Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101011
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor簡韶逸zh_TW
dc.contributor.advisorShao-Yi Chienen
dc.contributor.author范詠為zh_TW
dc.contributor.authorYung-Wei Fanen
dc.date.accessioned2025-11-26T16:27:47Z-
dc.date.available2025-11-27-
dc.date.copyright2025-11-26-
dc.date.issued2025-
dc.date.submitted2025-09-16-
dc.identifier.citationH. Akada, J. Wang, S. Shimada, M. Takahashi, C. Theobalt, and V. Golyanik, “Unrealego: A new dataset for robust egocentric 3d human motion capture,” in European Conference on Computer Vision. Springer, 2022, pp. 1–17.
D. Tome, P. Peluse, L. Agapito, and H. Badino, “xr-egopose: Egocentric 3d human pose from an hmd camera,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 7728–7738.
H. Rhodin, C. Richardt, D. Casas, E. Insafutdinov, M. Shafiei, H.-P. Seidel, B. Schiele, and C. Theobalt, “Egocap: egocentric marker-less motion capture with two fisheye cameras,” ACM Transactions on Graphics (TOG), vol. 35, no. 6, pp. 1–11, 2016.
C. Yang, A. Tkach, S. Hampali, L. Zhang, E. J. Crowley, and C. Keskin, “Egoposeformer: A simple baseline for stereo egocentric 3d human pose estimation,” in European conference on computer vision. Springer, 2024, pp. 401–417.
I. O. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai, T. Unterthiner, J. Yung, A. Steiner, D. Keysers, J. Uszkoreit et al., “Mlp-mixer: An all-mlp architecture for vision,” Advances in neural information processing systems, vol. 34, pp. 24 261–24 272, 2021.
Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. March, and V. Lempitsky, “Domain-adversarial training of neural networks,” Journal of machine learning research, vol. 17, no. 59, pp. 1–35, 2016.
H. Akada, J. Wang, V. Golyanik, and C. Theobalt, “3d human pose perception from egocentric stereo videos,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024, pp. 767–776.
“Peak performance of dpuczdx8g.” [Online]. Available: https://docs.amd.com/r/4.0-English/pg338-dpu/DPUCZDX8G-Peak-Performance
“Peak performance of nvidia jetson platforms.” [Online]. Available: https://developer.nvidia.com/embedded/jetson-modules
“Peak performance of apple a17 pro.” [Online]. Available: https://en.wikipedia.org/wiki/Apple A17
“Peak performance of apple m4.” [Online]. Available: https://en.wikipedia.org/wiki/Apple M4
“Vitis-ai documentation.” [Online]. Available: https://docs.amd.com/r/2.5-English/ug1414-vitis-ai/
“Xilinx dpu documentation.” [Online]. Available: https://docs.amd.com/r/4.0-English/pg338-dpu/
D. Zhao, Z. Wei, J. Mahmud, and J.-M. Frahm, “Egoglass: Egocentric-view human pose estimation from an eyeglass frame,” in 2021 International Conference on 3D Vision (3DV). IEEE, 2021, pp. 32–41.
T. Kang, K. Lee, J. Zhang, and Y. Lee, “Ego3dpose: Capturing 3d cues from binocular egocentric views,” in SIGGRAPH Asia 2023 Conference Papers, 2023, pp. 1–10.
“Vicon motion capture system.” [Online]. Available: https://www.vicon.com/
Y. Liu, J. Yang, X. Gu, Y. Chen, Y. Guo, and G.-Z. Yang, “Egofish3d: Egocentric 3d pose estimation from a fisheye camera via self-supervised learning,” IEEE Transactions on Multimedia, vol. 25, pp. 8880–8891, 2023.
J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, and A. Blake, “Real-time human pose recognition in parts from single depth images,” in CVPR 2011. Ieee, 2011, pp. 1297–1304.
C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu, “Human3. 6m: Large scale datasets and predictive methods for 3d human sensing in natural environments,” IEEE transactions on pattern analysis and machine intelligence, vol. 36, no. 7, pp. 1325–1339, 2013.
M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele, “2d human pose estimation: New benchmark and state of the art analysis,” in Proceedings of the IEEE Conference on computer Vision and Pattern Recognition, 2014, pp. 3686–3693.
S. Li and A. B. Chan, “3d human pose estimation from monocular images with deep convolutional neural network,” in Computer Vision–ACCV 2014: 12th Asian Conference on Computer Vision, Singapore, Singapore, November 1-5, 2014, Revised Selected Papers, Part II 12. Springer, 2015, pp. 332–347.
S. Park, J. Hwang, and N. Kwak, “3d human pose estimation using convolutional neural networks with 2d pose information,” in Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part III 14. Springer, 2016, pp. 156–169.
G. Pavlakos, X. Zhou, K. G. Derpanis, and K. Daniilidis, “Coarse-to-fine volumetric prediction for single-image 3d human pose,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 7025–7034.
D. Mehta, H. Rhodin, D. Casas, P. Fua, O. Sotnychenko, W. Xu, and C. Theobalt, “Monocular 3d human pose estimation in the wild using improved cnn supervision,” in 2017 international conference on 3D vision (3DV). IEEE, 2017, pp. 506–516.
J. Martinez, R. Hossain, J. Romero, and J. J. Little, “A simple yet effective baseline for 3d human pose estimation,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 2640–2649.
F. Moreno-Noguer, “3d human pose estimation from a single image via distance matrix regression,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 2823–2832.
G. Varol, J. Romero, X. Martin, N. Mahmood, M. J. Black, I. Laptev, and C. Schmid, “Learning from synthetic humans,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 109–117.
M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J. Black, “Smpl: A skinned multi-person linear model,” in Seminal Graphics Papers: Pushing the Boundaries, Volume 2, 2023, pp. 851–866.
A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for human pose estimation,” in European conference on computer vision. Springer, 2016, pp. 483–499.
Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2d pose estimation using part affinity fields,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 7291–7299.
S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh, “Convolutional pose machines,” in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2016, pp. 4724–4732.
X. Zhou, Q. Huang, X. Sun, X. Xue, and Y. Wei, “Towards 3d human pose estimation in the wild: a weakly-supervised approach,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 398–407.
H.-Y. Tung, H.-W. Tung, E. Yumer, and K. Fragkiadaki, “Self-supervised learning of motion capture,” Advances in neural information processing systems, vol. 30, 2017.
H. Rhodin, M. Salzmann, and P. Fua, “Unsupervised geometry-aware representation for 3d human pose estimation,” in Proceedings of the European conference on computer vision (ECCV), 2018, pp. 750–767.
B. Wandt and B. Rosenhahn, “Repnet: Weakly supervised training of an adversarial reprojection network for 3d human pose estimation,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 7782–7791.
I. Habibie, W. Xu, D. Mehta, G. Pons-Moll, and C. Theobalt, “In the wild human pose estimation using explicit 2d features and intermediate 3d representations,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 10 905–10 914.
C.-H. Chen, A. Tyagi, A. Agrawal, D. Drover, R. Mv, S. Stojanov, and J. M. Rehg, “Unsupervised 3d pose estimation with geometric self-supervision,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 5714–5724.
C. Zheng, S. Zhu, M. Mendieta, T. Yang, C. Chen, and Z. Ding, “3d human pose estimation with spatial and temporal transformers,” in Proceedings of the IEEE/CVF international conference on computer vision, 2021, pp. 11 656–11 665.
D. Shi, X. Wei, L. Li, Y. Ren, and W. Tan, “End-to-end multi-person pose estimation with transformers,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 11 069–11 078.
Y. Xu, J. Zhang, Q. Zhang, and D. Tao, “Vitpose: Simple vision transformer baselines for human pose estimation,” Advances in Neural Information Processing Systems, vol. 35, pp. 38 571–38 584, 2022.
Q. Zhao, C. Zheng, M. Liu, P. Wang, and C. Chen, “Poseformerv2: Exploring frequency domain for efficient and robust 3d human pose estimation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 8877–8886.
Y. Xu, J. Zhang, Q. Zhang, and D. Tao, “Vitpose++: Vision transformer for generic body pose estimation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.
G. Rogez, J. S. Supancic, and D. Ramanan, “First-person pose recognition using egocentric workspaces,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 4325–4333.
H. Yonemoto, K. Murasaki, T. Osawa, K. Sudo, J. Shimamura, and Y. Taniguchi, “Egocentric articulated pose tracking for action recognition,” in 2015 14th IAPR International Conference on Machine Vision Applications (MVA). IEEE, 2015, pp. 98–101.
T. Shiratori, H. S. Park, L. Sigal, Y. Sheikh, and J. K. Hodgins, “Motion capture from body-mounted cameras,” in ACM SIGGRAPH 2011 papers, 2011, pp. 1–10.
H. Jiang and K. Grauman, “Seeing invisible poses: Estimating 3d body pose from egocentric video,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017, pp. 3501–3509.
T. Von Marcard, B. Rosenhahn, M. J. Black, and G. Pons-Moll, “Sparse inertial poser: Automatic 3d human pose estimation from sparse imus,” in Computer graphics forum, vol. 36, no. 2. Wiley Online Library, 2017, pp. 349–360.
K. Ahuja, V. Shen, C. M. Fang, N. Riopelle, A. Kong, and C. Harrison, “Controllerpose: inside-out body capture with vr controller cameras,” in Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, 2022, pp. 1–13.
W. Xu, A. Chatterjee, M. Zollhoefer, H. Rhodin, P. Fua, H.-P. Seidel, and C. Theobalt, “Mo 2 cap 2: Real-time mobile 3d motion capture with a cap-mounted fisheye camera,” IEEE transactions on visualization and computer graphics, vol. 25, no. 5, pp. 2093–2101, 2019.
D. Tome, T. Alldieck, P. Peluse, G. Pons-Moll, L. Agapito, H. Badino, and F. De la Torre, “Selfpose: 3d egocentric pose estimation from a headset mounted camera,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 6, pp. 6794–6806, 2020.
J. Wang, L. Liu, W. Xu, K. Sarkar, and C. Theobalt, “Estimating egocentric 3d human pose in global space,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 11 500–11 509.
J. Wang, L. Liu, W. Xu, K. Sarkar, D. Luvizon, and C. Theobalt, “Estimating egocentric 3d human pose in the wild with external weak supervision,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 13 157–13 166.
J. Wang, D. Luvizon, W. Xu, L. Liu, K. Sarkar, and C. Theobalt, “Scene-aware egocentric 3d human pose estimation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 13 031–13 040.
J. Wang, Z. Cao, D. Luvizon, L. Liu, K. Sarkar, D. Tang, T. Beeler, and C. Theobalt, “Egocentric whole-body motion capture with fisheyevit and diffusion-based motion refinement,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024, pp. 777–787.
Y. Liu, J. Yang, X. Gu, Y. Guo, and G.-Z. Yang, “Egohmr: Egocentric human mesh recovery via hierarchical latent diffusion model,” in 2023 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2023, pp. 9807–9813.
J. Park, K. Kaai, S. Hossain, N. Sumi, S. Rambhatla, and P. Fieguth, “Domain-guided spatio-temporal self-attention for egocentric 3d pose estimation,” in Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023, pp. 1837–1849.
“Unrealengine.” [Online]. Available: https://www.unrealengine.com/en-US
T. Kang and Y. Lee, “Attention-propagation network for egocentric heatmap to 3d pose lifting,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024, pp. 842–851.
N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, “End-to-end object detection with transformers,” in European conference on computer vision. Springer, 2020, pp. 213–229.
Y.-W. Cha, T. Price, Z. Wei, X. Lu, N. Rewkowski, R. Chabra, Z. Qin, H. Kim, Z. Su, Y. Liu et al., “Towards fully mobile 3d face, body, and environment capture using only head-worn cameras,” IEEE transactions on visualization and computer graphics, vol. 24, no. 11, pp. 2993–3004, 2018.
E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell, “Deep domain confusion: Maximizing for domain invariance,” arXiv preprint arXiv:1412.3474, 2014.
M. Long, Y. Cao, J. Wang, and M. Jordan, “Learning transferable features with deep adaptation networks,” in International conference on machine learning. PMLR, 2015, pp. 97–105.
B. Sun and K. Saenko, “Deep coral: Correlation alignment for deep domain adaptation,” in Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part III 14. Springer, 2016, pp. 443–450.
W. Yang, W. Ouyang, X. Wang, J. Ren, H. Li, and X. Wang, “3d human pose estimation in the wild by adversarial learning,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 5255–5264.
T.-Y. Lin, P. Doll´ ar, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature pyramid networks for object detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 2117–2125.
A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo et al., “Segment anything,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 4015–4026.
“Renderpeople.” [Online]. Available: https://renderpeople.com/
“Elp-usbfhd01m camera.” [Online]. Available: https://www.webcamerausb.com/elp-full-hd-usb20-webcam-uvc-2mpixels-hd-cmos-ov2710-vga-120fps-720p-60fps-1080p-30fps-usb-camera-module-with-fixed-focus-lens-changeable-p-80.html
H. Cuevas-Velasquez, C. Hewitt, S. Aliakbarian, and T. Baltruˇ saitis, “Simpleego: Predicting probabilistic body pose from egocentric cameras,” in 2024 International Conference on 3D Vision (3DV). IEEE, 2024, pp. 1446–1455.
“Xilinx zynq ultrascale+ mpsoc zcu104.” [Online]. Available: https://www.xilinx.com/products/boards-and-kits/zcu104.html
“Pynq.” [Online]. Available: https://www.pynq.io/
“Pynq github repository.” [Online]. Available: https://github.com/Xilinx/PYNQ.git
“Pynq documentation.” [Online]. Available: https://pynq.readthedocs.io/en/latest
“Vitis-ai github repository.” [Online]. Available: https://github.com/Xilinx/Vitis-AI.git
“Finn github repository.” [Online]. Available: https://github.com/Xilinx/finn.git
“Finn documentation.” [Online]. Available: https://finn.readthedocs.io/en/latest/
“Brevitas github repository.” [Online]. Available: https://github.com/Xilinx/brevitas.git
“Dpu-pynq github repository.” [Online]. Available: https://github.com/Xilinx/DPU-PYNQ.git
“Supported operators for the dpu.” [Online]. Available: https://docs.amd.com/r/2.5-English/ug1414-vitis-ai/Currently-Supported-Operators
“Multiple uvc cameras on linux.” [Online]. Available: https://www.thegoodpenguin.co.uk/blog/multiple-uvc-cameras-on-linux/
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101011-
dc.description.abstract自我視角三維人體姿態估計能夠在虛擬實境(VR)和擴增實境(AR)應用中提供自然且沉浸式的互動,無需依賴外部攝影機或手持控制器。這種方法為全身動作捕捉提供了一種靈活且便攜的解決方案,可無縫整合至頭戴式顯示裝置(HMD)與AR眼鏡。然而,現有方法面臨重大挑戰,包括魚眼鏡頭的變形、嚴重的自遮擋,以及視野範圍外的身體部位,這些問題都會降低姿態估計的準確度。此外,許多基於深度學習的方法需要高計算資源與複雜的模型架構設計,使其難以在邊緣設備上實時部署。
在本論文中,我們提出了一個適用於邊緣設備的實時雙目自我視角三維人體姿態估計系統。我們的系統引入了一個注意力引導特徵提取器(AFE),利用多尺度二維熱圖與人體遮罩注意力機制來增強特徵學習。此外,我們開發了一種立體關節混合器(SJM),這是一種簡單的多層感知機(MLP)模型,可整合雙目視覺特徵,同時保持計算效率與準確性。為了提升在真實環境中的適應性,我們引入無監督領域自適應(UDA),包括人體先驗約束與對抗性領域分類器訓練,以減少合成數據與真實世界數據之間的領域差距。
我們在Xilinx Zynq UltraScale+ MPSoC ZCU104 FPGA上部署了該系統,並在數據集推理與攝影機串流模式下實現了24–30 FPS的實時推理。此技術為可擴展的實時自我視角姿態估計奠定了基礎,並能夠提升VR/AR互動、人機介面(HCI)以及運動分析應用的效能。
zh_TW
dc.description.abstractEgocentric 3D human pose estimation enables natural and immersive interaction in virtual reality (VR) and augmented reality (AR) applications, eliminating the need for external cameras or handheld controllers. This approach provides a compact and mobile solution for full-body motion capture, allowing seamless integration with head-mounted display (HMD) and AR glasses. However, existing methods face significant challenges, including fisheye lens distortion, severe self-occlusion, and out-of-view body parts, which degrade estimation accuracy. Furthermore, many deep learning-based approaches require high computational resources and complex model architecture design, making real-time deployment on edge devices impractical.
In this thesis, we propose a real-time stereo egocentric 3D human pose estimation system optimized for edge-device deployment. Our system introduces an Attention-Guided Feature Extractor (AFE) that utilizes multi-scale 2D heatmaps and human mask attention to enhance feature learning. Additionally, we develop a Stereo Joint Mixer (SJM), a simple MLP-based model that integrates stereo visual features while preserving computational efficiency and accuracy. To improve robustness in real-world environments, we incorporate unsupervised domain adaptation (UDA), including human prior constraints and adversarial domain classifier training, reducing the domain gap between synthetic and real-world data.
We implement the system on the Xilinx Zynq UltraScale+ MPSoC ZCU104 FPGA, achieving real-time inference at 24-30 FPS in both dataset inference and camera streaming modes. This technology paves the way for scalable, real-time egocentric pose estimation, enabling enhanced VR/AR interaction, human-computer interfaces (HCI), and motion analysis applications.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:27:47Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-11-26T16:27:47Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsMaster’s Thesis Acceptance Certificate i
Acknowledgement iii
Chinese Abstract v
Abstract vii
Contents ix
List of Figures xiii
List of Tables xv
1 Introduction 1
1.1 Egocentric 3D Human Pose Estimation 2
1.2 Challenges 2
1.3 Contribution 3
1.4 Thesis Organization 5
2 Related Work 7
2.1 3D Human Pose Estimation 7
2.2 Egocentric 3D Human Pose Estimation 8
2.2.1 Monocular Egocentric 3D Human Pose Estimation 9
2.2.2 Stereo Egocentric 3D Human Pose Estimation 11
2.3 MLP-Based Architecture 14
2.4 Unsupervised Domain Adaptation (UDA) 15
3 Method 17
3.1 Architecture Overview 17
3.2 Attention-Guided Feature Extractor (AFE) 18
3.2.1 Multi-Scale 2D Heatmaps Attention 19
3.2.2 Human Mask Attention 21
3.2.3 Local Attention Loss 21
3.3 Stereo Joint Mixer (SJM) 23
3.4 Domain Adaptation Training Framework 24
3.4.1 Human Prior Loss 24
3.4.2 Adversarial Domain Classifier Training 24
4 Experiments 27
4.1 Datasets 27
4.1.1 UnrealEgo Dataset 27
4.1.2 UnrealEgo-RW (Real-World) Dataset 28
4.1.3 Our RealEgo (Unlabeled) Dataset 29
4.2 Training and Implementation Details 31
4.3 Main Results 32
4.4 Qualitative Results 35
4.5 Ablation Study 38
4.5.1 Location Feature Types 40
4.5.2 Local Attention Loss 41
4.5.3 Multi-Scale 2D Heamaps 42
4.5.4 Separation of Image Feature and Location Feature 43
4.5.5 UDA Loss Types 43
4.5.6 Computational Efficiency 44
5 System 45
5.1 System Overview 45
5.2 Implementation Details 46
5.2.1 Tools and Frameworks 46
5.2.2 Deployment Workflow 51
5.2.3 Demo Code Implementation 52
5.3 Performance Evaluation 54
6 Conclusion 59
Reference 61
-
dc.language.isoen-
dc.subject三維人體姿態估計-
dc.subject自我視角-
dc.subject多層感知器-
dc.subject非監督領域自適應-
dc.subject頭戴顯示裝置-
dc.subject擴增實境-
dc.subject虛擬實境-
dc.subject3D Human Pose Estimation-
dc.subjectEgocentric-
dc.subjectMultilayer Perceptron-
dc.subjectUnsupervised Domain Adaptation-
dc.subjectHead-Mounted Display-
dc.subjectAugmented Reality-
dc.subjectVirtual Reality-
dc.subjectZCU104-
dc.title基於注意力引導特徵與領域自適應學習之實時雙目自我視角三維人體姿態估計系統zh_TW
dc.titleReal-Time Stereo Egocentric 3D Human Pose Estimation System with Attention-Guided Features and Domain-Adaptive Learningen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee施吉昇;陳冠文;林淵翔zh_TW
dc.contributor.oralexamcommitteeChi-Sheng Shih;Kuan-Wen Chen;Yuan-Hsiang Linen
dc.subject.keyword三維人體姿態估計,自我視角多層感知器非監督領域自適應頭戴顯示裝置擴增實境虛擬實境zh_TW
dc.subject.keyword3D Human Pose Estimation,EgocentricMultilayer PerceptronUnsupervised Domain AdaptationHead-Mounted DisplayAugmented RealityVirtual RealityZCU104en
dc.relation.page71-
dc.identifier.doi10.6342/NTU202504485-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-09-17-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
dc.date.embargo-lift2025-11-27-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf30.55 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved