platform for spatial proteomic analysis of FFPE tissues by incorporating on-tissue trypsin digestion to enhance protein detectability.
We optimized the DESI parameters using FFPE mouse brain tissue and then validated the method on FFPE dog melanocytoma tissue. As a result, we identified 79 peptides corresponding to 61 proteins in mouse brain tissue—exceeding the number reported in previous DESI-MSI studies. The protein distribution patterns observed in melanocytoma tissue were consistent with previously reported biomarkers. This work establishes a robust platform for protein imaging in FFPE tissues using DESI-MSI combined with trypsin digestion, expanding the potential for spatial proteomic analysis in archived clinical specimens.
Primary aldosteronism (PA) is a form of secondary hypertension characterized by excessive aldosterone secretion from the adrenal glands, resulting in increased sodium and water reabsorption in the kidneys, thereby elevating blood volume and blood pressure. Clinically, the aldosterone-to-renin ratio (ARR) measured from peripheral blood samples is commonly used as a preliminary diagnostic indicator. According to Taiwanese clinical guidelines, patients whose blood pressure remains uncontrolled despite medication and have an ARR greater than 35 are suspected of having PA and require confirmatory diagnostic tests to determine further therapeutic interventions.
However, the current diagnostic approach has significant limitations, including a high false-positive rate associated with ARR screening, along with time-consuming and potentially risky confirmatory procedures. Therefore, this study aims to utilize untargeted metabolomic analysis through liquid chromatography-mass spectrometry (LC-MS) combined with statistical analyses and machine learning algorithms to identify key metabolites for diagnosing PA.
We collected plasma samples from 163 patients with essential hypertension and 156 patients diagnosed with primary aldosteronism. After extraction, metabolomic profiles were obtained using LC-MS, and data were analyzed using statistical and machine learning techniques. The results demonstrated clear differentiation between the two groups based on their metabolomic profiles, with several significantly different metabolites identified. Furthermore, machine learning analysis selected 19 metabolites with significant diagnostic potential, achieving an accuracy 91.8% in the testing set. These findings suggest that untargeted metabolomic analysis combined with machine learning represents a promising approach for improving the diagnosis of primary aldosteronism, potentially enhancing clinical efficiency and accuracy in practice.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:32:42Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-11-26T16:32:42Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iv
Abstract vi
目次 viii
圖次 xi
表次 xiii
Chapter 1 Protein Distribution in Formalin-Fixed Paraffin-Embedded Tissues Using Desorption Electrospray Ionization Mass Spectrometry Imaging with Integrated Trypsin Digestion 1
1-1 Introduction 1
1-1-1 Introduction of Mass Spectrometry Imaging 1
1-1-2 Distributions of Proteins on FFPE Tissues 2
1-1-3 Current Challenges of Protein MSI on FFPE Yissues 2
1-1-4 Study Aim 3
1-2 Material and Methods 5
1-2-1 Material and Reagent 5
1-2-2 FFPE Tissue Collection 6
1-2-3 Dewaxing FFPE Tissues 6
1-2-4 Antigen Retrieval 6
1-2-5 On-Tissue Tryptic Digestion 6
1-2-6 DESI-MSI Setup 8
1-2-7 Identification of Peptide Sequences 9
1-2-8 MSI Acquirement 9
1-3 Results 10
1-3-1 Optimization of DESI MSI Parameters 10
1-3-2 FFPE Mouse Brain MSI 16
1-3-3 FFPE Melanocytoma Tissue 18
1-4 Conclusion and Discussion 20
1-5 Appendix 21
1-6 Reference 26
Chapter 2 Untargeted Metabolomic Analysis of Primary Aldosteronism for Diagnosis Using Liquid Chromatography-Mass Spectrometry with Machine Learning 30
2-1 Introduction 30
2-1-1 Untargeted Metabolomics Analysis with Liquid Chromatography-Mass Spectrometry 30
2-1-2 Introduction of Machine Learning Algorithm 31
2-1-3 Introduction of Primary Aldosteronism 34
2-1-4 Study Aim 36
2-2 Materials and Method 37
2-3-1 Materials and Reagents 37
2-3-2 Plasma Collection 37
2-3-3 Plasma Extraction 38
2-3-4 Untargeted Metabolomic Analysis with Liquid Chromatography-Mass Spectrometry 39
2-3-5 Data Pre-processing 42
2-3-6 Statistical Analysis 43
2-3-7 Machine Learning model construction 43
2-3-8 Identification of Features Selected by ML Model for Classifying PA and EH 45
2-3 Results 46
2-3-1 Physiological Indicators and Medication Analysis 46
2-3-2 Statistical Analysis Results 49
2-3-3 Machine Learning Model for Classificating PA and EH Construction 51
2-3-4 The features selected by machine learning model 53
2-4 Conclusion and Discussion 59
2-5 Reference 61
-
dc.language.isoen-
dc.subject福馬林固定石蠟包埋組織-
dc.subject蛋白質-
dc.subject脫附電噴灑游離法-
dc.subject質譜影像-
dc.subject原發性高醛固酮症-
dc.subject高血壓-
dc.subject非標靶代謝體分析-
dc.subject液相層析質譜儀-
dc.subject機器學習模型-
dc.subjectFormalin-Fixed-
dc.subjectParaffin-Embedded Tissues-
dc.subjectProteomics-
dc.subjectDesorption Electrospray Ionization-
dc.subjectMass Spectrometry Imaging-
dc.subjectPrimary aldosteronism-
dc.subjectHypertension-
dc.subjectUntargeted metabolomics-
dc.subjectLiquid Chromatography-Mass Spectrometry-
dc.subjectMachine Learning Algorithms-
dc.title利用脫附型電噴灑游離法結合胰蛋白消化開發蛋白質質譜影像平台 利用液相層析質譜法結合機器學習進行原發性醛固酮增多症之非標的代謝體分析以進行輔助診斷zh_TW
dc.titleProtein Distribution in Formalin-Fixed Paraffin-Embedded Tissues Using Desorption Electrospray Ionization Mass Spectrometry Imaging with Integrated Trypsin Digestion Untargeted Metabolomic Analysis of Primary Aldosteronism for Diagnosis by Liquid Chromatography-Mass Spectrometry Coupled with Machine Learningen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee許邦弘;張惠雯;張晉誠zh_TW
dc.contributor.oralexamcommitteePang-Hung Hsu;Hui-Wen Chang;Chin-Chen Changen
dc.subject.keyword福馬林固定石蠟包埋組織,蛋白質脫附電噴灑游離法質譜影像原發性高醛固酮症高血壓非標靶代謝體分析液相層析質譜儀機器學習模型zh_TW
dc.subject.keywordFormalin-Fixed,Paraffin-Embedded TissuesProteomicsDesorption Electrospray IonizationMass Spectrometry ImagingPrimary aldosteronismHypertensionUntargeted metabolomicsLiquid Chromatography-Mass SpectrometryMachine Learning Algorithmsen
dc.relation.page65-
dc.identifier.doi10.6342/NTU202504418-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-21-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
dc.date.embargo-lift2030-08-20-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf
  未授權公開取用
4.83 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved