Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101030
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor劉浩澧zh_TW
dc.contributor.advisorHao-Li Liuen
dc.contributor.author譚富銘zh_TW
dc.contributor.authorFu-Ming Tanen
dc.date.accessioned2025-11-26T16:32:14Z-
dc.date.available2025-11-27-
dc.date.copyright2025-11-26-
dc.date.issued2025-
dc.date.submitted2025-09-15-
dc.identifier.citation[1] National Institute of Biomedical Imaging and Bioengineering (NIBIB), “Ultrasound —science topics.” https://www.nibib.nih.gov/science-education/ science-topics/ultrasound, n.d. Accessed: 2025-08-18.
[2] Y.Tsehay, Y. Zeng, C. Weber-Levine, T. Awosika, M.Kerensky, A.M.Hersh, Z.Ou, K. Jiang, M. Bhimreddy, S. J. Bauer, J. N. Theodore, V. M. Quiroz, I. Suk, S. Alomari, J. Sun, S. Tong, N.Thakor, J.C.Doloff, N.Theodore, andA.Manbachi, “Low intensity pulsed ultrasound neuromodulation of a rodent's spinal cord suppresses motor evoked potentials,” IEEE Transactions on Biomedical Engineering, vol. 70, p. 1992–2001, July 2023.
[3] S. Vaezy, X. Shi, R. W. Martin, E. Chi, P. I. Nelson, M. R. Bailey, and L. A. Crum,“Real-time visualization of high-intensity focused ultrasound treatment using ultrasound imaging,” Ultrasound in Medicine Biology, vol. 27, no. 1, pp. 33–42, 2001.
[4] D. Liu and E. Ebbini, “Real-time 2-d temperature imaging using ultrasound,” IEEE Transactions on Biomedical Engineering, vol. 57, p. 12–16, Jan. 2010.
[5] S. Pichardo, A. Gelet, L. Curiel, S. Chesnais, and J.-Y. Chapelon, “New integrated imaging high intensity focused ultrasound probe for transrectal prostate cancer treatment,” Ultrasound in Medicine & Biology, vol. 34, no. 7, pp. 1105–1116, 2008. Example of an integrated (perforated) therapeutic probe with central imaging aperture.
[6] O. D. Bijlstra, A. Broersen, T. T. M. Oosterveer, R. A. Faber, F. B. Achterberg, R. Hurks, M. C. Burgmans, J. Dijkstra, J. S. D. Mieog, A. L. Vahrmeijer, and R.-J. Swijnenburg, “Integration of three-dimensional liver models in a multimodal image guided robotic liver surgery cockpit,” Life, vol. 12, p. 667, Apr. 2022.
[7] L. Ma, Z. Zhao, F. Chen, B. Zhang, L. Fu, and H. Liao, “Augmented reality surgical navigation with ultrasound-assisted registration for pedicle screw placement: a pilot study,” International Journal of Computer Assisted Radiology and Surgery, vol. 12, p. 2205–2215, Aug. 2017.
[8] Microsoft, “Hololens 2,” 2019. Accessed: 2025-08-12.
[9] S. Community, “Coordinate systems.” https://www.slicer.org/wiki/Coordinate_systems, 2023. Accessed: 2025-08-13.
[10] H.Jang, J.-Y. Lee, D.-H. Lee, K. WonHong, andJ.Hwang, “Currentandfuture clinical applications of high-intensity focused ultrasound (hifu) for pancreatic cancer,”Gut and liver, vol. 4 Suppl 1, pp. S57–61, 09 2010.
[11] S. K. Hong and H. Lee, “Outcomes of partial gland ablation using high intensity focused ultrasound for prostate cancer,” Urologic Oncology: Seminars and Original Investigations, vol. 40, no. 5, pp. 193.e1–193.e5, 2022.
[12] S. Bae, K. Liu, A. N. Pouliopoulos, R. Ji, S. Jiménez-Gambín, O. Yousefian, A. R. Kline-Schoder, A. J. Batts, F. N. Tsitsos, D. Kokossis, A. Mintz, L. S. Honig, and E. E. Konofagou, “Transcranial blood–brain barrier opening in alzheimer’s disease patients using a portable focused ultrasound system with real-time 2-d cavitation mapping,” medRxiv, 2024.
[13] Y.-T. Lin, K.-T. Chen, C.-C. Hsu, H.-L. Liu, Y.-T. Jiang, C.-W. Ho, J.-C. Chen, H.Y. Li, C.-C. Weng, and P.-H. Hsu, “Stimulation of dorsal root ganglion with low intensity focused ultrasound ameliorates pain responses through the gaba inhibitory pathway,” Life Sciences, vol. 361, p. 123323, Jan. 2025.
[14] A. Hellman, T. Maietta, A. Clum, K. Byraju, N. Raviv, M. D. Staudt, E. Jeannotte, G. Ghoshal, D. Shin, P. Neubauer, E. Williams, T. Heffter, C. Burdette, J. Qian, J. Nalwalk, and J. G. Pilitsis, “Pilot study on the effects of low intensity focused ultrasound in a swine modelofneuropathicpain,” JournalofNeurosurgery, vol. 135, p. 1508–1515, Nov. 2021.
[15] F. A. Jolesz, “Mri-guided focused ultrasound surgery,” Annual Review of Medicine, vol. 60, p. 417–430, Feb. 2009.
[16] H. Odéen, N. Todd, M. Diakite, E. Minalga, A. Payne, and D. L. Parker, “Sampling strategies for subsampled segmented epi prf thermometry in mr guidedhighintensity focused ultrasound,” Medical Physics, vol. 41, Aug. 2014.
[17] C. R. Jensen, R. W. Ritchie, M. Gyöngy, J. R. T. Collin, T. Leslie, and C.-C. Coussios, “Spatiotemporal monitoring of high-intensity focused ultrasound therapy with passive acoustic mapping,” Radiology, vol. 262, p. 252–261, Jan. 2012.
[18] J. D. Poorter, “Noninvasive mri thermometry with the proton resonance frequency method: Study of susceptibility effects,” Magnetic Resonance in Medicine, vol. 34, p. 359–367, Sept. 1995.
[19] M.A.Lewis, R. M.Staruch, and R. Chopra, “Thermometry and ablation monitoring with ultrasound,” International Journal of Hyperthermia, vol. 31, p. 163–181, Feb. 2015.
[20] A. R. Casper, A. Haritonova, D. Liu, J. Ballard, and E. S. Ebbini, “Real-time implementation of a dual-mode ultrasound array system: in vivo results,” in Proceedings of the IEEE International Ultrasonics Symposium (IUS), pp. 2164–2167, 2012. Describes DMUA systems that use the same elements for imaging and therapy and discusses real-time implementation challenges.
[21] 傅駿,“雙模聚焦超音波用於透顱被動式成像技術開發,”Master’sthesis,國立臺灣大學,Jan2023.
[22] 陳品如, “被動影像導引聚焦超音波治療系統,”Master’sthesis,國立臺灣大學, Jan 2024.
[23] M. Benmahdjoub, W. J. Niessen, E. B. Wolvius, and T. v. Walsum, “Multimodal markers for technology-independent integration of augmented reality devices and surgical navigation systems,” Virtual Reality, vol. 26, p. 1637–1650, May 2022.
[24] S.-Y. Chiou, T.-M. Liu, and H.-L. Liu, “Multi-user surgical navigation platform based on mixed reality,” IEEE Access, vol. 12, pp. 162522–162535, 2024.
[25] S. Zhang, K. Zheng, and S. Huaiyuan, “Analysis of the occlusion interference problem in target tracking,” Mathematical Problems in Engineering, vol. 2022, p. 1–10,Sept. 2022.
[26] M.Lavik,“Unityvolumerendering.”https://github.com/mlavik1/UnityVolumeRendering, 2023. Accessed: 2025-08-13.
[27] J.Wasserthal,“Totalsegmentator.”https://github.com/wasserth/TotalSegmentator, 2023. Accessed: 2025-08-07.
[28] P. de Witte, “Unitymainthreaddispatcher.” https://github.com/PimDeWitte/UnityMainThreadDispatcher.git, 2024. Accessed: 2025-08-10.
[29] P. Inc., “Vuforia engine.” https://developer.vuforia.com/, 2023. Accessed:2025-08-08.
[30] 陳均懋,“基於現場可程式化邏輯閘陣列控制之高功率驅動系統設計應用於高強度聚焦式超音波,”Master’sthesis, 國立臺灣大學,Jan2023.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101030-
dc.description.abstract聚焦式超音波治療以其高選擇性與非侵入性特性,成為重要的無創醫療技術。然而,現行影像導引多以平面螢幕呈現影像,醫師須在病患與螢幕間頻繁切換視線,增加操作負擔與配準誤差。本研究提出一套基於混合實境(Mixed Reality, MR)的低能量聚焦式超音波(LIFU)脊椎神經調控導引平台,旨在提升導引精度並簡化臨床流程。系統結合基於聲場模擬與商用診斷探頭整合所設計之共軸一體化雙模探頭,低延遲即時影像擷取與串流至MicrosoftHoloLens2之虛實疊合顯示,以及以Kabsch註冊演算法為核心之多模態配準。經由水槽聲場量測驗證,所設計探頭之實測聲場與模擬結果高度一致;在水箱導引實驗中,本平台達到90%的導引成功率,且HoloLens2端畫面更新率可維持在50–60fps,提供流暢的操作體驗。研究結果顯示,本平台於成像—治療配準、即時互動與操作便利性方面具有可行性,為LIFU應用於脊椎神經調控提供一條具臨床潛力的新方向。zh_TW
dc.description.abstractFocused ultrasound (FUS) therapy, with its high selectivity and noninvasive nature, has emerged as a significant technique in modern noninvasive medicine. However, conventional image-guided systems typically display imaging information on flat monitors, forcing physicians to frequently shift their gaze between the patient and the screen, which increases cognitive load and introduces potential registration errors. This study proposes a mixed reality (MR)-based low-intensity focused ultrasound (LIFU) spinal neuromodulation guidance platform, aiming to enhance targeting accuracy while simplifying clinical workflow. The system integrates a co-axial dual-mode probe designed through acoustic field simulation and commercial diagnostic ultrasound integration, a low-latency real-time image acquisition and streaming pipeline for holographic visualization on Microsoft HoloLens 2, and a multimodal registration framework based on the Kabsch algorithm. Acoustic field measurements demonstrated strong consistency between experimental results and simulations. In water-tank guidance experiments, the proposed platform achieved a 90% targeting success rate, while maintaining a frame refresh rate of 50–60 fps on the HoloLens 2, ensuring a smooth interactive experience. These results demonstrate the feasibility of the proposed platform in improving imaging–therapy registration, real-time interaction, and operational efficiency, offering a promising direction for applying LIFU in spinal neuromodulation.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:32:14Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-11-26T16:32:14Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書i
