請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100989完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林峻永 | zh_TW |
| dc.contributor.advisor | Chun-Yeon Lin | en |
| dc.contributor.author | 盧昊揆 | zh_TW |
| dc.contributor.author | Hao-Kuei Lu | en |
| dc.date.accessioned | 2025-11-26T16:22:30Z | - |
| dc.date.available | 2025-11-27 | - |
| dc.date.copyright | 2025-11-26 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-10-08 | - |
| dc.identifier.citation | C. Hu, S. Song, X. Wang, M. Q.-H. Meng, and B. Li, "A novel positioning and orientation system based on three-axis magnetic coils," IEEE Trans. Magn., vol. 48, no. 7, pp. 2211–2219, 2012.
A. M. Franz, T. Haidegger, W. Birkfellner, K. Cleary, T. M. Peters, and L. Maier-Hein, "Electromagnetic tracking in medicine—A review of technology, validation, and applications," IEEE Trans. Med. Imaging, vol. 33, no. 8, pp. 1702–1725, 2014. V. Pasku, A. De Angelis, G. De Angelis, A. Moschitta, and P. Carbone, "Magnetic field analysis for 3-D positioning applications," IEEE Trans. Instrum. Meas., vol. 66, no. 5, pp. 935–943, 2017. P. Zhong, J. Zhao, Z. Yuan, W. Zhao, T. Zhang, and Y. Feng, "A novel electromagnetic positioning prototype system with simplified receiver for interventional surgery application," IEEE Internet Things J., vol. 10, no. 11, pp. 9753–9767, 2023. Q. Lu, Y. Zhang, J. Lin, and M. Wu, "Dynamic electromagnetic positioning system for accurate close-range navigation of multirotor UAVs," IEEE Sens. J., vol. 20, no. 8, pp. 4459–4468, 2019. W. Yang, C. Zhang, H. Dai, C. Hu, and X. Xia, "A novel wireless 5-D electromagnetic tracking system based on nine-channel sinusoidal signals," IEEE/ASME Trans. Mechatronics, vol. 26, no. 1, pp. 246–254, 2020. M. Cavaliere, O. McVeigh, H. A. Jaeger, S. Hinds, K. O’Donoghue, and P. Cantillon-Murphy, "Inductive sensor design for electromagnetic tracking in image guided interventions," IEEE Sens. J., vol. 20, no. 15, pp. 8623–8630, 2020. F. Attivissimo, A. Di Nisio, A. M. L. Lanzolla, and M. A. Ragolia, "Analysis of position estimation techniques in a surgical EM tracking system," IEEE Sens. J., vol. 21, no. 13, pp. 14389–14396, 2020. S. Song, C. Hu, B. Li, X. Li, and M. Q.-H. Meng, "An electromagnetic localization and orientation method based on rotating magnetic dipole," IEEE Trans. Magn., vol. 49, no. 3, pp. 1274–1277, 2013. X. Ge, Y. Wang, N. Ding, X. Wu, Y. Wang, and Z. Fang, "An electromagnetic tracking method using rotating orthogonal coils," IEEE Trans. Magn., vol. 48, no. 12, pp. 4802–4810, 2012. H. Dai, S. Song, X. Zeng, S. Su, M. Lin, and M. Q.-H. Meng, "6-D electromagnetic tracking approach using uniaxial transmitting coil and tri-axial magneto-resistive sensor," IEEE Sens. J., vol. 18, no. 3, pp. 1178–1186, 2018. D. Ambruš, M. Šimić, D. Vasić, and V. Bilas, "Close-range electromagnetic tracking of pulse induction search coils for subsurface sensing," IEEE Trans. Instrum. Meas., vol. 70, pp. 1–13, 2021. R. Nagano, K. Hara, E. Kobayashi, T. Ohya, and I. Sakuma, "A pilot study on an electromagnetic tracking system using tunneling magnetoresistance (TMR) sensors applicable to a 4F catheter (1.4 mm in diameter)," Int. J. Comput. Assist. Radiol. Surg., vol. 18, no. 1, pp. 17–27, 2023. M. Cavaliere, O. McVeigh, H. A. Jaeger, S. Hinds, K. O’Donoghue, and P. Cantillon-Murphy, "Inductive sensor design for electromagnetic tracking in image guided interventions," IEEE Sens. J., vol. 20, no. 15, pp. 8623–8630, 2020. W. Kim, J. Song, and F. C. Park, "Closed-form position and orientation estimation for a three-axis electromagnetic tracking system," IEEE Trans. Ind. Electron., vol. 65, no. 5, pp. 4331–4337, 2018. J. Yi, J. Liu, C. Zhang, and X. Lu, "Magnetic motion tracking for natural human computer interaction: A review," IEEE Sens. J., vol. 22, no. 23, pp. 22356–22367, 2022. A. Moschitta, A. De Angelis, M. Dionigi, and P. Carbone, "Analysis of simultaneous 3D positioning and attitude estimation of a planar coil using inductive coupling," in Proc. IEEE Int. Instrum. Meas. Technol. Conf. (I2MTC), May 2017, pp. 1–6. F. Santoni, A. De Angelis, A. Moschitta, and P. Carbone, "A distributed data acquisition architecture for magnetic positioning systems," in Proc. IEEE Int. Syst. Eng. Symp. (ISSE), Oct. 2018, pp. 1–6. Y. Osaki, S. Hashi, S. Yabukami, H. Kanetaka, and K. Ishiyama, "Wireless magnetic position-detection system with four excitation coils," IEEE Sens. J., vol. 17, no. 14, pp. 4412–4419, 2017. F. Santoni, A. De Angelis, I. Skog, A. Moschitta, and P. Carbone, "Calibration and characterization of a magnetic positioning system using a robotic arm," IEEE Trans. Instrum. Meas., vol. 68, no. 5, pp. 1494–1502, 2019. M. Wang, S. Song, J. Liu, and M. Q. H. Meng, "Multipoint simultaneous tracking of wireless capsule endoscope using magnetic sensor array," IEEE Trans. Instrum. Meas., vol. 70, pp. 1–10, 2021. S. Song, C. Hu, and M. Q. H. Meng, "Multiple objects positioning and identification method based on magnetic localization system," IEEE Trans. Magn., vol. 52, no. 10, pp. 1–4, 2016. M. Yousefi, H. N. Pishkenari, and A. Alasty, "A fast and robust magnetic localization technique based on elimination of the orientation variables from the optimization," IEEE Sens. J., vol. 21, no. 19, pp. 21885–21892, 2021. A. Adel, M. Mansour, M. M. Micheal, A. Abdelmawla, I. S. Khalil, and S. Misra, "Magnetic localization for an electromagnetic-based haptic interface," IEEE Magn. Lett., vol. 10, pp. 1–5, 2019. N. Sebkhi, N. Sahadat, S. Hersek, A. Bhavsar, S. Siahpoushan, M. Ghoovanloo, and O. T. Inan, "A deep neural network-based permanent magnet localization for tongue tracking," IEEE Sens. J., vol. 19, no. 20, pp. 9324–9331, 2019. H. Wang, S. Wang, H. Liu, K. Rhode, Z.-G. Hou, and R. Rajamani, "3-D electromagnetic position estimation system using high-magnetic-permeability metal for continuum medical robots," IEEE Robot. Autom. Lett., vol. 7, no. 2, pp. 2581–2588, Apr. 2022. S. Su, S. Yuan, M. Xu, H. Gao, X. Yang, and H. Ren, "AMagPoseNet: Real-time six-DoF magnet pose estimation by dual-domain few-shot learning from prior model," IEEE Trans. Ind. Informat., vol. 19, no. 9, pp. 9722–9732, 2023. M. Birsan, "Recursive Bayesian method for magnetic dipole tracking with a tensor gradiometer," IEEE Trans. Magn., vol. 47, no. 2, pp. 409–415, 2010. H. Ge, S. Song, J. Wang, and M. Q. H. Meng, "Multi-magnet tracking method using extended Kalman filter," in Proc. IEEE Sensors, Oct. 2021, pp. 1–4. D. Cichon, R. Psiuk, H. Brauer, and H. Töpfer, "A Hall-sensor-based localization method with six degrees of freedom using unscented Kalman filter," IEEE Sens. J., vol. 19, no. 7, pp. 2509–2516, Apr. 2019. D. K. Cheng, Field and Wave Electromagnetics, 2nd ed. Pearson Education India, 1989. M. W. Garrett, "Axially symmetric systems for generating and measuring magnetic fields. Part I," J. Appl. Phys., vol. 22, no. 9, pp. 1091–1107, 1951. S. Hampton, R. Lane, R. Hedlof, R. Phillips, and C. A. Ordonez, "Closed-form expressions for the magnetic fields of rectangular and circular finite-length solenoids and current loops," AIP Adv., vol. 10, no. 6, p. 065223, 2020. L. K. Forbes, S. Crozier, and D. M. Doddrell, "Rapid computation of static fields produced by thick circular solenoids," IEEE Trans. Magn., vol. 33, no. 5, pp. 4405–4410, 1997. E. Paperno and A. Plotkin, "Cylindrical induction coil to accurately imitate the ideal magnetic dipole," Sens. Actuators A: Phys., vol. 112, no. 2–3, pp. 248–252, 2004. F. Wu, S. K. Moon, and H. Son, "Orientation measurement based on magnetic inductance by the extended distributed multi-pole model," Sensors, vol. 14, no. 7, pp. 11504–11521, 2014. K. Levenberg, "A method for the solution of certain non-linear problems in least squares," Quart. Appl. Math., vol. 2, no. 2, pp. 164–168, 1944. D. W. Marquardt, "An algorithm for least-squares estimation of nonlinear parameters," J. Soc. Ind. Appl. Math., vol. 11, no. 2, pp. 431–441, 1963. Q. Zhang, L. Zhu, and H. Xu, "Comparison and discussion of intelligent optimization algorithms based on magnetic localization systems for improving the initial value defects of the LM Algorithm," Procedia Comput. Sci., vol. 226, pp. 22–28, 2023. H. Dai, S. Song, C. Hu, B. Sun, and Z. Lin, "A novel 6-D tracking method by fusion of 5-D magnetic tracking and 3-D inertial sensing," IEEE Sens. J., vol. 18, no. 23, pp. 9640–9648, 2018. Y. Qin, B. Lv, H. Dai, and J. Han, "An hFFNN-LM based real-time and high precision magnet localization method," IEEE Trans. Instrum. Meas., vol. 71, pp. 1–9, 2022. H. X. Xu, M. D. Lu, L. N. Liu, and L. H. Guo, "Magnetic navigation in ultrasound-guided interventional radiology procedures," Clin. Radiol., vol. 67, no. 5, pp. 447–454, 2012. D. J. Grand, M. A. Atalay, J. J. Cronan, W. W. Mayo-Smith, and D. E. Dupuy, "CT-guided percutaneous lung biopsy: Comparison of conventional CT fluoroscopy to CT fluoroscopy with electromagnetic navigation system in 60 consecutive patients," Eur. J. Radiol., vol. 79, no. 2, pp. e133–e136, 2011. S. W. Wong, A. U. Niazi, K. J. Chin, and V. W. Chan, "Real-time ultrasound-guided spinal anesthesia using the SonixGPS® needle tracking system: A case report," Can. J. Anesth., vol. 60, no. 1, pp. 50–53, 2013. F. Manstad-Hulaas, G. A. Tangen, T. Dahl, T. A. Hernes, and P. Aadahl, "Three-dimensional electromagnetic navigation vs. fluoroscopy for endovascular aneurysm repair: A prospective feasibility study in patients," J. Endovasc. Ther., vol. 19, no. 1, pp. 70–78, 2012. C. A. Aufdenblatten and S. Altermatt, "Intraventricular catheter placement by electromagnetic navigation safely applied in a paediatric major head injury patient," Child’s Nerv. Syst., vol. 24, no. 9, pp. 1047–1050, 2008. S. Leong, H. Ju, H. Marshall, R. Bowman, I. Yang, A. M. Ree, C. Saxon, and K. M. Fong, "Electromagnetic navigation bronchoscopy: A descriptive analysis," J. Thorac. Dis., vol. 4, no. 2, pp. 173–185, 2012. L. Volpi, A. Pistochini, M. Bignami, F. Meloni, M. T. Zanoni, and P. Castelnuovo, "A novel technique for tailoring frontal osteoplastic flaps using the ENT magnetic navigation system," Acta Otolaryngol., vol. 132, no. 6, pp. 645–650, 2012. M. Szura, K. Bucki, A. Matyja, and J. Kulig, "Evaluation of magnetic scope navigation in screening endoscopic examination of colorectal cancer," Surg. Endosc., vol. 26, no. 3, pp. 632–638, 2012. M. Singh, R. A. Shankar, and B. Jung, "Inside-out magnetic tracking for virtual/augmented reality applications," IEEE Sens. J., vol. 21, no. 24, pp. 28097–28106, 2021. F. S. Parizi, E. Whitmire, and S. Patel, "Auraring: Precise electromagnetic finger tracking," Proc. ACM Interact. Mobile Wearable Ubiquitous Technol., vol. 3, no. 4, pp. 1–28, Dec. 2019. J. Včelák, P. Ripka, and A. Zikmund, "Long-range magnetic tracking system," IEEE Sens. J., vol. 15, no. 1, pp. 491–496, 2014. R. Fletcher, "A modified Marquardt subroutine for non-linear least squares," 1971. M. Balda, "An algorithm for nonlinear least squares," in Proc. Tech. Comput. Prague Conf., Nov. 2007. K. Madsen, H. B. Nielsen, and O. Tingleff, Methods for Non-Linear Least Squares Problems, 2nd ed., Apr. 2004. 馬晞晏, "應用於物件定位之電磁追蹤系統開發," 臺灣大學機械工程學系碩士論文, 2021. 郭忠翔, "應用即時定位和姿態估測之永磁追蹤系統設計," 臺灣大學機械工程學系碩士論文, 2023. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100989 | - |
| dc.description.abstract | 本論文開發即時電磁追蹤系統。磁場產生器由五個激勵線圈構成,以不同頻率的正弦電流同時驅動,於空間中產生不同方向的時變磁場。系統配置兩種磁場感測器,其一為單軸感應線圈,量測感應電動勢,其二為穿隧磁阻感測器模組,由三個正交排列的穿隧磁阻感測器組成,量測三軸磁通量密度。兩者訊號皆經由快速傅立葉分析擷取各頻率分量,並透過逆向模型估測磁場感測器的位置及姿態。
正向模型方面,感應線圈以高斯–勒讓得積分計算磁向量勢與磁通量,並以少量代表線圈與最佳化權重近似完整線圈的磁通量及相應的感應電動勢。穿隧磁阻感測器模組則採用必歐–沙伐定律,同樣結合高斯–勒讓得積分進行計算。兩種磁場感測器形式的正向模型皆以商用有限元素軟體驗證其正確性。此外,激勵線圈間的互感效應會影響追蹤效果,為此建立了激勵線圈互感模型。藉由量測每個線圈在各頻率的實際電流分量,以進行互感補償,提升模型準確性。 逆向模型結合深度神經網路與萊文伯格–馬夸特算法。將磁場感測器所量測的訊號輸入至預先完成訓練的深度神經網路中,並且將此估測結果作為萊文伯格–馬夸特算法的初始值,進一步獲得更精確的定位資訊。在連續追蹤過程中,則是將當前的追蹤結果作為下一次萊文伯格–馬夸特算法定位的初始值。基於抗噪能力評估,實驗選擇穿隧磁阻感測器模組作為磁場感測器以進行追蹤。 實驗先以單一激勵線圈驗證磁場感測器於平移及旋轉下之正向模型可行性,接著同時激勵兩個激勵線圈,納入線圈間的互感影響,並以實驗結果驗證互感補償的正確性。所建即時電磁追蹤系統的量測範圍為200mm×200mm×150mm,位置誤差落在1.7mm內,姿態誤差落在4.5°內,更新率為10Hz。 | zh_TW |
| dc.description.abstract | This thesis develops a real-time electromagnetic (EM) tracking system. The field generator comprises five excitation coils driven simultaneously with sinusoidal currents at distinct frequencies, producing time-varying magnetic fields in different spatial directions. The system adopts two types of magnetic sensors, namely a single-axis sensing coil for measuring the induced electromotive force (EMF) and a tunnel magnetoresistance (TMR) sensor module composed of three orthogonally arranged TMR sensors for measuring triaxial magnetic flux density. For both sensors, the acquired signals are processed using a fast Fourier transform (FFT) to extract the frequency-domain components, and an inverse model is employed to estimate the position and orientation of the magnetic sensor.
For the forward model, the sensing coil is modeled by computing the magnetic vector potential and magnetic flux using Gauss–Legendre quadrature, while a small set of representative loops with optimized weights approximates a complete multi-turn coil to accurately reproduce the magnetic flux and the induced EMF. The TMR sensor module is modeled using the Biot–Savart law, also evaluated with Gauss–Legendre quadrature. The forward models of both sensor types are validated using commercial finite element analysis (FEA) software. Since mutual coupling among excitation coils can degrade tracking performance, a mutual inductance model is established. The harmonic current components in each excitation coil are measured and used to compensate for mutual coupling, thereby improving model accuracy. The inverse model combines the Levenberg–Marquardt (LM) algorithm with a deep neural network (DNN). Sensor measurements are first provided to a pre-trained DNN, and the estimate of the DNN initializes the LM algorithm to refine the pose estimation. During continuous tracking, the pose estimated at the current frame is used to initialize the LM algorithm for the next frame. Based on evaluations of noise robustness, the TMR sensor module is selected as the magnetic sensor in experiments. Experiments first validate the forward models by translating and rotating the magnetic sensor while driving a single excitation coil. Subsequently, two excitation coils are driven simultaneously to induce mutual coupling, and the effectiveness of the compensation scheme is validated experimentally. The developed real-time EM tracking system achieves a measurement volume of 200mm×200mm×150mm, a position error within 1.7mm, an orientation error within 4.5°, and an update rate of 10Hz. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:22:30Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-11-26T16:22:30Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii ABSTRACT iii 目次 v 表次 vii 圖次 ix 符號與縮寫解釋 xi 第一章 前言 1 1.1 研究動機 1 1.2 文獻回顧 1 1.2.1 電磁追蹤系統之架構與追蹤方法 2 1.2.2 電磁正向模型之建模 3 1.2.3 萊文伯格–馬夸特算法之初始值 4 1.2.4 電磁追蹤系統之應用 5 1.3 問題描述 6 1.4 研究貢獻 6 1.5 論文架構 7 第二章 電磁追蹤系統設計 8 2.1 系統設計 8 2.2 正向模型 9 2.2.1 感應線圈 10 2.2.2 穿隧磁阻感測器模組 18 2.2.3 激勵線圈互感模型 19 2.3 逆向模型 22 2.3.1 最佳化演算法 22 2.3.2 深度神經網路 27 2.4 系統架構 29 第三章 數值模擬驗證 31 3.1 正向模型 31 3.1.1 二維軸對稱模型 31 3.1.2 三維正向模型 34 3.2 逆向模型 42 3.2.1 感應線圈 42 3.2.2 穿隧磁阻感測器模組 45 3.2.3 磁場感測器之比較 49 第四章 實驗結果 50 4.1 電磁追蹤系統架構 50 4.1.1 感應線圈 52 4.1.2 穿隧磁阻感測器模組 52 4.2 實驗結果 55 4.2.1 正向模型驗證 55 4.2.2 逆向模型驗證 61 4.2.3 應用實例 64 4.2.4 結果比較 66 第五章 結論與未來展望 73 5.1 結論 73 5.2 未來展望 74 參考文獻 76 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 電磁追蹤系統 | - |
| dc.subject | 即時系統 | - |
| dc.subject | 位置及姿態估測 | - |
| dc.subject | 正向模型 | - |
| dc.subject | 逆向模型 | - |
| dc.subject | Electromagnetic tracking system | - |
| dc.subject | Real-time system | - |
| dc.subject | Position and orientation estimation | - |
| dc.subject | Forward model | - |
| dc.subject | Inverse model | - |
| dc.title | 應用於即時定位及姿態估測之電磁追蹤系統開發 | zh_TW |
| dc.title | Development of an Electromagnetic Tracking System for Real-Time Position and Orientation Estimation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃漢邦;楊士進;鍾添淦;林佑儒 | zh_TW |
| dc.contributor.oralexamcommittee | Han-Pang Huang;Shih-Chin Yang;Tien-Kan Chung;Yu-Ju Lin | en |
| dc.subject.keyword | 電磁追蹤系統,即時系統位置及姿態估測正向模型逆向模型 | zh_TW |
| dc.subject.keyword | Electromagnetic tracking system,Real-time systemPosition and orientation estimationForward modelInverse model | en |
| dc.relation.page | 80 | - |
| dc.identifier.doi | 10.6342/NTU202504550 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-10-08 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf 未授權公開取用 | 5.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
