請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100981完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳中平 | zh_TW |
| dc.contributor.advisor | Chung-Ping Chen | en |
| dc.contributor.author | 林禹丞 | zh_TW |
| dc.contributor.author | Yu-Chen Lin | en |
| dc.date.accessioned | 2025-11-26T16:20:40Z | - |
| dc.date.available | 2025-11-27 | - |
| dc.date.copyright | 2025-11-26 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-10-13 | - |
| dc.identifier.citation | [1] The Latest Mental Health Statistics: What the Numbers Say About the State of Our Minds in 2024 | Huntington Psychological Services. https://huntingtonpsych.com/ the-latest-mental-health-statistics-what-the-numbers-say-about-the-state-of-our- minds-in-2024.
[2] Deborah S. Hasin, Aaron L. Sarvet, Jacquelyn L. Meyers, Tulshi D. Saha, W. June Ruan, Malka Stohl, and Bridget F. Grant. Epidemiology of Adult DSM-5 Major Depressive Disorder and Its Specifiers in the United States. JAMA Psychiatry, 75(4):336–346, April 2018. [3] Ronald C. Kessler, Patricia Berglund, Olga Demler, Robert Jin, Doreen Koretz, Kathleen R. Merikangas, A. John Rush, Ellen E. Walters, and Philip S. Wang. The Epidemiology of Major Depressive DisorderResults From the National Comorbidity Survey Replication (NCS-R). JAMA, 289(23):3095–3105, June 2003. [4] Michael Berk, Ole Köhler-Forsberg, Megan Turner, Brenda W.J.H. Penninx, Anna Wrobel, Joseph Firth, Amy Loughman, Nicola J. Reavley, John J. McGrath, Na- talie C. Momen, Oleguer Plana-Ripoll, Adrienne O’Neil, Dan Siskind, Lana J. Williams, Andre F. Carvalho, Lianne Schmaal, Adam J. Walker, Olivia Dean, Ken Walder, Lesley Berk, Seetal Dodd, Alison R. Yung, and Wolfgang Marx. Comorbidity between major depressive disorder and physical diseases: A comprehensive review of epidemiology, mechanisms and management. World Psychiatry, 22(3):366– 387, 2023. [5] G. W. Blair-West, G. W. Mellsop, and M. L. Eyeson-Annan. Down-rating lifetime suicide risk in major depression. Acta Psychiatr Scand, 95(3):259–263, March 1997. [6] Johan Lundberg, Thomas Cars, Erik Lampa, Katarina Ekholm Selling, Amy Leval, Anna Gannedahl, Mikael Själin, Carl Björkholm, and Clara Hellner. Determinants and Outcomes of Suicidal Behavior Among Patients With Major Depressive Disorder. JAMA Psychiatry, 80(12):1218–1225, December 2023. [7] Staff Writer | March 1 and 2023. How Patients with Major Depressive Disorder and Bipolar Disorder Attempt Suicide. [8] Bradley N. Gaynes, Linda Lux, Gerald Gartlehner, Gary Asher, Valerie Forman- Hoffman, Josh Green, Erin Boland, Rachel P. Weber, Charli Randolph, Carla Bann, Emmanuel Coker-Schwimmer, Meera Viswanathan, and Kathleen N. Lohr. Defining treatment-resistant depression. Depression and Anxiety, 37(2):134–145, 2020. [9] Giuseppe Maina, Marina Adami, Giuseppe Ascione, Emi Bondi, Domenico De Berardis, Dario Delmonte, Silvia Maffezzoli, Giovanni Martinotti, Alessandra Nivoli, Elena Ottavianelli, Tiziano Acciavatti, Umberto Albert, Sara Andreoli, Ileana Andri- ola, Fausto Antonielli Romanini, Roberta Bassetti, Francesca Bettini, Graziella Boi, Paolo Cacciani, Paola Calò, Alessandro Carano, Ilaria Casolaro, Stefania Chiappini, Paola Clemente, Virginia D’Ambrosio, Giacomo d’Andrea, Tiziana Dario, Pasquale De Fazio, Renato de Filippis, Francesco Di Carlo, Marco Di Nicola, Luca Di Paolo, Giampaolo Di Piazza, Gabriele Di Salvo, Monica Fiori, Alessandro Gentile, Matteo Lupi, Mirko Manchia, Matteo Marcatili, Livio Marchiaro, Vassilis Martiadis, Giu- lia Menculini, Giovanni Migliarese, Gaetano Nappi, Domenica Nucifora, Miriam Olivola, Claudia Palumbo, Elena Paschetta, Ettore Pasculli, Enrico Pessina, Federica Pinna, Marianna Pinto, Davide Piu, Donato Gerolamo Posadinu, Fabiola Raffone, Valerio Ricci, Ilario Ritacco, Gianluca Rosso, Elisa Simonini, Antonio Ventriglio, Andrea Fagiolini, and the Delphi Panel Collaboration Group. Nationwide consen- sus on the clinical management of treatment-resistant depression in Italy: A Delphi panel. Annals of General Psychiatry, 22(1):48, November 2023. [10] A. John Rush, Madhukar H. Trivedi, Stephen R. Wisniewski, Andrew A. Nierenberg, Jonathan W. Stewart, Diane Warden, George Niederehe, Michael E. Thase, Philip W. Lavori, Barry D. Lebowitz, Patrick J. McGrath, Jerrold F. Rosenbaum, Harold A. Sackeim, David J. Kupfer, James Luther, and Maurizio Fava. Acute and Longer- Term Outcomes in Depressed Outpatients Requiring One or Several Treatment Steps: A STAR*D Report. AJP, 163(11):1905–1917, November 2006. [11] H. Edmund Pigott, Thomas Kim, Colin Xu, Irving Kirsch, and Jay Amsterdam. What are the treatment remission, response and extent of improvement rates after up to four trials of antidepressant therapies in real-world depressed patients? A reanalysis of the STAR*D study’s patient-level data with fidelity to the original research protocol. BMJ Open, 13(7):e063095, July 2023. [12] Allitia DiBernardo, Xiwu Lin, Qiaoyi Zhang, Jim Xiang, Lang Lu, Carol Jamieson, Carmela Benson, Kwan Lee, Robert Bodén, Lena Brandt, Philip Brenner, Johan Reutfors, and Gang Li. Humanistic outcomes in treatment resistant depression: A secondary analysis of the STAR*D study. BMC Psychiatry, 18(1):352, October 2018. [13] Cheng-Ta Li. Treatment-Resistant Depression. Part A. Progress in Brain Research ; .278. Elsevier, Amsterdam, Netherlands ;, first edition. edition, 2023. [14] Shashi B. Singh, Atit Tiwari, Maanya R. Katta, Riju Kafle, Cyrus Ayubcha, Kr- ishna H. Patel, Yash Bhattarai, Thomas J. Werner, Abass Alavi, and Mona-Elisabeth Revheim. The utility of PET imaging in depression. Front Psychiatry, 15:1322118, April 2024. [15] Cheng-Ta Li, Tung-Ping Su, Shyh-Jen Wang, Pei-Chi Tu, and Jen-Chuen Hsieh. Prefrontal glucose metabolism in medication-resistant major depression. Br J Psychiatry, 206(4):316–323, April 2015. [16] María C Alonso, José A Malpica, and Alex Martínez de Agirre. CONSEQUENCES OF THE HUGHES PHENOMENON ON SOME CLASSIFICATION TECHNIQUES. 2011. [17] Osval Antonio Montesinos López, Abelardo Montesinos López, and Jose Crossa. Overfitting, Model Tuning, and Evaluation of Prediction Performance. In Osval An- tonio Montesinos López, Abelardo Montesinos López, and José Crossa, editors, Multivariate Statistical Machine Learning Methods for Genomic Prediction, pages 109–139. Springer International Publishing, Cham, 2022. [18] Overfitting in linear feature extraction for classification of high- dimensional image data. https:// www.researchgate.net/ publication/ 285672802_Overfitting_in_linear_feature_extraction_for_classification_of_high- dimensional_image_data. [19] Principal Component Analysis (PCA) Algorithm - Amazon SageMaker AI. https:// docs.aws.amazon.com/sagemaker/latest/dg/pca.html. [20] Faizan Riyaz Mulla and Dr Anil Kumar Gupta. A Review Paper on Dimensionality Reduction Techniques. Journal of Pharmaceutical Negative Results, pages 1263– 1272, September 2022. [21] Jie Cai, Jiawei Luo, Shulin Wang, and Sheng Yang. Feature selection in machine learning: A new perspective. Neurocomputing, 300:70–79, July 2018. [22] 周信頤. 基於 FDG-PET 與機器學習量化重度憂鬱症患者之臨床嚴重性及關鍵腦區特徵剖析. 臺灣大學生醫電子與資訊學研究所學位論文, pages 1–78, January 2024. [23] 陳民嶧. 基於機器學習與深度學習之 FDG-PET 腦造影分類模型基於重度憂鬱症之診斷. 臺灣大學電子工程學研究所學位論文, pages 1–51, January 2022. [24] Andrew Cwiek, Sarah M. Rajtmajer, Bradley Wyble, Vasant Honavar, Emily Gross- ner, and Frank G. Hillary. Feeding the machine: Challenges to reproducible predictive modeling in resting-state connectomics. Netw Neurosci, 6(1):29–48, February 2022. [25] Norihide Maikusa, Yoko Shigemoto, Emiko Chiba, Yukio Kimura, Hiroshi Matsuda, and Noriko Sato. Harmonized Z-Scores Calculated from a Large-Scale Normal MRI Database to Evaluate Brain Atrophy in Neurodegenerative Disorders. J Pers Med, 12(10):1555, September 2022. [26] Malte S. Depping, Mike M. Schmitgen, Katharina M. Kubera, and Robert C. Wolf. Cerebellar Contributions to Major Depression. Front Psychiatry, 9:634, 2018. [27] Lauren Atkinson, Anjali Sankar, Tracey M. Adams, and C. Fu. Recent Advances in Neuroimaging of Mood Disorders: Structural and Functional Neural Correlates of Depression, Changes with Therapy, and Potential for Clinical Biomarkers. Current Treatment Options in Psychiatry, 1(3):278–293, July 2014. [28] Chao-Gan Yan, Xiao Chen, Le Li, Francisco Xavier Castellanos, Tong-Jian Bai, Qi- Jing Bo, Jun Cao, Guan-Mao Chen, Ning-Xuan Chen, Wei Chen, Chang Cheng, Yu-Qi Cheng, Xi-Long Cui, Jia Duan, Yi-Ru Fang, Qi-Yong Gong, Wen-Bin Guo, Zheng-Hua Hou, Lan Hu, Li Kuang, Feng Li, Kai-Ming Li, Tao Li, Yan-Song Liu, Zhe-Ning Liu, Yi-Cheng Long, Qing-Hua Luo, Hua-Qing Meng, Dai-Hui Peng, Hai-Tang Qiu, Jiang Qiu, Yue-Di Shen, Yu-Shu Shi, Chuan-Yue Wang, Fei Wang, Kai Wang, Li Wang, Xiang Wang, Ying Wang, Xiao-Ping Wu, Xin-Ran Wu, Chun- Ming Xie, Guang-Rong Xie, Hai-Yan Xie, Peng Xie, Xiu-Feng Xu, Hong Yang, Jian Yang, Jia-Shu Yao, Shu-Qiao Yao, Ying-Ying Yin, Yong-Gui Yuan, Ai-Xia Zhang, Hong Zhang, Ke-Rang Zhang, Lei Zhang, Zhi-Jun Zhang, Ru-Bai Zhou, Yi-Ting Zhou, Jun-Juan Zhu, Chao-Jie Zou, Tian-Mei Si, Xi-Nian Zuo, Jing-Ping Zhao, and Yu-Feng Zang. Reduced default mode network functional connectivity in patients with recurrent major depressive disorder. Proceedings of the National Academy of Sciences, 116(18):9078–9083, April 2019. [29] Bart P. de Kwaasteniet, Maria M. Rive, Henricus G. Ruhé, Aart H. Schene, Dick J. Veltman, Lisanne Fellinger, Guido A. van Wingen, and Damiaan Denys. Decreased Resting-State Connectivity between Neurocognitive Networks in Treatment Resistant Depression. Front. Psychiatry, 6, March 2015. [30] He Z, Cui Q, Zheng J, Duan X, Pang Y, Gao Q, Han S, Long Z, Wang Y, Li J, Wang X, Zhao J, and Chen H. Frequency-specific alterations in functional connectivity in treatment-resistant and sensitive major depressive disorder. Journal of psychiatric research, 82, November 2016. [31] Jifei Sun, Yue Ma, Limei Chen, Zhi Wang, Chunlei Guo, Yi Luo, Deqiang Gao, Xiaojiao Li, Ke Xu, Yang Hong, Xiaobing Hou, Jing Tian, Xue Yu, Hongxing Wang, Jiliang Fang, and Xue Xiao. Altered Brain Function in Treatment-Resistant and Non-treatment-resistant Depression Patients: A Resting-State Functional Magnetic Resonance Imaging Study. Front. Psychiatry, 13, July 2022. [32] Wen-bin Guo, Feng Liu, Jin-dong Chen, Keming Gao, Zhi-min Xue, Xi-jia Xu, Ren- rong Wu, Chang-lian Tan, Xue-li Sun, Zhe-ning Liu, Hua-fu Chen, and Jing-ping Zhao. Abnormal neural activity of brain regions in treatment-resistant and treatment- sensitive major depressive disorder: A resting-state fMRI study. J Psychiatr Res, 46(10):1366–1373, October 2012. [33] Georgine Accrombessi, Laurent Galineau, Clovis Tauber, Sophie Serrière, Esteban Moyer, Bruno Brizard, Anne-Marie Le Guisquet, Alexandre Surget, and Catherine Belzung. An ecological animal model of subthreshold depression in adolescence: Behavioral and resting state 18F-FDG PET imaging characterization. Transl Psychiatry, 12(1):356, September 2022. [34] Jin-Feng Wen, Xin-Wen Guo, Xiang-Yi Cao, Ji-Wu Liao, Ping Ma, Xiang-Shu Hu, and Ji-Yang Pan. A PET imaging study of the brain changes of glucose metabolism in patients with temporal lobe epilepsy and depressive disorder. BMC Medical Imaging, 21(1):33, February 2021. [35] Vladimir Belov, Tracy Erwin-Grabner, Moji Aghajani, Andre Aleman, Alyssa R. Amod, Zeynep Basgoze, Francesco Benedetti, Bianca Besteher, Robin Bülow, Christopher R. K. Ching, Colm G. Connolly, Kathryn Cullen, Christopher G. Davey, Danai Dima, Annemiek Dols, Jennifer W. Evans, Cynthia H. Y. Fu, Ali Saffet Gonul, Ian H. Gotlib, Hans J. Grabe, Nynke Groenewold, J. Paul Hamilton, Ben J. Harrison, Tiffany C. Ho, Benson Mwangi, Natalia Jaworska, Neda Jahanshad, Bonnie Klimes- Dougan, Sheri-Michelle Koopowitz, Thomas Lancaster, Meng Li, David E. J. Lin- den, Frank P. MacMaster, David M. A. Mehler, Elisa Melloni, Bryon A. Mueller, Amar Ojha, Mardien L. Oudega, Brenda W. J. H. Penninx, Sara Poletti, Edith Pomarol-Clotet, Maria J. Portella, Elena Pozzi, Liesbeth Reneman, Matthew D. Sac- chet, Philipp G. Sämann, Anouk Schrantee, Kang Sim, Jair C. Soares, Dan J. Stein, Sophia I. Thomopoulos, Aslihan Uyar-Demir, Nic J. A. van der Wee, Steven J. A. van der Werff, Henry Völzke, Sarah Whittle, Katharina Wittfeld, Margaret J. Wright, Mon-Ju Wu, Tony T. Yang, Carlos Zarate, Dick J. Veltman, Lianne Schmaal, Paul M. Thompson, and Roberto Goya-Maldonado. Multi-site benchmark classification of major depressive disorder using machine learning on cortical and subcortical measures. Sci Rep, 14(1):1084, January 2024. [36] Qinghe Li, Fanghui Dong, Qun Gai, Kaili Che, Heng Ma, Feng Zhao, Tongpeng Chu, Ning Mao, and Peiyuan Wang. Diagnosis of Major Depressive Disorder Using Machine Learning Based on Multisequence MRI Neuroimaging Features. J Magn Reson Imaging, 58(5):1420–1430, November 2023. [37] Pantea Moghimi, Anh The Dang, Theoden I. Netoff, Kelvin O. Lim, and Gowtham Atluri. A Review on MR Based Human Brain Parcellation Methods, July 2021. [38] Fatma E. A. El-Gamal, Mohammed M. Elmogy, Mohammed Ghazal, Ahmed Atwan, Manuel F. Casanova, Gregory N. Barnes, Robert Keynton, Ayman S. El-Baz, and Ashraf Khalil. A Novel Early Diagnosis System for Mild Cognitive Impairment Based on Local Region Analysis: A Pilot Study. Front Hum Neurosci, 11:643, January 2018. [39] Tim M. Tierney, Nicholas A. Alexander, Nicole Labra Avila, Yael Balbastre, Gareth Barnes, Yulia Bezsudnova, Mikael Brudfors, Korbinian Eckstein, Guillaume Flandin, Karl Friston, Amirhossein Jafarian, Olivia S. Kowalczyk, Vladimir Litvak, Johan Medrano, Stephanie Mellor, George O’Neill, Thomas Parr, Adeel Razi, Ryan Timms, and Peter Zeidman. SPM 25: Open source neuroimaging analysis software, January 2025. [40] C. K. Kim, N. C. Gupta, B. Chandramouli, and A. Alavi. Standardized uptake values of FDG: Body surface area correction is preferable to body weight correction. J Nucl Med, 35(1):164–167, January 1994. [41] How Does Dimensionality Reduction Improve Data Analysis? https:// www.alltius.ai/glossary/what-is-dimensionality-reduction. [42] PCA. https:// scikit-learn/ stable/ modules/ generated/ sklearn.decomposition.PCA.html. [43] Alireza Akhbardeh and Michael A. Jacobs. Comparative analysis of nonlinear dimensionality reduction techniques for breast MRI segmentation. Med Phys, 39(4):2275–2289, April 2012. [44] What is Locally Linear Embedding (LLE). https://www.activeloop.ai/resources/ glossary/locally-linear-embedding-lle/. [45] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A Next-generation Hyperparameter Optimization Framework, July 2019. [46] Gauri Darekar, Taslim Murad, Hui-Yuan Miao, Deepa S. Thakuri, Alzheimer’s Disease Neuroimaging Initiative, and Ganesh B. Chand. AgeNet-SHAP: An explainable AI approach for optimally mapping multivariate regional brain age and clinical severity patterns in Alzheimer’s disease. medRxiv, page 2025.02.28.25323097, March 2025. [47] Anruo Shen, Jingnan Sun, Xiaogang Chen, and Xiaorong Gao. A data-centric and interpretable EEG framework for depression severity grading using SHAP-based insights. J Neuroeng Rehabil, 22:116, May 2025. [48] 1.4. Support Vector Machines. https://scikit-learn/stable/modules/svm.html. [49] SVC. https://scikit-learn/stable/modules/generated/sklearn.svm.SVC.html. [50] LogisticRegression. https:// scikit-learn/ stable/ modules/ generated/ sklearn.linear_model.LogisticRegression.html. [51] KNeighborsClassifier. https:// scikit-learn/ stable/ modules/ generated/ sklearn.neighbors.KNeighborsClassifier.html. [52] Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. pages 785–794, August 2016. [53] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017. [54] HistGradientBoostingClassifier. https:// scikit-learn/ stable/ modules/ generated/ sklearn.ensemble.HistGradientBoostingClassifier.html. [55] Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. CatBoost: Gradient boosting with categorical features support, October 2018. [56] Zhuqing Long, Jinchang Huang, Bo Li, Zuojia Li, Zihao Li, Hongwen Chen, and Bin Jing. A Comparative Atlas-Based Recognition of Mild Cognitive Impairment With Voxel-Based Morphometry. Front Neurosci, 12:916, December 2018. [57] Shaquia L. Idlett-Ali, Claudia A. Salazar, Marcus S. Bell, E. Baron Short, and Nathan C. Rowland. Neuromodulation for treatment-resistant depression: Func- tional network targets contributing to antidepressive outcomes. Front Hum Neurosci, 17:1125074, March 2023. [58] Wei Cheng, Edmund T. Rolls, Jiang Qiu, Deyu Yang, Hongtao Ruan, Dongtao Wei, Libo Zhao, Jie Meng, Peng Xie, and Jianfeng Feng. Functional Connectivity of the Precuneus in Unmedicated Patients With Depression. Biol Psychiatry Cogn Neurosci Neuroimaging, 3(12):1040–1049, December 2018. [59] Shintaro Kawakami, Naohiro Okada, Yoshihiro Satomura, Eimu Shoji, Shunsuke Mori, Masahiro Kiyota, Favour Omileke, Yu Hamamoto, Susumu Morita, Daisuke Koshiyama, Mika Yamagishi, Eisuke Sakakibara, Shinsuke Koike, and Kiyoto Ka- sai. Frontal pole-precuneus connectivity is associated with a discrepancy between self-rated and observerrated depression severity in mood disorders: A resting-state functional magnetic resonance imaging study. Cereb Cortex, 34(7):bhae284, July 2024. [60] Mayanja M. Kajumba, Angelina Kakooza-Mwesige, Noeline Nakasujja, Deborah Koltai, and Turhan Canli. Treatment-resistant depression: Molecular mechanisms and management. Mol Biomed, 5:43, October 2024. [61] Diane Sliz and Shawn Hayley. Major Depressive Disorder and Alterations in Insular Cortical Activity: A Review of Current Functional Magnetic Imaging Research. Front Hum Neurosci, 6:323, December 2012. [62] H. Geugies, E. M. Opmeer, J. B. C. Marsman, C. A. Figueroa, M. J. van Tol, L. Schmaal, N. J. A. van der Wee, A. Aleman, B. W. J. H. Penninx, D. J. Veltman, R. A. Schoevers, and H. G. Ruhé. Decreased functional connectivity of the insula within the salience network as an indicator for prospective insufficient response to antidepressants. NeuroImage: Clinical, 24:102064, January 2019. [63] Tsutomu Takahashi, Daiki Sasabayashi, Murat Yücel, Sarah Whittle, Valentina Lorenzetti, Mark Walterfang, Michio Suzuki, Christos Pantelis, Gin S. Malhi, and Nicholas B. Allen. Different Frequency of Heschl’s Gyrus Duplication Patterns in Neuropsychiatric Disorders: An MRI Study in Bipolar and Major Depressive Disorders. Front Hum Neurosci, 16:917270, June 2022. [64] Cheng-Ta Li, Shyh-Jen Wang, Jussi Hirvonen, Jen-Chuen Hsieh, Ya-Mei Bai, Chen- Jee Hong, Ying-Jay Liou, and Tung-Ping Su. Antidepressant mechanism of add-on repetitive transcranial magnetic stimulation in medication-resistant depression using cerebral glucose metabolism. J Affect Disord, 127(1-3):219–229, December 2010. [65] Huanhuan Li, Hu Liu, Yanqing Tang, Rongkai Yan, Xiaowei Jiang, Guoguang Fan, and Wenge Sun. Decreased Functional Connectivity of Vermis-Ventral Prefrontal Cortex in Bipolar Disorder. Front. Hum. Neurosci., 15, July 2021. [66] T. Yamamura, Y. Okamoto, G. Okada, Y. Takaishi, M. Takamura, A. Mantani, A. Kurata, Y. Otagaki, H. Yamashita, and S. Yamawaki. Association of thalamic hyperactivity with treatment-resistant depression and poor response in early treatment for major depression: A resting-state fMRI study using fractional amplitude of low-frequency fluctuations. Transl Psychiatry, 6(3):e754–e754, March 2016. [67] Lifei Wang, Pengfei Zhao, Jing Zhang, Ran Zhang, Juan Liu, Jia Duan, Xizhe Zhang, Rongxin Zhu, and Fei Wang. Functional connectivity between the cerebellar vermis and cerebrum distinguishes early treatment response for major depressive episodes in adolescents. J Affect Disord, 339:256–263, October 2023. [68] Jinhui Li, Yuheng Tan, Zixin Zheng, Chunliang Feng, Wenjie Fang, Xiaodan Huang, Song Lin, Kwok-Fai So, Lu Huang, Chaoran Ren, and Qian Tao. Reduced neural suppression at occipital cortex in subthreshold depression. Transl Psychiatry, 15(1):220, July 2025. [69] You Xu, Yajie Wang, Nannan Hu, Lili Yang, Zhenghe Yu, Li Han, Qianqian Xu, Jingjing Zhou, Ji Chen, Hongjing Mao, and Yafeng Pan. Intrinsic Organization of Occipital Hubs Predicts Depression: A Resting-State fNIRS Study. Brain Sci, 12(11):1562, November 2022. [70] Yao Xiao, Fay Y. Womer, Shuai Dong, Rongxin Zhu, Ran Zhang, Jingyu Yang, Luheng Zhang, Juan Liu, Weixiong Zhang, Zhongchun Liu, Xizhe Zhang, and Fei Wang. A neuroimaging-based precision medicine framework for depression. Asian J Psychiatr, 91:103803, January 2024. [71] Michael Koenigs and Jordan Grafman. The functional neuroanatomy of depression: Distinct roles for ventromedial and dorsolateral prefrontal cortex. Behav Brain Res, 201(2):239–243, August 2009. [72] Katharina Brosch, Frederike Stein, Tina Meller, Simon Schmitt, Dilara Yuksel, Kai Gustav Ringwald, Julia-Katharina Pfarr, Lena Waltemate, Hannah Lemke, Nils Opel, Susanne Meinert, Katharina Dohm, Dominik Grotegerd, Janik Goltermann, Jonathan Repple, Alexandra Winter, Andreas Jansen, Udo Dannlowski, Igor Nenadić, Tilo Kircher, and Axel Krug. DLPFC volume is a neural correlate of resilience in healthy high-risk individuals with both childhood maltreatment and familial risk for depression. Psychol Med, 52(16):4139–4145. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100981 | - |
| dc.description.abstract | 重度憂鬱症(MDD)對全球造成了嚴重的公共衛生負擔,其中難治型憂鬱症 (TRD)患者在經過多次治療後仍未見改善,其症狀持續且惡化,對患者生活品質 產生多方面負面影響。本研究旨在利用正子斷層掃描(FDG-PET)腦部影像與機 器學習方法,建立一個穩定且高準確度的 TRD 預測模型,同時分析關鍵腦區的功 能異常。
本研究從 315 名 MDD 患者中, 根據 Maudsley Staging Method-Treatment (MSM-T) 評分, 將其分為 TRD 組 (208 名) 與非 TRD 組 (107 名), 並納入 104 名健康對照組(HC)進行 Z-map 分析。我們透過 Z-map 分析,將每位患者的腦部代謝活動與 HC 樣本進行標準化比較,藉此量化特定腦區的異常程度。為了應對神經影像資料常見的「維度災難」與模型過度擬合問題,我們採用了主成分分析(PCA)、Isomap 和局部線性嵌入(LLE)等降維技術。此外,本研究也比 較了包含小腦的 AAL-116 腦圖譜與 AAL-90 腦圖譜的預測效能,以探討不同腦區 劃分對模型性能的影響。 結果顯示,本研究建立的機器學習模型在 TRD 預測任務上達到 81% 的準確率。值得注意的是,儘管 AAL-116 腦區特徵包含了小腦,其表現並未優於 AAL-90,這點為憂鬱症的腦區功能研究提供了新的見解。本研究提出的方法能有 效提升模型的泛化能力與臨床實用價值,為 TRD 的精準診斷與治療提供了更穩固的科學基礎,同時也為神經影像學與機器學習的跨領域研究開闢了新的方向。 | zh_TW |
| dc.description.abstract | Major Depressive Disorder (MDD) poses a significant global public health burden. Among these patients, those with treatment-resistant depression (TRD) experience per- sistent and worsening symptoms despite multiple treatment attempts, leading to various negative impacts on their quality of life. This study aims to use FDG-PET brain imaging and machine learning methods to build a stable and highly accurate TRD prediction model while also analyzing functional abnormalities in key brain regions.
Based on the Maudsley Staging Method-Treatment (MSM-T) score, we divided 315 MDD patients into a TRD group (208 individuals) and a non-TRD group (107 individu- als), and included 104 healthy controls (HC) for Z-map analysis. Through Z-map analysis, we standardized and compared each patient’s brain metabolic activity with HC samples to quantify the degree of abnormality in specific brain regions. To address the ”curse of dimensionality” and overfitting issues common in neuroimaging data, we employed di- mensionality reduction techniques such as Principal Component Analysis (PCA), Isomap, and Locally Linear Embedding (LLE). Additionally, this study compared the predictive performance of the AAL-116 brain atlas (which includes the cerebellum) with the AAL- 90 brain atlas to investigate the impact of different brain region parcellations on model performance. The results showed that the machine learning model developed in this study achieved an 81% accuracy rate for the TRD prediction task. Notably, although the AAL-116 brain atlas included cerebellar features, its performance was not superior to that of the AAL-90 atlas, which provides new insights for brain functional research in depression. The method proposed in this study effectively enhances the model’s generalization ability and clinical utility, offering a more solid scientific foundation for the precise diagnosis and treatment of TRD. It also opens up new directions for interdisciplinary research in neuroimaging and machine learning. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:20:40Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-11-26T16:20:40Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | - Verification Letter from the Oral Examination Committee . . . . . . . . . . . . . . . . . . . . . . . i
- Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . iii - 摘要 . . . . . . . . . . . . . . . . . . . . . . . v - Abstract . . . . . . . . . . . . . . . . . . . . . . . vii - Contents . . . . . . . . . . . . . . . . . . . . . . . ix - List of Figures . . . . . . . . . . . . . . . . . . . . . . . xiii - List of Tables . . . . . . . . . . . . . . . . . . . . . . . xv - Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 1 - 1.1 Major Depressive Disorder . . . . . . . . . . . . . . . . . . . . . . . 1 - 1.2 Treatment-Resistant Depression . . . . . . . . . . . . . . . . . . . . 2 - 1.3 Fluorodeoxyglucose Positron Emission Tomography . . . . . . . . . 3 - 1.4 Curse of Dimensionality and Overfitting . . . . . . . . . . . . . . . . 4 - 1.5 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 - Chapter 2 Previous Studies . . . . . . . . . . . . . . . . . . . . . . . 9 - 2.1 Brain Functional Abnormalities in Treatment-Resistant Depression . 9 - 2.2 Cerebellar Involvement in Depression . . . . . . . . . . . . . . . . . 10 - 2.2.1 Applications of 18 F-FDG-PET in Depression Research . . . . . . . 11 - 2.2.2 Applications of Machine Learning in Depression Analysis . . . . . 11 - 2.2.3 Brain Parcellation and Atlases . . . . . . . . . . . . . . . . . . . . 12 - 2.2.4 Aims and Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . 13 - Chapter 3 Imaging Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . 15 - 3.1 Subjects Recruitment . . . . . . . . . . . . . . . . . . . . . . . . . . 15 - 3.2 Psychiatric Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . 15 - 3.3 Demographics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 - Chapter 4 Methodology . . . . . . . . . . . . . . . . . . . . . . . 17 - 4.1 Methodology Overview . . . . . . . . . . . . . . . . . . . . . . . . 17 - 4.2 Image Preprocessing Workflow . . . . . . . . . . . . . . . . . . . . 18 - 4.3 Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . . . 19 - 4.3.1 Importance of Dimensionality Reduction . . . . . . . . . . . . . . . 19 - 4.3.2 Introduction to Dimensionality Reduction Methods . . . . . . . . . 19 - 4.4 Binary Classification and Feature Importance Analysis . . . . . . . . 21 - 4.5 Z-map Calculation Process and Significance . . . . . . . . . . . . . 25 - 4.5.1 Z-map Definition and Advantages . . . . . . . . . . . . . . . . . . 25 - 4.5.2 Calculation Process . . . . . . . . . . . . . . . . . . . . . . . . . . 25 - Chapter 5 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . 27 - 5.1 AAL-90 Model Performance on Binary Classification . . . . . . . . 27 - 5.2 AAL-116 Model Performance on Binary Classification . . . . . . . . 28 - 5.3 SHAP Values Analysis of AAL-90 Ensemble Model and AAL-116 Ensemble Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 - 5.4 Z Map Analysis Visualization . . . . . . . . . . . . . . . . . . . . . 29 - Chapter 6 Discussion . . . . . . . . . . . . . . . . . . . . . . . 33 - Chapter 7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 41 - Chapter 8 Future Works . . . . . . . . . . . . . . . . . . . . . . . 43 - References . . . . . . . . . . . . . . . . . . . . . . . 45 | - |
| dc.language.iso | en | - |
| dc.subject | 頑固型憂鬱症 | - |
| dc.subject | 正子造影 | - |
| dc.subject | 特徵降維 | - |
| dc.subject | 機器學習 | - |
| dc.subject | 集成學習 | - |
| dc.subject | Treatment-Resistant Depression | - |
| dc.subject | Positron Emission Tomography | - |
| dc.subject | Dimensionality Reduction | - |
| dc.subject | Machine Learning | - |
| dc.subject | Ensemble Learning | - |
| dc.title | 基於 FDG-PET 和線性與非線性降維方法的機器學習之頑固型憂鬱症分類模型 | zh_TW |
| dc.title | A Machine Learning Model for Classifying Treatment-Resistant Depression Using FDG-PET with Linear and Nonlinear Dimensionality Reduction | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 李正達 | zh_TW |
| dc.contributor.coadvisor | Cheng-Ta Li | en |
| dc.contributor.oralexamcommittee | 林風;杜培基 | zh_TW |
| dc.contributor.oralexamcommittee | Phone Lin;Pei-Chi Tu | en |
| dc.subject.keyword | 頑固型憂鬱症,正子造影特徵降維機器學習集成學習 | zh_TW |
| dc.subject.keyword | Treatment-Resistant Depression,Positron Emission TomographyDimensionality ReductionMachine LearningEnsemble Learning | en |
| dc.relation.page | 58 | - |
| dc.identifier.doi | 10.6342/NTU202504535 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-10-14 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf 未授權公開取用 | 1.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
