請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100999完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭修偉 | zh_TW |
| dc.contributor.advisor | Hsiu-Wei Cheng | en |
| dc.contributor.author | 丁上鈞 | zh_TW |
| dc.contributor.author | Shang-Jun Ting | en |
| dc.date.accessioned | 2025-11-26T16:24:49Z | - |
| dc.date.available | 2025-11-27 | - |
| dc.date.copyright | 2025-11-26 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-10-01 | - |
| dc.identifier.citation | [1] B. P. Bean. The action potential in mammalian central neurons. Nature Reviews Neuroscience, 8(6):451–465, 2007.
[2] D. J. Bergman. Bounds for the complex dielectric constant of a two-component composite material. Physical Review B, 23(6):3058, 1981. [3] R. W. Boyd and J. E. Sipe. Nonlinear optical susceptibilities of layered composite materials. Journal of the Optical Society of America B, 11(2):297–303, 1994. [4] R. Budvytyte, M. Mickevicius, D. J. Vanderah, F. Heinrich, and G. Valincius. Modification of tethered bilayers by phospholipid exchange with vesicles. Langmuir, 29(13):4320–4327, 2013. [5] R. Budvytyte, G. Valincius, G. Niaura, V. Voiciuk, M. Mickevicius, H. Chapman, H.-Z. Goh, P. Shekhar, F. Heinrich, S. Shenoy, et al. Structure and properties of tethered bilayer lipid membranes with unsaturated anchor molecules. Langmuir, 29(27):8645–8656, 2013. [6] E. T. Castellana and P. S. Cremer. Solid supported lipid bilayers: From biophysical studies to sensor design. Surface science reports, 61(10):429–444, 2006. [7] D. Cavaliere, A. Ikezawa, T. Okajima, and H. Arai. Reduced artifacts in dynamic electrochemical impedance spectroscopy applied to battery degradation analysis. Journal of Power Sources, 621:235316, 2024. [8] W. Cho and R. V. Stahelin. Membrane-protein interactions in cell signaling and membrane trafficking. Annu. Rev. Biophys. Biomol. Struct., 34(1):119–151, 2005. [9] W. Clarke, G. Richardson, and P. Cameron. Understanding the full zoo of perovskite solar cell impedance spectra with the standard drift-diffusion model. Advanced Energy Materials, 14(32):2400955, 2024. [10] C. G. Cranfield, A. P. Le Brun, A. Garcia, B. A. Cornell, and S. A. Holt. Langmuir-schaefer deposition to create an asymmetrical lipopolysaccharide sparsely tethered lipid bilayer. In Membrane Lipids: Methods and Protocols, pages 21–30. Springer, 2021. [11] X. Du, J. Meng, Z. Xue, Y. Amirat, F. Gao, and M. Benbouzid. Revolutionizing battery safety: Real-time insights with dynamic electrochemical impedance spectroscopy. ACS Energy Letters, 10(5):2292–2304, 2025. [12] P. S. Germain, W. G. Pell, and B. E. Conway. Evaluation and origins of the difference between double-layer capacitance behaviour at au-metal and oxidized au surfaces. Electrochimica Acta, 49(11):1775–1788, 2004. [13] T. R. Gowrishankar, K. C. Smith, and J. C. Weaver. Transport-based biophysical system models of cells for quantitatively describing responses to electric fields. Proceedings of the IEEE, 101(2):505–517, 2012. [14] R. Guidelli. Bioelectrochemistry of biomembranes and biomimetic membranes. John Wiley & Sons, 2016. [15] J. Han, H. L. Chan, M. G. Wartenberg, H. H. Heinrich, and J. R. Scully. Distinguishing interfacial double layer and oxide-based capacitance on gold and pre-oxidized fe-cr in 1-ethyl-3-methylimidazolium methanesulfonate room temperature ionic liquid aqueous mixture. Electrochemistry Communications, 122:106900, 2021. [16] G. J. Hardy, R. Nayak, and S. Zauscher. Model cell membranes: Techniques to form complex biomimetic supported lipid bilayers via vesicle fusion. Current opinion in colloid & interface science, 18(5):448–458, 2013. [17] C. Henley. The Neuron. Michigan State University, 2020. CC-BY -NC-SA license. [18] A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology, 117(4):500, 1952. [19] J. Huang. The fundamental interaction of cholesterol with lipid membranes: The umbrella model. Cholesterol, pages 73–97, 2022. [20] J. M. Johnson, T. Ha, S. Chu, and S. G. Boxer. Early steps of supported bilayer formation probed by single vesicle fluorescence assays. Biophysical journal, 83(6):3371–3379, 2002. [21] M. S. Khan, N. S. Dosoky, B. K. Berdiev, and J. D. Williams. Electrochemical impedance spectroscopy for black lipid membranes fused with channel protein supported on solid-state nanopore. European Biophysics Journal, 45:843–852, 2016. [22] M. H. Kole and G. J. Stuart. Signal processing in the axon initial segment. Neuron, 73(2):235–247, 2012. [23] T. Kotnik, G. Pucihar, and D. Miklavčič. Induced transmembrane voltage and its correlation with electroporation-mediated molecular transport. The Journal of membrane biology, 236(1):3–13, 2010. [24] W. Krassowska and P. D. Filev. Modeling electroporation in a single cell. Biophysical journal, 92(2):404–417, 2007. [25] A. C. Lazanas and M. I. Prodromidis. Electrochemical impedance spectroscopy─ a tutorial. ACS measurement science au, 3(3):162–193, 2023. [26] C. Leterrier. The axon initial segment: an updated viewpoint. Journal of Neuroscience, 38(9):2135–2145, 2018. [27] B. A. Lewis and D. M. Engelman. Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. Journal of molecular biology, 166(2):211–217, 1983. [28] Z. Lu, D. van Niekerk, A. Savva, K. Kallitsis, Q. Thiburce, A. Salleo, A.-M. Pappa, and R. M. Owens. Understanding electrochemical properties of supported lipid bilayers interfaced with organic electronic devices. Journal of Materials Chemistry C, 10(20):8050–8060, 2022. [29] A. Lucero, M. Rodríguez Niño, A. Gunning, V. Morris, P. Wilde, and J. Rodríguez Patino. Effect of hydrocarbon chain and ph on structural and topographical characteristics of phospholipid monolayers. The Journal of Physical Chemistry B, 112(25):7651–7661, 2008. [30] C. J. Meunier, J. D. Denison, G. S. McCarty, and L. A. Sombers. Interpreting dynamic interfacial changes at carbon fiber microelectrodes using electrochemical impedance spectroscopy. Langmuir, 36(15):4214–4223, 2020. [31] Nanoscience Instruments. Langmuir films. Web page. [32] E. Neumann, M. Schaefer-Ridder, Y. Wang, and P. Hofschneider. Gene transfer into mouse lyoma cells by electroporation in high electric fields. The EMBO journal, 1(7):841–845, 1982. [33] N. Nisticò, M. Greco, M. C. Bruno, E. Giuliano, P. Sinopoli, and D. Cosco. Biomimetic lipid membranes: An overview on their properties and applications. Applied Materials Today, 35:101998, 2023. [34] N. Ogihara, Y . Itou, T. Sasaki, and Y. Takeuchi. Impedance spectroscopy characterization of porous electrodes under different electrode thickness using a symmetric cell for high-performance lithium-ion batteries. The Journal of Physical Chemistry C, 119(9):4612–4619, 2015. [35] M. Ojha and A. Elmustafa. Fabrication of smooth sac305 thin film via magnetron sputtering. Journal of Materials Science: Materials in Electronics, 35(16):1100, 2024. [36] S. Park, S. Y . Avsar, B. Cornell, A. R. Ferhan, W.-Y. Jeon, M. Chung, and N.-J. Cho. Probing the influence of tether density on tethered bilayer lipid membrane (tblm)-peptide interactions. Applied Materials Today, 18:100527, 2020. [37] A. S. Pivovarov, F. Calahorro, and R. J. Walker. Na+/k+-pump and neurotransmitter membrane receptors. Invertebrate Neuroscience, 19(1):1, 2019. [38] J. A. Ramilowski, T. Goldberg, J. Harshbarger, E. Kloppmann, M. Lizio, V. P. Satagopam, M. Itoh, H. Kawaji, P. Carninci, B. Rost, et al. A draft network of ligand–receptor-mediated multicellular signalling in human. Nature communications, 6(1):7866, 2015. [39] L. Rems, X. Tang, F. Zhao, S. Pérez-Conesa, I. Testa, and L. Delemotte. Identification of electroporation sites in the complex lipid organization of the plasma membrane. Elife, 11:e74773, 2022. [40] R. S. Ries, H. Choi, R. Blunck, F. Bezanilla, and J. R. Heath. Black lipid membranes: visualizing the structure, dynamics, and substrate dependence of membranes. The Journal of Physical Chemistry B, 108(41):16040–16049, 2004. [41] A. Sale and W. Hamilton. Effects of high electric fields on microorganisms: I. killing of bacteria and yeasts. Biochimica et Biophysica Acta (BBA)-General Subjects, 148(3):781–788, 1967. [42] C. Scomparin, S. Lecuyer, M. Ferreira, T. Charitat, and B. Tinland. Diffusion in supported lipid bilayers: Influence of substrate and preparation technique on the internal dynamics. The European Physical Journal E, 28:211–220, 2009. [43] C. Sebaaly, H. Greige-Gerges, and C. Charcosset. Lipid membrane models for biomembrane properties'investigation. In Current trends and future developments on (bio-) membranes, pages 311–340. Elsevier, 2019. [44] T. Shiwani, S. Singh Dhesi, and T. M. Wah. Reversible electroporation for cancer therapy. British Journal of Radiology, 98(1167):313–320, 2025. [45] S. J. Singer and G. L. Nicolson. The fluid mosaic model of the structure of cell membranes: Cell membranes are viewed as two-dimensional solutions of oriented globular proteins and lipids. Science, 175(4023):720–731, 1972. [46] T. C. Südhof. Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron, 80(3):675–690, 2013. [47] C. Tabaja, A. Younis, A. A. Hussein, T. L. Taigen, H. Nakagawa, W. I. Saliba, J. Sroubek, P. Santangeli, and O. M. Wazni. Catheter-based electroporation: a novel technique for catheter ablation of cardiac arrhythmias. Clinical Electrophysiology, 9(9):2008–2023, 2023. [48] L. K. Tamm and H. M. McConnell. Supported phospholipid bilayers. Biophysical journal, 47(1):105–113, 1985. [49] E. Tuncer. Dielectric mixtures: importance and theoretical approaches. arXivpreprint arXiv:1304.5516, 2013. [50] E. Tuncer, S. M. Gubański, and B. Nettelblad. Dielectric relaxation in dielectric mixtures: Application of the finite element method and its comparison with dielectric mixture formulas. Journal of Applied Physics, 89(12):8092–8100, 2001. [51] G. Valincius, T. Meškauskas, and F. Ivanauskas. Electrochemical impedance spectroscopy of tethered bilayer membranes. Langmuir, 28(1):977–990, 2012. [52] S. White. Formation of” solvent-free” black lipid bilayer membranes from glyceryl monooleate dispersed in squalene. Biophysical journal, 23(3):337–347, 1978. [53] S. H. Wright. Generation of resting membrane potential. Advances in physiology education, 28(4):139–142, 2004. [54] M. Yamamoto, T. Matsumae, Y. Kurashima, H. Takagi, T. Suga, S. Takamatsu, T. Itoh, and E. Higurashi. Effect of au film thickness and surface roughness on room-temperature wafer bonding and wafer-scale vacuum sealing by au-au surface activated bonding. Micromachines, 11(5):454, 2020. [55] W. K. Yeom, J. W. Lee, J.-A. Bae, D. I. Sung, T. Kim, J. H. Lee, and G. Y. Yeom. Biocompatible co-organic composite thin film deposited by vhf plasma-enhanced atomic layer deposition at a low temperature. ACS omega, 9(31):33735–33742, 2024. [56] X. Zhang, X. Zhang, X. Sun, Y. An, S. Song, C. Li, K. Wang, F. Su, C.-M. Chen, F. Liu, et al. Electrochemical impedance spectroscopy study of lithium-ion capacitors: Modeling and capacity fading mechanism. Journal of Power Sources, 488:229454, 2021. [57] J. Zhou, S. Zhang, and J. Wang. Magnetron sputtered transition-metal-nitrides thin films as electrode materials for supercapacitors: A review. Journal of Energy Storage, 104:114476, 2024. [58] U. Zimmermann, G. Pilwat, and F. Riemann. Dielectric breakdown of cell membranes. Biophysical journal, 14(11):881–899, 1974. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100999 | - |
| dc.description.abstract | 本研究利用 Langmuir– Blodgett 技術與自組裝單分子層(SAM)修飾金基板,建立了高穩定性的 tethered bilayer lipid membrane (tBLM) 仿生膜模型,並結合電化學阻抗譜 (EIS) 分析脂質雙分子層在不同電位下的動態響應。我們透過控制單層壓縮表面壓力,成功製備出高密度與低密度的雙分子層模型,並發現其結構鬆緊與含水量差異會顯著影響離子滲透行為。實驗結果顯示,脂質雙層在正偏壓下維持高度絕緣性,低頻響應主要由界面電雙層充電主導;然而在負偏壓下,膜電阻呈現數量級下降,並伴隨特徵頻率向高頻偏移,顯示離子能更容易穿透膜結構。此一正負偏壓的不對稱性揭示了跨膜導通的方向性特徵,並指出雙層膜水合作用在決定其電化學性質中扮演關鍵角色。本研究提供了一個連結理論與活細胞層級的實驗平台,可進一步應用於藥物遞送、膜蛋白功能研究及電穿孔相關生物醫學技術。 | zh_TW |