致謝ii
摘要iii
Abstract iv
目次v
圖次viii
表次xi
第一章緒論1
1.1聚焦式超音波. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2聚焦式超音波監測技術回顧. . . . . . . . . . . . . . . . . . . . . . 3
1.3延展實境應用於手術導引回顧. . . . . . . . . . . . . . . . . . . . . 7
1.4研究目的及貢獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
第二章方法與理論11
2.1應用場景介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2系統總覽. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1硬體裝置. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2系統軟體架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3混合實境虛擬物建構方法. . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1基於DICOM資訊之虛擬CT影像建構. . . . . . . . . . . . . . 17
2.3.2三維虛擬脊椎建模. . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.3超音波影像物件建構. . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.3.1影像擷取與處理. . . . . . . . . . . . . . . . . . . . 21
2.3.3.2基於UDP網路通訊之影像傳輸. . . . . . . . . . . . 22
2.3.3.3 Unity超音波物件渲染方法. . . . . . . . . . . . . . 24
2.4虛實物件疊合方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.1多模態影像座標整合. . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.2基於Vuforia之二維標記姿態追蹤. . . . . . . . . . . . . . . . . 26
2.4.3雙平面超音波影像的三維標註方法. . . . . . . . . . . . . . . . 27
2.4.4 Kabsch物件註冊演算法. . . . . . . . . . . . . . . . . . . . . . . 28
2.5雙模超音波探頭設計. . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5.1基於雷利積分模型之探頭聲場模擬. . . . . . . . . . . . . . . . 31
2.5.2機構設計方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5.3阻抗匹配. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.6系統介面設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.7實驗架設. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.7.1聚焦式超音波聲場實驗. . . . . . . . . . . . . . . . . . . . . . . 37
2.7.2混合實境導引平台精準度量測. . . . . . . . . . . . . . . . . . . 38
2.7.3裝置效能之評估. . . . . . . . . . . . . . . . . . . . . . . . . . . 40
第三章實驗設置與結果41
3.1導引結果呈現. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2聚焦探頭聲場模擬. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.1基於擺放角度之模擬結果. . . . . . . . . . . . . . . . . . . . . . 43
3.2.2基於擺放間距之模擬結果. . . . . . . . . . . . . . . . . . . . . . 46
3.3聚焦超音波聲場實驗. . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.1阻抗匹配結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.2水域場聲場量測結果. . . . . . . . . . . . . . . . . . . . . . . . 49
3.4混合實境系統物件疊合. . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.1 Vuforia超音波影像校正誤差. . . . . . . . . . . . . . . . . . . . 51
3.4.2脊椎物件註冊精準度. . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.3系統導引實驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5系統效能評估. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
第四章結論與未來展望56
4.1結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
參考文獻58
附錄A—實作演示影片63
-
dc.language.isozh_TW-
dc.subject混合實境-
dc.subject超音波手術導引-
dc.subjectHololens 2-
dc.subject標記追蹤-
dc.subjectMixed Reality-
dc.subjectUltrasound Surgical Navigation-
dc.subjectHololens 2-
dc.subjectMarker Tracking-
dc.title基於混合實境導引之低能量聚焦式超音波脊椎神經調控系統zh_TW
dc.titleMixed Reality-Guided Multimodal Imaging Low-Intensity Focused Ultrasound for Spinal Neuromodulation Systemen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳科廷;龍震宇zh_TW
dc.contributor.oralexamcommitteeKo-Ting Chen;Chen-Yu Lungen
dc.subject.keyword混合實境,超音波手術導引Hololens 2標記追蹤zh_TW
dc.subject.keywordMixed Reality,Ultrasound Surgical NavigationHololens 2Marker Trackingen
dc.relation.page63-
dc.identifier.doi10.6342/NTU202504474-
dc.rights.note未授權-
dc.date.accepted2025-09-15-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電機工程學系-
dc.date.embargo-liftN/A-
Appears in Collections:電機工程學系

Files in This Item:
File SizeFormat 
ntu-114-1.pdf
  Restricted Access
17.24 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved