請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100987完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐丞志 | zh_TW |
| dc.contributor.advisor | Cheng-Chih Hsu | en |
| dc.contributor.author | 邵偉凱 | zh_TW |
| dc.contributor.author | Wei-Kai Shao | en |
| dc.date.accessioned | 2025-11-26T16:22:02Z | - |
| dc.date.available | 2025-11-27 | - |
| dc.date.copyright | 2025-11-26 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-10-02 | - |
| dc.identifier.citation | 1. Blazenovic, I.; Kind, T.; Ji, J.; Fiehn, O. Software Tools and Approaches for Compound Identification of LC-MS/MS Data in Metabolomics. Metabolites. 2018, 8, 31. DOI: 10.3390/metabo8020031
2. da Silva, R. R.; Dorrestein, P. C.; Quinn, R. A. Illuminating the dark matter in metabolomics. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 12549-12550. DOI: 10.1073/pnas.1516878112 3. Schymanski, E. L.; Ruttkies, C.; Krauss, M.; Brouard, C.; Kind, T.; Dührkop, K.; Allen, F.; Vaniya, A.; Verdegem, D.; Böcker, S.; Rousu, J.; Shen, H.; Tsugawa, H.; Sajed, T.; Fiehn, O.; Ghesquière, B.; Neumann, S. Critical Assessment of Small Molecule Identification 2016: automated methods. J. Cheminform. 2017, 9, 22. DOI: 10.1186/s13321-017-0207-1 4. Correa, D. N.; Santos, J. M.; Eberlin, L. S.; Eberlin, M. N.; Teunissen, S. F. Forensic Chemistry and Ambient Mass Spectrometry: A Perfect Couple Destined for a Happy Marriage? Anal. Chem. 2016, 88, 2515-2526. DOI: 10.1021/acs.analchem.5b02397 5. Cheng, S.-C.; Lee, R.-H.; Jeng, J.-Y.; Lee, C.-W.; Shiea, J. Fast screening of trace multiresidue pesticides on fruit and vegetable surfaces using ambient ionization tandem mass spectrometry. Anal. Chim. Acta. 2020, 1102, 63-71. DOI: 10.1016/j.aca. 2019.12.038 6. El Abiead, Y.; Rutz, A.; Zuffa, S.; Amer, B.; Xing, S.; Brungs, C.; Schmid, R.; Correia, M. S. P.; Caraballo-Rodriguez, A. M.; Zarrinpar, A.; Mannochio-Russo, H.; Witting, M.; Mohanty, I.; Pluskal, T.; Bittremieux, W.; Knight, R.; Patterson, A. D.; van der Hooft, J. J. J.; Böcker, S.; Dunn, W. B.; Linington, R. G.; Wishart, D. S.; Wolfender, J.-L.; Fiehn, O.; Zamboni, N.; Dorrestein, P. C. Discovery of metabolites prevails amid in-source fragmentation. Nat. Metab. 2025, 7, 435-437. DOI: 10.1038/ s42255-025-01239-4 7. Giera, M.; Aisporna, A.; Uritboonthai, W.; Siuzdak, G. The hidden impact of in-source fragmentation in metabolic and chemical mass spectrometry data interpretation. Nat. Metab. 2024, 6, 1647-1648. DOI: 10.1038/s42255-024-01076-x 8. Dührkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A. A.; Melnik, A. V.; Meusel, M.; Dorrestein, P. C.; Rousu, J.; Böcker, S. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods. 2019, 16, 299-302. DOI: 10.1038/s41592-019-0344-8 9. Dührkop, K.; Shen, H.; Meusel, M.; Rousu, J.; Böcker, S. Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 12580-12585. DOI: 10.1073/pnas.150978811 10. Sorokin, A. A.; Pekov, S. I.; Zavorotnyuk, D. S.; Shamraeva, M. M.; Bormotov, D. S.; Popov, I. A. Modern machine-learning applications in ambient ionization mass spectrometry. Mass Spectrom. Rev. 2025, 44, 74-88. DOI: 10.1002/mas.21886 11. Dührkop, K. Deep kernel learning improves molecular fingerprint prediction from tandem mass spectra. Bioinform. 2022, 38, i342-i349. DOI: 10.1093/bioinformatics/ btac260 12. Goldman, S.; Li, J.; Coley, C. W. Generating Molecular Fragmentation Graphs with Autoregressive Neural Networks. Anal. Chem. 2024, 96, 3419-3428. DOI: 10.1021/ acs.analchem.3c04654 13. Tripathi, A.; Vázquez-Baeza, Y.; Gauglitz, J. M.; Wang, M.; Dührkop, K.; Nothias-Esposito, M.; Acharya, D. D.; Ernst, M.; van der Hooft, J. J. J.; Zhu, Q.; McDonald, D.; Brejnrod, A. D.; Gonzalez, A.; Handelsman, J.; Fleischauer, M.; Ludwig, M.; Böcker, S.; Nothias, L.-F.; Knight, R.; Dorrestein, P. C. Chemically informed analyses of metabolomics mass spectrometry data with Qemistree. Nat. Chem. Biol. 2021, 17, 146-151. DOI: 10.1038/s41589-020-00677-3 14. Hoffmann, M. A.; Nothias, L.-F.; Ludwig, M.; Fleischauer, M.; Gentry, E. C.; Witting, M.; Dorrestein, P. C.; Dührkop, K.; Böcker, S. High-confidence structural annotation of metabolites absent from spectral libraries. Nat. Biotechnol. 2022, 40, 411-421. DOI: 10.1038/s41587-021-01045-9 15. Dührkop, K.; Nothias, L.-F.; Fleischauer, M.; Reher, R.; Ludwig, M.; Hoffmann, M. A.; Petras, D.; Gerwick, W. H.; Rousu, J.; Dorrestein, P. C.; Böcker, S. Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nat. Biotechnol. 2021, 39, 462-471. DOI: 10.1038/s41587-020-0740-8 16. Stravs, M. A.; Dührkop, K.; Böcker, S.; Zamboni, N. MSNovelist: de novo structure generation from mass spectra. Nat. Methods. 2022, 19, 865-870. DOI: 10.1038/ s41592-022-01486-3 17. Fiehn Lab. Revisiting CASMI. 2016. https://fiehnlab.ucdavis.edu/casmi (accessed 2025-05-21). 18. McEachran, A. D.; Chao, A.; Al-Ghoul, H.; Lowe, C.; Grulke, C.; Sobus, J. R.; Williams, A. J. Revisiting Five Years of CASMI Contests with EPA Identification Tools. Metabolites. 2020, 10, 260. DOI: 10.3390/metabo10060260 19. Schymanski, E. L.; Neumann, S. The Critical Assessment of Small Molecule Identification (CASMI): Challenges and Solutions. Metabolites. 2013, 3, 517-538. DOI: 10.3390/metabo3030517 20. Young, A.; Wang, F.; Wishart, D.; Wang, B.; Röst, H.; Greiner, R. FraGNNet: A Deep Probabilistic Model for Mass Spectrum Prediction. arXiv. 2024. DOI: 10.48550/ arXiv.2404.02360 21. Li, Q.; Cheng, T.; Wang, Y.; Bryant, S. H. PubChem as a public resource for drug discovery. Drug Discov. Today. 2010, 15, 1052-1057. DOI: 10.1016/j.drudis.2010. 10.003 22. Wishart, D. S.; Djoumbou Feunang, Y.; Marcu, A.; Guo, A. C.; Liang, K.; Vázquez-Fresno, R.; Sajed, T.; Johnson, D.; Li, C.; Karu, N.; Sayeeda, Z.; Lo, E.; Assempour, N.; Berjanskii, M.; Singhal, S.; Arndt, D.; Liang, Y.; Badran, H.; Grant, J.; Serra-Cayuela, A.; Liu, Y.; Mandal, R.; Neveu, V.; Pon, A.; Knox, C.; Wilson, M.; Manach, C.; Scalbert, A. HMDB 4.0: the human metabolome database for 2018. Nucleic Acid. Res. 2018, 46, D608-D617. DOI: 10.1093/nar/gkx1089 23. Kanehisa, M.; Goto, S.; Sato, Y.; Furumichi, M.; Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acid. Res. 2012, 40, D109-D114. DOI: 10.1093/nar/gkr988 24. Janesko, B. G.; Li, L.; Mensing, R. Quantum Chemical Fragment Precursor Tests: Accelerating de novo annotation of tandem mass spectra. Anal. Chim. Acta. 2017, 995, 52-64. DOI: 10.1016/j.aca.2017.09.034 25. Ásgeirsson, V.; Bauer, C. A.; Grimme, S. Quantum chemical calculation of electron ionization mass spectra for general organic and inorganic molecules. Chem. Sci. 2017, 8, 4879-4895. DOI: 10.1039/C7SC00601B 26. Bauer, C. A.; Grimme, S. Elucidation of Electron Ionization Induced Fragmentations of Adenine by Semiempirical and Density Functional Molecular Dynamics. J. Phys. Chem. A. 2014, 118, 11479-11484. DOI: 10.1021/jp5096618 27. Koopman, J.; Grimme, S. Calculation of Mass Spectra with the QCxMS Method for Negatively and Multiply Charged Molecules. J. Am. Soc. Mass Spectrom. 2022, 33, 2226-2242. DOI: 10.1021/jasms.2c00209 28. Schreckenbach, S. A.; Anderson, J. S. M.; Koopman, J.; Grimme, S.; Simpson, M. J.; Jobst, K. J. Predicting the Mass Spectra of Environmental Pollutants Using Computational Chemistry: A Case Study and Critical Evaluation. J. Am. Soc. Mass Spectrom. 2021, 32, 1508-1518. DOI: 10.1021/jasms.1c00078 29. Koopman, J.; Grimme, S. Calculation of Electron Ionization Mass Spectra with Semiempirical GFNn-xTB Methods. ACS Omega. 2019, 4, 15120-15133. DOI: 10.1021/acsomega.9b02011 30. Spackman, P. R.; Bohman, B.; Karton, A.; Jayatilaka, D. Quantum chemical electron impact mass spectrum prediction for de novo structure elucidation: Assessment against experimental reference data and comparison to competitive fragmentation modeling. Int. J. Quantum Chem. 2018, 118, e25460. DOI: 10.1002/qua.25460 31. Koopman, J.; Grimme, S. From QCEIMS to QCxMS: A Tool to Routinely Calculate CID Mass Spectra Using Molecular Dynamics. J. Am. Soc. Mass Spectrom. 2021, 32, 1735-1751. DOI: 10.1021/jasms.1c00098 32. Schnegotzki, R.; Koopman, J.; Grimme, S.; Süssmuth, R. D. Quantum Chemistry-based Molecular Dynamics Simulations as a Tool for the Assignment of ESI-MS/MS Spectra of Drug Molecules. Chem.-Eur. J. 2022, 28, e202200318. DOI: 10.1002/ chem.202200318 33. Grimme group. Running QCxMS. 2023. https://xtb-docs.readthedocs.io/en/latest/ qcxms_doc/qcxms_run.html (accessed 2025-05-21). 34. Bannwarth, C.; Ehlert, S.; Grimme, S. GFN2-xTB—An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. J. Chem. Theory Comput. 2019, 15, 1652-1671. DOI: 10.1021/acs.jctc.8b01176 35. Thermo Fisher Scientific Inc. Thermo Scientific Q Exactive HF Orbitrap LC-MS/MS System. 2016. https://assets.thermofisher.com/TFS-Assets/CMD/brochures/BR-64052-LC-MS-Q-Exactive-HF-Orbitrap-BR64052-EN.pdf (accessed 2025-05-21). 36. Wang, F.; Liigand, J.; Tian, S.; Arndt, D.; Greiner, R.; Wishart, D. S. CFM-ID 4.0: More Accurate ESI-MS/MS Spectral Prediction and Compound Identification. Anal. Chem. 2021, 93, 11692-11700. DOI: 10.1021/acs.analchem.1c01465 37. Djoumbou Feunang, Y.; Eisner, R.; Knox, C.; Chepelev, L.; Hastings, J.; Owen, G.; Fahy, E.; Steinbeck, C.; Subramanian, S.; Bolton, E.; Greiner, R.; Wishart, D. S. ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. J Cheminform. 2016, 4, 8:61. DOI: 10.1186/s13321-016-0174-y 38. Greg Landrum. RDKit: Open-source cheminformatics. 2025. https://www.rdkit.org (accessed 2025-05-21). 39. Halgren, T. A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem. 1996, 17, 490-519. DOI: 10.1002/ (SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P 40. Halgren, T. A. Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions. J. Comput. Chem. 1996, 17, 520-552. DOI: 10.1002/(SICI)1096-987X(199604)17:5/6<520::AID-JCC2>3.0. CO;2-W 41. Halgren, T.A. Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94. J. Comput. Chem. 1996, 17, 553-586. DOI: 10.1002/ (SICI)1096-987X(199604)17:5/6<553::AID-JCC3>3.0.CO;2-T 42. Halgren, T.A.; Nachbar, R.B. Merck molecular force field. IV. conformational energies and geometries for MMFF94. J. Comput. Chem. 1996, 17, 587-615. DOI: 10.1002/(SICI)1096-987X(199604)17:5/6<587::AID-JCC4>3.0.CO;2-Q 43. Halgren, T.A. Merck molecular force field. V. Extension of MMFF94 using experimental data, additional computational data, and empirical rules. J. Comput. Chem. 1996, 17, 616-641. DOI: 10.1002/(SICI)1096-987X(199604)17:5/6<616:: AID-JCC5>3.0.CO;2-X 44. O'Boyle, N. M.; Banck, M.; James, C. A.; Morley, C.; Vandermeersch, T.; Hutchison, G. R. Open Babel: An open chemical toolbox. J. Cheminform. 2011, 3, 33. DOI: 10.1186/1758-2946-3-33 45. Bannwarth, C.; Caldeweyher, E.; Ehlert, S.; Hansen, A.; Pracht, P.; Seibert, J.; Spicher, S.; Grimme, S. Extended tight-binding quantum chemistry methods. WIREs Comput Mol Sci. 2021, 11:e1493. DOI: 10.1002/wcms.1493 46. Grimme, S.; Bannwarth, C.; Shushkov, P. A Robust and Accurate Tight-Binding Quantum Chemical Method for Structures, Vibrational Frequencies, and Noncovalent Interactions of Large Molecular Systems Parametrized for All spd-Block Elements (Z = 1–86). J. Chem. Theory Comput. 2017, 13, 1989-2009. DOI: 10.1021/acs.jctc.7b00118 47. Cavasin, A. T.; Hillisch, A.; Uellendahl, F.; Schneckener, S.; Göller, A. H. Reliable and Performant Identification of Low-Energy Conformers in the Gas Phase and Water. J. Chem. Inf. Model. 2018, 58, 1005-1020. DOI: 10.1021/acs.jcim.8b00151 48. Sharapa, D. I.; Genaev, A.; Cavallo, L.; Minenkov, Y. A Robust and Cost-Efficient Scheme for Accurate Conformational Energies of Organic Molecules. ChemPhysChem. 2019, 20, 92-102. DOI: 10.1002/cphc.201801063 49. Dongré, A. R.; Jones, J. L.; Somogyi, Á.; Wysocki, V. H. Influence of Peptide Composition, Gas-Phase Basicity, and Chemical Modification on Fragmentation Efficiency: Evidence for the Mobile Proton Model. J. Am. Chem. Soc. 1996, 118, 8365-8374. DOI: 10.1021/ja9542193 50. Csonka, I. P.; Paizs, B.; Lendvay, G.; Suhai, S. Proton mobility in protonated peptides: a joint molecular orbital and RRKM study. Rapid Commun. Mass Spectrom. 2000, 14, 417-431. DOI: 10.1002/(SICI)1097-0231(20000331)14:6<417::AID-RCM885>3.0.CO;2-J 51. Spezia, R.; Salpin, J.-Y.; Gaigeot, M.-P.; Hase, W. L.; Song, K. Protonated Urea Collision-Induced Dissociation. Comparison of Experiments and Chemical Dynamics Simulations. J. Phys. Chem. A. 2009, 113, 13853-13862. DOI: 10.1021/ jp906482v 52. Jeanvoine, Y.; Gaigeot, M.-P.; Hase, W. L.; Song, K.; Spezia, R. Collision induced dissociation of protonated urea with N2: Effects of rotational energy on reactivity and energy transfer via chemical dynamics simulations. Int. J. Mass Spectrom. 2011, 308, 289-298. DOI: 10.1016/j.ijms.2011.07.029 53. Rodríguez-Fernández, R.; Vázquez, S. A.; Martínez-Núñez, E. Collision-induced dissociation mechanisms of [Li(uracil)]+. Phys. Chem. Chem. Phys. 2013, 15, 7628-7637. DOI: 10.1039/C3CP50564B 54. Rossich Molina, E.; Ortiz, D.; Salpin, J.-Y.; Spezia, R. Elucidating collision induced dissociation products and reaction mechanisms of protonated uracil by coupling chemical dynamics simulations with tandem mass spectrometry experiments. J. Mass Spectrom. 2015, 50, 1340-1351. DOI: 10.1002/jms.3704 55. Ortiz, D.; Salpin, J.-Y.; Song, K.; Spezia, R. Galactose-6-Sulfate collision induced dissociation using QM + MM chemical dynamics simulations and ESI-MS/MS experiments. Int. J. Mass Spectrom. 2014, 358, 25-35. DOI: 10.1016/j.ijms. 2013.11.002 56. Spezia, R.; Lee, S. B.; Cho, A.; Song, K. Collision-induced dissociation mechanisms of protonated penta- and octa-glycine as revealed by chemical dynamics simulations. Int. J. Mass Spectrom. 2015, 392, 125-138. DOI: 10.1016/j.ijms.2015.10.001 57. Spezia, R.; Martens, J.; Oomens, J.; Song, K. Collision-induced dissociation pathways of protonated Gly2NH2 and Gly3NH2 in the short time-scale limit by chemical dynamics and ion spectroscopy. Int. J. Mass Spectrom. 2015, 388, 40-52. DOI: 10.1016/j.ijms.2015.07.025 58. Spezia, R.; Martin-Somer, A.; Macaluso, V.; Homayoon, Z.; Pratihar, S.; Hase, W. L. Unimolecular dissociation of peptides: statistical vs. non-statistical fragmentation mechanisms and time scales. Faraday Discuss. 2016, 195, 599-618. DOI: 10.1039/ C6FD00126B 59. Martin-Somer, A.; Martens, J.; Grzetic, J.; Hase, W. L.; Oomens, J.; Spezia, R. Unimolecular Fragmentation of Deprotonated Diproline [Pro2-H]− Studied by Chemical Dynamics Simulations and IRMPD Spectroscopy. J. Phys. Chem. A. 2018, 122, 2612-2625. DOI: 10.1021/acs.jpca.7b11873 60. Thermo Fisher Scientific Inc. PSB 104 Normalized Collision Energy Technology. 2009. http://tools.thermofisher.com/content/sfs/brochures/PSB104-Normalized-Collision-Energy-Technology-EN.pdf (accessed 2025-05-22). 61. de Sainte Claire, P.; Hase, W. L. Thresholds for the Collision-Induced Dissociation of Clusters by Rare Gas Impact. J. Phys. Chem. 1996, 100, 8190-8196. DOI: 10.1021/jp953622t 62. Taiwan Computing Cloud. 台灣杉三號—使用說明. 2024. https://man.twcc.ai/ @TWCC-III-manual/H1bEXeGcu (accessed 2025-05-22). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100987 | - |
| dc.description.abstract | 碰撞誘導解離串聯質譜(CID-MS/MS)是未知小分子化學結構鑑定(CSI)的重要工具。然而,在非鏢向研究中,多達98%的光譜仍未被註釋。基於機器學習(ML)的CSI軟體效能常受限於訓練資料稀缺與儀器特異性,導致十年來Top-1鑑定的準確率停滯不前。一個有前景的解決方案是通過模擬多樣與罕見的化合物光譜來擴展資料集。
在本研究中,我們提出Hybrid QC,一個基於物理的混合量子化學方法,能夠實現完全自動化、端到端的ESI-CID-MS/MS光譜預測。該方法僅需少量數據校準即可適應特定儀器,確保跨不同實驗設置的靈活性。對涵蓋了CASMI 2022資料集中95.4%化學結構超類別的40個分子進行測試時,Hybrid QC在三個歸一化碰撞能量下實現44.51%的平均餘弦相似度,較最先進的ML模型CFM-ID 4.0相對提升13.6%。Hybrid QC在具有剛性骨架、高雜原子含量與強分子內氫鍵的化合物上有明顯的預測優勢。在高碰撞能量下預測表現也特別優異,得益於其能準確模擬複雜的斷裂機制。 雖然將Hybrid QC整合到基於SIRIUS的重排序流程中顯示,改進光譜預測的精準度本身未必能直接提升Top-1鑑定率,Hybrid QC仍然為有效的候選優先排序提供了可解釋性的基礎。更重要的是,其基於物理的基礎使得光譜預測不再受限於可用實驗資料、檢測窗口與儀器差異的限制。通過克服ML方法面臨的資料稀缺等瓶頸,Hybrid QC為擴展CID-MS/MS資料庫與在複雜組學研究領域中鑑定多樣且罕見的化合物提供了強大且可擴展的平台。 | zh_TW |
| dc.description.abstract | Collision-induced dissociation tandem mass spectrometry (CID-MS/MS) is an essential tool for the chemical structural identification (CSI) of unknown small molecules. However, up to 98% of spectra in untargeted studies remain unannotated. Machine learning (ML)-based software for CSI often suffers from training data scarcity and instrument-specific variability, leading to a decade-long stagnation in Top-1 identification accuracy. One promising solution is to expand datasets by simulating spectra of chemically diverse and rare compounds.
Here, we present Hybrid QC, a physics-based hybrid quantum chemistry workflow that enables fully automated, end-to-end ESI-CID-MS/MS spectral prediction. The protocol requires only a few-shot calibration to adapt to specific instruments, ensuring flexible application across different experimental setups. When benchmarked on a curated test set of 40 molecules covering 95.4% of CASMI 2022 dataset chemical superclasses, Hybrid QC achieved an average cosine similarity of 44.51% across three normalized collision energies, representing a 13.6% relative improvement compared to the state-of-the-art ML model CFM-ID 4.0. Hybrid QC demonstrated particular strengths for compounds with rigid frameworks, high heteroatom content, and strong intramolecular hydrogen bonding, and was especially effective at high collision energies, accurately modeling complex fragmentation mechanisms. Although the integration of Hybrid QC into a SIRIUS-based re-ranking workflow demonstrates that improved spectral predictions alone do not always lead to higher top-1 identification rates, Hybrid QC nonetheless provides an interpretable foundation for effective candidate prioritization. Importantly, its physics-based foundation enables spectral prediction unconstrained by the limitations of available experimental data, detection windows, and instrument variability. By overcoming the data scarcity bottleneck faced by ML-based approaches, Hybrid QC offers a robust and scalable platform for spectral database expansion and the reliable identification of chemically diverse and rare compounds across complex omics research domains. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:22:02Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-11-26T16:22:02Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
謝辭 ii 中文摘要 iii 英文摘要 Abstract iv 目次 Table of Contents vi 圖次 List of Figures viii 表次 List of Tables x 1 Introduction 1 2 Methodology 5 2.1 Overview of ESI-CID-MS/MS Simulation Workflow 6 2.2 Dataset and Molecule Selection 8 2.3 Construction of Protonated Adduct Structures 12 2.4 Simulation of Adduct Fragmentation Using QCxMS 14 2.5 Prediction of ESI-CID-MS/MS using CFM-ID 27 3 Results 28 3.1 Performance of Hybrid QC for the Training Set 29 3.2 Comparison Between Hybrid QC and CFM-ID for the Training Set 29 3.3 Performance of Hybrid QC for the Testing Set 34 3.4 Comparison Between Hybrid QC and CFM-ID for the Testing Set 34 4 Discussion 36 4.1 Factors Underlying the Variability in Molecular Predictive Accuracy 36 4.1.1 Molecule 104 36 4.1.2 Molecule 117 38 4.1.3 Molecule 201 39 4.1.4 Molecule 271 41 4.1.5 Molecule 170 43 4.1.6 Molecule 63 47 4.1.7 Molecule 291 52 4.1.8 Molecule 309 54 4.1.9 Molecule 310 57 4.1.10 Molecule 163, 219, 407, 465, and 469 59 4.2 Impact of Collision Energy on Simulation Performance 61 4.3 Impact of Molecular Features on Simulation Performance 62 4.4 Comparison of Methods and Application Prospects 68 4.5 Evaluation of Hybrid QC-Assisted Chemical Structure Identification 69 5 Future Work 73 6 Conclusion 74 7 Acknowledgments 76 8 References 77 9 Appendix 86 | - |
| dc.language.iso | en | - |
| dc.subject | 碰撞誘導解離(CID) | - |
| dc.subject | 串聯質譜(MS/MS) | - |
| dc.subject | 化學結構鑑定(CSI) | - |
| dc.subject | 量子化學(QC) | - |
| dc.subject | 少樣本預測 | - |
| dc.subject | Collision-induced dissociation (CID) | - |
| dc.subject | Tandem mass spectrometry (MS/MS) | - |
| dc.subject | Chemical structural identification (CSI) | - |
| dc.subject | Quantum chemistry (QC) | - |
| dc.subject | Few-shot prediction | - |
| dc.title | 利用混合量子化學方法少樣本預測小分子碰撞誘導解離串聯質譜 | zh_TW |
| dc.title | Few-Shot Prediction of Small Molecule Collision-Induced Dissociation Tandem Mass Spectra Using Hybrid Quantum Chemical Methods | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 鄭原忠;楊小青 | zh_TW |
| dc.contributor.oralexamcommittee | Yuan-Chung Cheng;Hsiao-Ching Yang | en |
| dc.subject.keyword | 碰撞誘導解離(CID),串聯質譜(MS/MS)化學結構鑑定(CSI)量子化學(QC)少樣本預測 | zh_TW |
| dc.subject.keyword | Collision-induced dissociation (CID),Tandem mass spectrometry (MS/MS)Chemical structural identification (CSI)Quantum chemistry (QC)Few-shot prediction | en |
| dc.relation.page | 91 | - |
| dc.identifier.doi | 10.6342/NTU202504503 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-10-02 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf 未授權公開取用 | 7.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