| dc.description.abstract | In this study, we used the Langmuir–Blodgett trough together with self-assembled monolayer (SAM) modified gold substrates to build a stable tethered bilayer lipid membrane (tBLM) model, and combined it with electrochemical impedance spectroscopy (EIS) to analyze the dynamic response of lipid bilayers under different applied potentials. By controlling the monolayer compression surface pressure, we prepared high-density and low-density bilayer models and found that differences in packing and hydration strongly affect ionic permeation. The measurements show that under positive bias, the bilayer remains highly insulating, with the low-frequency response dominated by interfacial double-layer charging; in contrast, under negative bias, the membrane resistance drops by orders of magnitude and the characteristic frequency shifts to higher values, indicating that ions more readily penetrate the membrane. This asymmetry between positive and negative bias reveals the directional nature of transmembrane conduction and underscores the key role of bilayer hydration in determining electrochemical properties. Overall, the approach provides an experimental platform that bridges theoretical descriptions with questions at the live-cell scale, and can be extended to studies of drug delivery, membrane protein function, and electroporation-based biomedical techniques. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:24:49Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-11-26T16:24:49Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Contents
Acknowledgements i 摘要 iii Abstract v Contents vii List of Figures ix Denotation xv Chapter 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Biological membrane . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Biomimetic membrane model . . . . . . . . . . . . . . . . . . . . . 3 1.1.2.1 Black Membrane Model (BLM) . . . . . . . . . . . . . 3 1.1.2.2 Supported Lipid Bilayers (SLBs) . . . . . . . . . . . . 5 1.1.2.3 Tethered Bilayer Lipid Membranes (tBLMs) . . . . . . 6 1.1.3 Transmembrane potential and Electropermeabilization . . . . . . . 9 1.2 Key question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4 Solution proposed in this work . . . . . . . . . . . . . . . . . . . . . 16 Chapter 2 Materials and Methods 17 2.1 Materials and Chemicals . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.1 substrate construction . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.2 Bilayer Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.3 Electrochemical experiment setup . . . . . . . . . . . . . . . . . . 22 2.3 Langmuir-Blodgett Trough . . . . . . . . . . . . . . . . . . . . . . . 23 2.3.1 Introduction and theory . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3.2 Surface pressure isotherm . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.3 Deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.4 Experimental procedure in LB layer construction . . . . . . . . . . 28 2.4 Electrochemical Impedance Spectroscopy . . . . . . . . . . . . . . . 29 2.4.1 Introduction and theory . . . . . . . . . . . . . . . . . . . . . . . . 29 2.4.2 Impedance visualization method and modeling . . . . . . . . . . . . 33 2.4.3 Electrochemical impedance spectroscopy parameters . . . . . . . . 41 Chapter 3 Results and Discussion 43 3.1 Formation of Model Membranes with Tunable Structural Properties. 43 3.2 Impedance Spectral Features of Lipid Bilayers under Applied Bias. 45 3.3 Revealing the Ionic Conductance Landscape of Lipid Bilayers . . . . 52 Chapter 4 Conclusion 61 References 63 | - |
| dc.language.iso | en | - |
| dc.subject | 脂質雙分子層 | - |
| dc.subject | 電化學阻抗譜 | - |
| dc.subject | Lipid Bilayer | - |
| dc.subject | Electrochemical Impedance Spectroscopy | - |
| dc.title | 電位調控下之脂質雙分子層電化學特徵分析 | zh_TW |
| dc.title | Analysis of Electromechanical Characteristics of Lipid Bilayers during Potential Modulation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳俊顯;何佳安;詹揚翔 | zh_TW |
| dc.contributor.oralexamcommittee | Chun-hsien Chen;Ja-an Annie Ho;Yang-Hsiang Chan | en |
| dc.subject.keyword | 脂質雙分子層,電化學阻抗譜 | zh_TW |
| dc.subject.keyword | Lipid Bilayer,Electrochemical Impedance Spectroscopy | en |
| dc.relation.page | 70 | - |
| dc.identifier.doi | 10.6342/NTU202504435 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-10-01 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| dc.date.embargo-lift | 2025-11-27 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf | 17.07 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
