Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100994
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳景然zh_TW
dc.contributor.advisorChing-Jan Chenen
dc.contributor.author李俊毅zh_TW
dc.contributor.authorChun-I Lien
dc.date.accessioned2025-11-26T16:23:38Z-
dc.date.available2025-11-27-
dc.date.copyright2025-11-26-
dc.date.issued2025-
dc.date.submitted2025-09-22-
dc.identifier.citation[1] W. Kim, D. Brooks and G. -Y. Wei, "A Fully-Integrated 3-Level DC-DC Converter for Nanosecond-Scale DVFS," in IEEE Journal of Solid-State Circuits, vol. 47, no. 1, pp. 206-219, Jan. 2012.
[2] K. Nishijima, K. Harada, T. Nakano, T. Nabeshima, and T. Sato, “Analysis of Double Step-Down Two-Phase Buck Converter for VRM,” in International Telecommunications Conference (INTELEC), Sep. 2005, pp. 497-502.
[3] K. Hata, Y. Yamauchi, T. Sai, T. Sakurai, and M. Takamiya, “48V-to-12V Dual-Path Hybrid DC-DC Converter,” in IEEE Applied Power Electronics Conference and Exposition (APEC), Mar. 2020, pp. 2279–2284.
[4] G.-S. Seo and H.-P. Le, “An inductor-less hybrid step-down DC-DC converter architecture for future smart power cable,” in IEEE Applied Power Electronics Conference and Exposition (APEC), Mar. 2017, pp. 247–253.
[5] A. Abdulslam and P. P. Mercier, “A Continuous-Input-Current Passive-Stacked Third-Order Buck Converter Achieving 0.7W/mm2 Power Density and 94% Peak Efficiency,” in IEEE International Solid-State Circuits Conference - (ISSCC), Feb. 2019, pp. 148–150.
[6] M. D. Seeman and S. R. Sanders, "Analysis and Optimization of Switched-Capacitor DC–DC Converters," in IEEE Trans. on Power Electronics, vol. 23, no. 2, pp. 841-851, March 2008.
[7] J. Li and F. C. Lee, "Modeling of V2 Current-Mode Control," 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, Washington, DC, USA, 2009, pp. 298-304.
[8] Y.-C. Lin, C.-J. Chen, D. Chen, B. Wang, “A Ripple-Based Constant On-Time Control With Virtual Inductor Current and Offset Cancellation for DC Power Converters,” IEEE Transactions on Power Electronics, Vol. 27, No.10, pp. 4301 - 4310, 2012.
[9] Y.-C. Lin, C.-J. Chen, D. Chen, B. Wang, “A Ripple-Based Constant On-Time Control With Virtual Inductor Current and Offset Cancellation for DC Power Converters,” IEEE Transactions on Power Electronics, Vol. 27, No.10, pp. 4301 - 4310, 2012.
[10] R. H. G. Tan and L. Y. H. Hoo, "DC-DC converter modeling and simulation using state space approach," 2015 IEEE Conference on Energy Conversion (CENCON), Johor Bahru, Malaysia, 2015, pp. 42-47, doi: 10.1109/CENCON.2015.7409511.
[11] G. -S. Seo and H. -P. Le, "Small-signal analysis of S-hybrid step-down DC-DC converter," 2017 IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL), Stanford, CA, USA, 2017, pp. 1-6, doi: 10.1109/COMPEL.2017.8013337.
[12] P. -H. Liu, Y. Yan, F. C. Lee and P. Mattavelli, "External ramp autotuning for current mode control of switching converters," 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 2013, pp. 276-280.
[13] External ramp autotuning for current mode control of switching converters power stage small signal control
[14] Young-Seok Jung, Jun-Young Lee and Myung-Joong Youn, "A new small signal modeling of average current mode control," PESC 98 Record. 29th Annual IEEE Power Electronics Specialists Conference (Cat. No.98CH36196), Fukuoka, Japan, 1998, pp. 1118-1124 vol.2, doi: 10.1109/PESC.1998.703144.
[15] W. Tang, F. C. Lee and R. B. Ridley, "Small-signal modeling of average current-mode control," [Proceedings] APEC '92 Seventh Annual Applied Power Electronics Conference and Exposition, Boston, MA, USA, 1992, pp. 747-755, doi: 10.1109/APEC.1992.228338.
[16] R. B. Ridley, "A new, continuous-time model for current-mode control (power convertors)," in IEEE Transactions on Power Electronics, vol. 6, no. 2, pp. 271-280, April 1991, doi: 10.1109/63.76813.
[17] R. Redl and N. O. Sokal, "Current-mode control, five different types, used with the three basic classes of power converters: Small-signal AC and large-signal DC characterization, stability requirements, and implementation of practical circuits," 1985 IEEE Power Electronics Specialists Conference, Toulouse, France, 1985, pp. 771-785, doi: 10.1109/PESC.1985.7071020.
[18] C. -J. Tsai, H. -H. Chen and C. -J. Chen, "A 2 μ A Iq Passive-Ramp-Adaptive-Extended-TON Controlled Buck Converter Leveraging Clamped Adaptive Biased Error Amplifier to Achieve DVS/Load Transient One-Cycle Recovery Time," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 71, no. 11, pp. 4924-4936, Nov. 2024, doi: 10.1109/TCSI.2024.3418012.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100994-
dc.description.abstract近年來,為因應輕薄化、高功率密度及低成本的需求,混合式轉換器在各類嵌入式電源系統中扮演著日益重要的角色。特別是在行動裝置、穿戴設備及 USB 供電(USB-PD)等應用領域,傳統電感式轉換器面臨體積限制與寄生效應問題,促使新型混合式架構逐漸受到關注。所謂的 Hybrid Converter(混合式轉換器)是結合兩種或多種電源轉換拓撲(如電感式與電容式、開關式與線性式等),以綜合各自優點的一種電源轉換架構。相較於傳統單一拓撲轉換器,混合式架構能在效率、功率密度、響應速度及成本間取得更佳平衡。
本文提出一種電感優先型混合式轉換器(inductor-first hybrid converter),專為 USB 供電應用設計。此架構利用電感與輸入電壓串聯的特性,可直接使用 USB 線路中的寄生電感作為直流轉換器的電感元件,且由於輸入電流連續,無需額外使用輸入電容來阻擋電磁干擾。藉由減少電感與電容元件的使用,大幅提升功率密度。然而,USB 線的寄生電感感值非固定,若採用傳統控制方式,可能導致迴路不穩定。為此,本文提出一種具自動追蹤斜率補償的谷底虛擬電感電流控制技術,能容忍感值及責任週期變異,使系統在不同感值及責任週期下仍維持相近的迴路增益,確保系統穩定運作。最終以下線晶片驗證搭配PCB板的設計,完成最高效率92%,能容忍變異的直流轉換器。由量測結果證實了使用USB Cable作為電感的可行性,以及整個系統的穩定。
zh_TW
dc.description.abstractIn recent years, to meet the demands for slimmer profiles, higher power density, and lower cost, hybrid converters have played an increasingly important role in various embedded power systems. Especially in applications such as mobile devices, wearable electronics, and USB Power Delivery (USB-PD), traditional inductor-based converters face limitations in size and parasitic effects, driving growing interest in new hybrid architectures. A Hybrid Converter combines two or more power conversion topologies (e.g., inductive and capacitive, switching and linear) to leverage their respective advantages. Compared to conventional single-topology converters, hybrid architectures can achieve a better balance among efficiency, power density, transient response, and cost.
This paper proposes an inductor-first hybrid converter designed specifically for USB power applications. Leveraging the series connection of the inductor and input voltage, the converter directly utilizes the parasitic inductance of the USB cable as the converter’s inductor. Furthermore, due to continuous input current, no additional input capacitor is needed to suppress electromagnetic interference (EMI). By reducing discrete inductors and capacitors, the power density is significantly improved. However, the parasitic inductance of USB cables is not fixed, and traditional control methods may cause loop instability. To address this, an automatic tracking slope compensation valley virtual-inductor-current (VIC) control technique is proposed, which tolerates inductance variation and maintains similar loop gain under different inductance values, ensuring stable system operation. Finally, the on-chip verification with the PCB design achieved a maximum efficiency of 92%, realizing a variation-tolerant DC-DC converter. The measurement results confirmed the feasibility of using a USB cable as the inductor and demonstrated the stability of the entire system.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:23:38Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-11-26T16:23:38Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract iv
Table of Content vi
List of Figures viii
List of Tables xiii
Chapter 1. Introduction 1
1.1 Research Background and Motivation 1
1.2 Prior works 1
1.3 Review of inductor first converter 5
1.4 Design goal 7
1.5 Thesis outline 8
Chapter 2. Triple path converter and proposed virtual inductor control 9
2.1 Triple path converter power stage 11
2.1.1 Steady state analysis 11
2.2 Conduction Loss Analysis and Cfly hard charging Loss 14
2.3 The motivation and operating principle of controller 16
2.3.1 Voltage mode control 16
2.3.2 Current mode control 18
2.3.3 The proposed valley virtual inductor current (VVIC) external ramp slope tracking control 21
2.4 Small signal analysis 32
2.4.1 Gvd analysis 32
2.4.2 Gvc analysis 37
Chapter 3. Circuit implementation 44
3.1 Triple path converter power stage bootstrapped path 44
3.2 Driver and level shifter 47
3.3 Voltage control current source (VCCS) 50
3.4 OPAMP 52
3.4.1 Two stage opamp 53
3.4.2 Folded cascode OTA 56
3.5 Comparator 58
3.6 External ramp generator 60
3.7 Steady state and Load transient response 61
Chapter 4. Measurement results of power stage chip 65
4.1 Power stage chip 65
4.2 PCB board design and discrete components 69
4.3 Measurement result 73
Chapter 5. Measurement result of controller chip 77
5.1 Discrete components power stage 77
5.2 Controller chip 79
5.3 PCB board design 83
5.4 Measurement result 86
5.4.1 External ramp slope tracking verification 86
5.4.2 Steady state measurement verification 88
5.4.3 Load transient response 89
5.4.4 Constant Q verification 91
Chapter 6. Conclusion and Future Works 93
6.1 Conclusions 93
6.2 Future Works 93
Reference 96
-
dc.language.isoen-
dc.subject電感優先型混合式轉換器-
dc.subject電磁干擾-
dc.subjectUSB 供電應用-
dc.subject谷底虛擬電感電流控制-
dc.subject容忍感值變異-
dc.subjectInductor – first hybrid converter-
dc.subjectelectromagnetic interference(EMI)-
dc.subjectUSB power delivery-
dc.subjectvalley virtual-inductor-current control-
dc.subjecttolerate inductance variation-
dc.title具自適應外加斜坡控制之USB 傳輸線電感優先式混合型轉換器zh_TW
dc.titleUSB Cable-Based L-First Hybrid Converter with Adaptive External Ramp Controlen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃顗融;陳耀銘zh_TW
dc.contributor.oralexamcommitteeYi-Rong Huang;Yaow-Ming Chenen
dc.subject.keyword電感優先型混合式轉換器,電磁干擾USB 供電應用谷底虛擬電感電流控制容忍感值變異zh_TW
dc.subject.keywordInductor – first hybrid converter,electromagnetic interference(EMI)USB power deliveryvalley virtual-inductor-current controltolerate inductance variationen
dc.relation.page98-
dc.identifier.doi10.6342/NTU202504506-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-09-23-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電機工程學系-
dc.date.embargo-lift2028-10-07-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf
  此日期後於網路公開 2028-10-07
9.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved