Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100974
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉如熹zh_TW
dc.contributor.advisorRu-Shi Liuen
dc.contributor.author蘇庭怡zh_TW
dc.contributor.authorTing-Yi Suen
dc.date.accessioned2025-11-26T16:19:00Z-
dc.date.available2025-11-27-
dc.date.copyright2025-11-26-
dc.date.issued2025-
dc.date.submitted2025-10-14-
dc.identifier.citation1. von Kölliker, R. A. Mikroskopische Anatomie oder Gewebelehre des Menschen: Specielle Gewebelehre.; Volume I; Verlag von Wilhelm Engelmann, 1850.
2. Kennedy, E. P.; Lehninger, A. L. The Products of Oxidation of Fatty Acids by Isolated Rat Liver Mitochondria. J. Biol. Chem. 1950, 185, 275–285.
3. Frey, T. G.; Mannella, C. A. The Internal Structure of Mitochondria. Trends Biochem. Sci. 2000, 25, 319–324.
4. Harrington, J. S.; Ryter, S. W.; Plataki, M.; Price, D. R.; Choi, A. M. Mitochondria in Health, Disease, and Aging. Physiol. Rev. 2023, 103, 2349–2422.
5. Zhao, R. Z.; Jiang, S.; Zhang, L.; Yu, Z. B. Mitochondrial Electron Transport Chain, ROS Generation and Uncoupling. Int. J. Mol. Med. 2019, 44, 3–15.
6. Zhang, Y. Q.; Cao, Y.; Liu, Y.; Yang, Y. J.; Chen, M. M.; Gao, H.; Lin, L. S.; Chen, X. Y. Time-Resolved Luminescent Nanoprobes Based on Lanthanide Nucleotide Self-Assemblies for Alkaline Phosphatase Detection. Nano Res. 2023, 16, 11250–11258.
7. Guo, R.; Gu, J.; Zong, S.; Wu, M.; Yang, M. Structure and Mechanism of Mitochondrial Electron Transport Chain. Biomed. J. 2018, 41, 9–20.
8. Walker, J. E. The Atp Synthase: The Understood, the Uncertain and the Unknown. Biochem. Soc. Trans. 2013, 41, 1–16.
9. Picard, M.; Taivassalo, T.; Gouspillou, G.; Hepple, R. T. Mitochondria: Isolation, Structure and Function. Physiol. J. 2011, 589, 4413–4421.
10. Contreras, L.; Drago, I.; Zampese, E.; Pozzan, T. Mitochondria: The Calcium Connection. BBA Bioenergetics 2010, 1797, 607–618.
11. Rizzuto, R.; De Stefani, D.; Raffaello, A.; Mammucari, C. Mitochondria as Sensors and Regulators of Calcium Signalling. Nat. Rev. Mol. Cell Biol. 2012, 13, 566–578.
12. Gunter, T. E.; Yule, D. I.; Gunter, K. K.; Eliseev, R. A.; Salter, J. D. Calcium and Mitochondria. FEBS Lett. 2004, 567, 96–102.
13. Zorov, D. B.; Juhaszova, M.; Sollott, S. J. Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release. Physiol. Rev. 2014, 94, 909–950.
14. Tilokani, L.; Nagashima, S.; Paupe, V.; Prudent, J. Mitochondrial Dynamics: Overview of Molecular Mechanisms. Essays Biochem. 2018, 62, 341–360.
15. Hoppins, S. The Regulation of Mitochondrial Dynamics. Curr. Opin. Cell Biol. 2014, 29, 46–52.
16. Hiltunen, J. K.; Autio, K. J.; Schonauer, M. S.; Kursu, V. S.; Dieckmann, C. L.; Kastaniotis, A. J. Mitochondrial Fatty Acid Synthesis and Respiration. BBA Bioenergetics 2010, 1797, 1195–1202.
17. Li, Y.; Ma, Y.; Dang, Q.-Y.; Fan, X.-R.; Han, C.-T.; Xu, S.-Z.; Li, P.-Y. Assessment of Mitochondrial Dysfunction and Implications in Cardiovascular Disorders. Life Sci. 2022, 306, 120834.
18. Brand, M. D.; Nicholls, D. G. Assessing Mitochondrial Dysfunction in Cells. Biochem. J. 2011, 435, 297–312.
19. Wang, D. K.; Zheng, H. L.; Zhou, W. S.; Duan, Z. W.; Jiang, S. D.; Li, B.; Zheng, X. F.; Jiang, L. S. Mitochondrial Dysfunction in Oxidative Stress‐Mediated Intervertebral Disc Degeneration. Orthop. Surg. 2022, 14, 1569–1582.
20. Santos, R. X.; Correia, S. C.; Wang, X.; Perry, G.; Smith, M. A.; Moreira, P. I.; Zhu, X. A Synergistic Dysfunction of Mitochondrial Fission/Fusion Dynamics and Mitophagy in Alzheimer's Disease. J. Alzheimer's Dis. 2010, 20, S401–S412.
21. Wang, W.; Zhao, F.; Ma, X.; Perry, G.; Zhu, X. Mitochondria Dysfunction in the Pathogenesis of Alzheimer’s Disease: Recent Advances. Mol. Neurodegener. 2020, 15, 1–22.
22. Luo, Y.; Ma, J.; Lu, W. The Significance of Mitochondrial Dysfunction in Cancer. Int. J. Mol. Sci. 2020, 21, 5598.
23. Morais, V. A.; De Strooper, B. Mitochondria Dysfunction and Neurodegenerative Disorders: Cause or Consequence. J. Alzheimer's Dis. 2010, 20, S255–S263.
24. Dexter, D.; Carter, C.; Wells, F.; Javoy‐Agid, F.; Agid, Y.; Lees, A.; Jenner, P.; Marsden, C. D. Basal Lipid Peroxidation in Substantia Nigra Is Increased in Parkinson's Disease. J. Neurochem. 1989, 52, 381–389.
25. Armstrong, M. J.; Okun, M. S. Diagnosis and Treatment of Parkinson Disease: A Review. JAMA 2020, 323, 548–560.
26. Thenganatt, M. A.; Jankovic, J. Parkinson Disease Subtypes. JAMA Neurol. 2014, 71, 499–504.
27. Wakabayashi, K.; Tanji, K.; Odagiri, S.; Miki, Y.; Mori, F.; Takahashi, H. The Lewy Body in Parkinson’s Disease and Related Neurodegenerative Disorders. Mol. Neurobiol. 2013, 47, 495–508.
28. Greenamyre, J. T.; Sherer, T. B.; Betarbet, R.; Panov, A. V. Complex I and Parkinson's Disease. IUBMB Life 2001, 52, 135–141.
29. Pchitskaya, E.; Popugaeva, E.; Bezprozvanny, I. Calcium Signaling and Molecular Mechanisms Underlying Neurodegenerative Diseases. Cell Calcium 2018, 70, 87–94.
30. Heisters, D. Parkinson's: Symptoms, Treatments and Research. Br. J. Nurs. 2011, 20, 548–554.
31. Abbott, A. Levodopa: The Story So Far. Nature 2010, 466, S6–S7.
32. Lloyd, K.; Davidson, L.; Hornykiewicz, O. The Neurochemistry of Parkinson's Disease: Effect of L-Dopa Therapy. J. Pharmacol. Exp. Ther. 1975, 195, 453–464.
33. Dhall, R.; Kreitzman, D. L. Advances in Levodopa Therapy for Parkinson Disease: Review of Rytary (Carbidopa and Levodopa) Clinical Efficacy and Safety. Neurol. 2016, 86, S13–S24.
34. Duarte-Jurado, A. P.; Gopar-Cuevas, Y.; Saucedo-Cardenas, O.; Loera-Arias, M. d. J.; Montes-de-Oca-Luna, R.; Garcia-Garcia, A.; Rodriguez-Rocha, H. Antioxidant Therapeutics in Parkinson’s Disease: Current Challenges and Opportunities. Antioxidants 2021, 10, 453.
35. Weber, C. A.; Ernst, M. E. Antioxidants, Supplements, and Parkinson's Disease. Ann. Pharmacother. 2006, 40, 935–938.
36. Feske, S. K. Ischemic Stroke. Am. J. Med. 2021, 134, 1457–1464.
37. Hinkle, J. L.; Guanci, M. M. Acute Ischemic Stroke Review. J. Neurosci. Nurs. 2007, 39, 285–293, 310.
38. Feske, S. K. Ischemic Stroke. Am. J. Med. 2021, 134, 1457–1464.
39. Kaviarasi, S.; Yuba, E.; Harada, A.; Krishnan, U. M. Emerging Padigms in Nanotechnology for Imaging and Treatment of Cerebral Ischemia. 2019, 300, 22–45.
40. Alam, U.; Asghar, O.; Azmi, S.; Malik, R. A. General Aspects of Diabetes Mellitus. Handb. Clin. Neurol. 2014, 126, 211–222.
41. Nathan, D. M. Long-Term Complications of Diabetes Mellitus. N. Engl. J. Med. 1993, 328, 1676–1685.
42. DeFronzo, R. A.; Ferrannini, E.; Groop, L.; Henry, R. R.; Herman, W. H.; Holst, J. J.; Hu, F. B.; Kahn, C. R.; Raz, I.; Shulman, G. I. Type 2 Diabetes Mellitus. Nat. Rev. Dis. Primers 2015, 1, 1–22.
43. Lin, Y.; Sun, Z. Current Views on Type 2 Diabetes. J. Endocrinol. 2010, 204, 1.
44. Leto, D.; Saltiel, A. R. Regulation of Glucose Transport by Insulin: Traffic Control of Glut4. Nat. Rev. Mol. Cell Biol. 2012, 13, 383–396.
45. Furtado, L. M.; Somwar, R.; Sweeney, G.; Niu, W.; Klip, A. Activation of the Glucose Transporter Glut4 by Insulin. Int. J. Biochem. Cell Biol. 2002, 80, 569–578.
46. Boden, G. Effects of Free Fatty Acids (Ffa) on Glucose Metabolism: Significance for Insulin Resistance and Type 2 Diabetes. Exp. Clin. Endocrinol. Diabetes 2003, 111, 121–124.
47. DeFronzo, R. Dysfunctional Fat Cells, Lipotoxicity and Type 2 Diabetes. Int. J. Clin. Pract. 2004, 58, 9–21.
48. Pangeni, R.; Sharma, S.; Mustafa, G.; Ali, J.; Baboota, S. Vitamin E Loaded Resveratrol Nanoemulsion for Brain Targeting for the Treatment of Parkinson’s Disease by Reducing Oxidative Stress. Nanotechnol. 2014, 25, 485102.
49. Whetsel, K. B. Near-Infrared Spectrophotometry. Appl. Spectrosc. Rev. 1968, 2, 1–67.
50. Dompe, C.; Moncrieff, L.; Matys, J.; Grzech-Leśniak, K.; Kocherova, I.; Bryja, A.; Bruska, M.; Dominiak, M.; Mozdziak, P.; Skiba, T. H. I. Photobiomodulation—Underlying Mechanism and Clinical Applications. J. Clin. Med. 2020, 9, 1724.
51. Hennessy, M.; Hamblin, M. R. Photobiomodulation and the Brain: A New Paradigm. J. Opt. 2016, 19, 013003.
52. Lyons, S. K.; Patrick, P. S.; Brindle, K. M. Imaging Mouse Cancer Models in Vivo Using Reporter Transgenes. Cold Spring Harb. Protoc. 2013. doi:10.1101/pdb.top069864.
53. Carr, H. S.; Winge, D. R. Assembly of Cytochrome C Oxidase within the Mitochondrion. Acc. Chem. Res. 2003, 36, 309–316.
54. Glass, G. E. Photobiomodulation: A Review of the Molecular Evidence for Low Level Light Therapy. J. Plast. Reconstr. Aesthet. Surg. 2021, 74, 1050–1060.
55. Ulijasz, A. T.; Cornilescu, G.; Cornilescu, C. C.; Zhang, J.; Rivera, M.; Markley, J. L.; Vierstra, R. D. Structural Basis for the Photoconversion of a Phytochrome to the Activated Pfr Form. Nature 2010, 463, 250–254.
56. Feng, L.; Shi, X.; Chen, Y.; Tang, H.; Wang, L. Effects of Temperature on the Nitrate Reductase Activity and Growth of Ulva Prolifera. J. Phycol. 2021, 57, 955–966.
57. Santisree, P.; Sanivarapu, H.; Gundavarapu, S.; Sharma, K. K.; Bhatnagar-Mathur, P. In Co-Evolution of Secondary Metabolites; Mérillon, J. M., Ramawat, K., Eds.; Springer, Cham, 2020, pp 593–621.
58. Li, H.; Xu, H.; Zhang, P.; Gao, M.; Wang, D.; Zhao, H. High Temperature Effects on D1 Protein Turnover in Three Wheat Varieties with Different Heat Susceptibility. Plant Growth Regul. 2017, 81, 1–9.
59. Chaitanya, M. V. N. L.; Ramanunny, A. K.; Babu, M. R.; Gulati, M.; Vishwas, S.; Singh, T. G.; Chellappan, D. K.; Adams, J.; Dua, K.; Singh, S. K. Journey of Rosmarinic Acid as Biomedicine to Nano-Biomedicine for Treating Cancer: Current Strategies and Future Perspectives. Pharmaceutics 2022, 14, 2401.
60. Sharifi-Rad, J.; Rayess, Y. E.; Rizk, A. A.; Sadaka, C.; Zgheib, R.; Zam, W.; Sestito, S.; Rapposelli, S.; Neffe-Skocińska, K.; Zielińska, D. Turmeric and Its Major Compound Curcumin on Health: Bioactive Effects and Safety Profiles for Food, Pharmaceutical, Biotechnological and Medicinal Applications. Front. Pharmacol. 2020, 11, 550909.
61. Bangham, A. D.; Horne, R. Negative Staining of Phospholipids and Their Structural Modification by Surface-Active Agents as Observed in the Electron Microscope. J. Mol. Biol. 1964, 8, 660–IN610.
62. Barenholz, Y. Liposome Application: Problems and Prospects. Curr. Opin. Colloid Interface Sci. 2001, 6, 66–77.
63. Šegota, S. Spontaneous Formation of Vesicles. Adv. Colloid Interface Sci. 2006, 121, 51–75.
64. Gai, S.; Yang, G.; Yang, P.; He, F.; Lin, J.; Jin, D.; Xing, B. Recent Advances in Functional Nanomaterials for Light–Triggered Cancer Therapy. Nano today 2018, 19, 146–187.
65. Jassby, A. D.; Platt, T. Mathematical Formulation of the Relationship between Photosynthesis and Light for Phytoplankton. Limnol. Oceanogr. 1976, 21, 540–547.
66. Lichtenthaler, H. K.; Wellburn, A. R. Determinations of Total Carotenoids and Chlorophylls A and B of Leaf Extracts in Different Solvents. Biochem. Soc. Trans. 1983, 11, 591–592.
67. Cataldo, D.; Maroon, M.; Schrader, L. E.; Youngs, V. L. Rapid Colorimetric Determination of Nitrate in Plant Tissue by Nitration of Salicylic Acid. Commun. Soil Sci. Plant Anal. 1975, 6, 71–80.
68. Radamson, H. H. Analytical Methods and Instruments for Micro- and Nanomaterials; Springer: New York, NY, 2023.
69. Schweizer, T.; Kubach, H.; Koch, T. Investigations to Characterize the Interactions of Light Radiation, Engine Operating Media and Fluorescence Tracers for the Use of Qualitative Light-Induced Fluorescence in Engine Systems. Automot. Eng. Technol. 2021, 6, 275–287.
70. Babick, F. Dynamic Light Scattering (DLS); Elsevier: Dresden, 2020.
71. Brooks, M. D.; Niyogi, K. K. Chloroplast Research in Arabidopsis: Methods and Protocols, Volume II; Springer: Hatfield, 2011.
72. Dey, P. Flow Cytometry: Basic Principles, Procedure, and Applications in Pathology. In: Basic and Advanced Laboratory Techniques in Histopathology and Cytology. Springer, Singapore, 2022.
73. Lai, L. S.; Chou, S. T.; Chao, W. W. Studies on the Antioxidative Activities of Hsian-Tsao (Mesona Procumbens Hemsl) Leaf Gum. J. Agric. Food Chem. 2001, 49, 963–968.
74. Tang, D.; Huang, Q.; Wei, K.; Yang, X.; Wei, F.; Miao, J. Identification of Differentially Expressed Genes and Pathways Involved in Growth and Development of Mesona Chinensis Benth under Red-and Blue-Light Conditions. Front. Plant Sci. 2021, 12, 761068.
75. Stein, E. W. The Transformative Environmental Effects Large-Scale Indoor Farming May Have on Air, Water, and Soil. Air Soil Water Res. 2021, 14. https://doi.org/10.1177/1178622121995819
76. Lozano-Castellanos, L. F.; Navas-Gracia, L. M.; Lozano-Castellanos, I. C.; Correa-Guimaraes, A. Technologies Applied to Artificial Lighting in Indoor Agriculture: A Review. Sustainability 2025, 17, 3196.
77. Lin, C. Photoreceptors and Regulation of Flowering Time. Plant Physiol. 2000, 123, 39–50.
78. 鄔家琪; 許碩庭. 添加紅外光之光源對草莓生長與種苗生產之影響. 宜蘭大學生物資源學刊 2018, 14, 79–93.
79. Huang, W. T.; Chan, M. H.; Chen, X.; Hsiao, M.; Liu, R. S. Theranostic Nanobubble Encapsulating a Plasmon-Enhanced Upconversion Hybrid Nanosystem for Cancer Therapy. Theranostics 2020, 10, 782–796.
80. Deutch, B.; Rasmussen, O. Growth Chamber Illumination and Photomorphogenetic Efficacy I. Physiological Action of Infrared Radiation Beyond 750 nm. Physiol. Plant. 1974, 30, 64–71.
81. Pagare, S.; Bhatia, M.; Tripathi, N.; Pagare, S.; Bansal, Y. Secondary Metabolites of Plants and Their Role: Overview. Curr. Trends Biotechnol. Pharm. 2015, 9, 293–304.
82. Shetty, K. Biosynthesis and Medical Applications of Rosmarinic Acid. J. Herbs, Spices Med. Plants 2001, 8, 161–181.
83. Somani, S.; Agarwala, K. P.; Sudheer, W. N.; Nagella, P. Hairy Roots as a Potential Source for the Production of Rosmarinic Acid from Genus Salvia. Plant Sci. Today 2015, 9, 293–401.
84. Kowalczyk, A.; Tuberoso, C. I. G.; Jerković, I. The Role of Rosmarinic Acid in Cancer Prevention and Therapy: Mechanisms of Antioxidant and Anticancer Activity. Antioxidants 2024, 13, 1313.
85. Zhao, J.; Xu, L.; Jin, D.; Xin, Y.; Tian, L.; Wang, T.; Zhao, D.; Wang, Z.; Wang, J. Rosmarinic Acid and Related Dietary Supplements: Potential Applications in the Prevention and Treatment of Cancer. Biomolecules 2022, 12, 1410.
86. Hossan, M. S.; Rahman, S.; Bashar, A.; Jahan, R.; Al-Nahain, A.; Rahmatullah, M. Rosmarinic Acid: A Review of Its Anticancer Action. World J. Pharm. Pharm. Sci 2014, 3, 57–70.
87. Noor, S.; Mohammad, T.; Rub, M. A.; Raza, A.; Azum, N.; Yadav, D. K.; Hassan, M. I.; Asiri, A. M. Biomedical Features and Therapeutic Potential of Rosmarinic Acid. Arch. Pharmacal Res. 2022, 45, 205–228.
88. Lichtenthaler, H.; Kuhn, G.; Prenzel, U.; Buschmann, C.; Meier, D. Adaptation of Chloroplast-Ultrastructure and of Chlorophyll-Protein Levels to High-Light and Low-Light Growth Conditions. Zeitschrift für Naturforschung C 1982, 37, 464–475.
89. Murchie, E.; Horton, P. Acclimation of Photosynthesis to Irradiance and Spectral Quality in British Plant Species: Chlorophyll Content, Photosynthetic Capacity and Habitat Preference. Plant, Cell Environ. 1997, 20, 438–448.
90. Ying, R.; Liang, H. L.; Whelan, H. T.; Eells, J. T.; Wong-Riley, M. T. Pretreatment with Near-Infrared Light via Light-Emitting Diode Provides Added Benefit against Rotenone-and MPP+-Induced Neurotoxicity. Brain Res. 2008, 1243, 167–173.
91. Whelan, H.; Desmet, K.; Buchmann, E.; Henry, M.; Wong-Riley, M.; Eells, J.; Verhoeve, J. Harnessing the Cell’s Own Ability to Repair and Prevent Neurodegenerative Disease. SPIE Newsroom 2008, 2008, 1.
92. Bikmulina, P. Y.; Kosheleva, N. V.; Shpichka, A. I.; Timashev, P. S.; Yusupov, V. I.; Maximchik, P. V.; Gogvadze, V. G.; Rochev, Y. A. Photobiomodulation Enhances Mitochondrial Respiration in an in Vitro Rotenone Model of Parkinson’s Disease. Opt. Eng. 2020, 59, 061620–061620.
93. Bulgakov, V. P.; Inyushkina, Y. V.; Fedoreyev, S. A. Rosmarinic Acid and Its Derivatives: Biotechnology and Applications. Crit. Rev. Biotechnol. 2012, 32, 203–217.
94. Ukeda, H.; Kawana, D.; Maeda, S.; Sawamura, M. Spectrophotometric Assay for Superoxide Dismutase Based on the Reduction of Highly Water-Soluble Tetrazolium Salts by Xanthine-Xanthine Oxidase. Biosci., Biotechnol., Biochem. 1999, 63, 485–488.
95. Smiley, S. T.; Reers, M.; Mottola-Hartshorn, C.; Lin, M.; Chen, A.; Smith, T. W.; Steele Jr, G. D.; Chen, L. B. Intracellular Heterogeneity in Mitochondrial Membrane Potentials Revealed by a J-Aggregate-Forming Lipophilic Cation JC-1. Proc. Natl. Acad. Sci. 1991, 88, 3671–3675.
96. Lampl, Y. Laser Treatment for Stroke. Expert Rev. Neurother. 2007, 7, 961–965.
97. Zivin, J. A.; Albers, G. W.; Bornstein, N.; Chippendale, T.; Dahlof, B.; Devlin, T.; Fisher, M.; Hacke, W.; Holt, W.; Ilic, S. Effectiveness and Safety of Transcranial Laser Therapy for Acute Ischemic Stroke. Stroke 2009, 40, 1359–1364.
98. Lapchak, P. A. Taking a Light Approach to Treating Acute Ischemic Stroke Patients: Transcranial near-Infrared Laser Therapy Translational Science. Ann. Med. 2010, 42, 576–586.
99. Gong, L.; Zou, Z.; Huang, L.; Guo, S.; Xing, D. Photobiomodulation Therapy Decreases Free Fatty Acid Generation and Release in Adipocytes to Ameliorate Insulin Resistance in Type 2 Diabetes. Cell. Signal. 2020, 67, 109491.
100. Gong, L.; Zou, Z.; Liu, L.; Guo, S.; Xing, D. Photobiomodulation Therapy Ameliorates Hyperglycemia and Insulin Resistance by Activating Cytochrome C Oxidase-Mediated Protein Kinase B in Muscle. Aging 2021, 13, 10015.
101. Guo, S.; Gong, L.; Shen, Q.; Xing, D. Photobiomodulation Reduces Hepatic Lipogenesis and Enhances Insulin Sensitivity through Activation of CAMKKβ/AMPK Signaling Pathway. J. Photochem. Photobiol. B: Biol.2020, 213, 112075.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100974-
dc.description.abstract本研究乃探討並進行光、生物及二級代謝物交互作用之整合性研究。近紅外光因其波長特性,於生物領域上具其優勢,根據動物之粒線體與植物光敏素之反應,衍伸出多元之應用。二級代謝物具抗氧化與抗發炎之特性,藉結合微脂體材料改善其生物利用度。退化性神經疾病、細胞缺氧損傷及慢性代謝疾病與粒線體失能息息相關,藉光生物調節複合二級代謝物可修復其功能。本研究將探討近紅外光與天然化合物於植物與動物之間之作用及其延伸之應用。
於促進植物二及代謝物增長中,先以近紅外光作為具光敏素誘導效果之補充光源,進行近紅外光與仙草二級代謝物生成途徑之探索,此二級代謝物萃取物可被微脂體包覆並抑制神經膠質瘤細胞之增生。藉此寬峰紅外光照射,光敏素轉為活化形式,促進二級代謝物合成,而多酚類含量增加24%,迷迭香酸含量增加48%。微脂體材料亦可同作為生物標記訊號,進而確認其於神經膠質瘤細胞之遞送。
為評估二級代謝物與光生物調節應用於腦部疾病之治療,藉發光二極體與迷迭香酸共同治療帕金森氏症模型細胞,此研究核心為自由基之濃度與粒線體之活性評估,以發光二極體複合微脂體包覆之迷迭香酸於疾病模型治療效果具最高21%之恢復率,兩者結合使恢復率增加,表明使此方式具治療帕金森氏症之潛力。
為評估二級代謝物與光生物調節應用於腦部缺氧疾病之治療,藉發光二極體與薑黃素治療缺血性腦中風,將抗氧化藥物薑黃素包覆於奈米微脂體,藉中風歸巢肽修飾其表面為抗氧化奈米粒子遞送藥物至缺氧腦部,揭示有效降低80%腦梗塞體積與70%活性氧化物,同時保護血管周圍神經免受氧化壓力損傷。
為拓展近紅外光裝置之多元應用,藉非侵入式之光生物調節治療胰島素阻抗,揭示顯著提升27%葡萄糖之吸收,同時提升246%pAkt之蛋白質表達,不僅提供胰島素阻抗治療非侵入性策略,更闡明光生物調節療法於臨床應用。
本研究乃揭示結合近紅外光與其奈米技術於植物與動物之應用潛力,提供多功能實用之策略。
zh_TW
dc.description.abstractThis study explores and conducts an integrative research on the interactions between light, biology, and secondary metabolites. Near-infrared light, due to its wavelength characteristics, has advantages in the biological field. Based on the responses of mitochondria in animals and phytochromes in plants, various applications have been developed. Secondary metabolites possess antioxidant and anti-inflammatory properties, and their bioavailability can be improved by combining them with liposomal materials. Neurodegenerative diseases, cellular hypoxic damage, and chronic metabolic diseases are closely related to mitochondrial dysfunction. The function can be repaired through photobiomodulation combined with secondary metabolites. In this doctoral thesis, we will explore the effects of near-infrared light and natural compounds on plants and animals and their extended applications.
In promoting the growth of plant secondary metabolites, near-infrared light was first used as a supplementary light source with phytochrome-inducing effects to explore the pathway of secondary metabolite production in Mesona procumbens Hemsl. These secondary metabolite extracts can be encapsulated in liposomes and inhibit the proliferation of glioma cells. Through broadband infrared light irradiation, phytochromes are converted to their active form, promoting the synthesis of secondary metabolites, with total polyphenolics content increasing by 24% and rosmarinic acid content increasing by 48%. Liposomal materials can also serve as biological marker signals to confirm their delivery to glioma cells.
To evaluate the application of secondary metabolites and photobiomodulation in the treatment of brain diseases, LED light and rosmarinic acid were used to jointly treat Parkinson's disease model cells. The core of this study is the assessment of free radical concentration and mitochondrial activity. The treatment effect of LED combined with liposome-encapsulated rosmarinic acid on the disease model showed a maximum recovery rate of 21%. The combination of the two increased the recovery rate, indicating the potential of this method in treating Parkinson's disease.
To evaluate the application of secondary metabolites and photobiomodulation in the treatment of cerebral hypoxia, LED light and curcumin were used to treat ischemic stroke. The antioxidant drug curcumin was encapsulated in nano-liposomes, and the surface was modified with stroke-homing peptides to deliver the antioxidant nanoparticles to the hypoxic brain. This revealed an effective reduction of 80% in cerebral infarct volume and 70% in reactive oxygen species while protecting perivascular neurons from oxidative stress damage.
To expand the diverse applications of near-infrared light devices, non-invasive photobiomodulation was used to treat insulin resistance. The results revealed a significant 27% enhancement in glucose absorption, while simultaneously increasing 246% of pAkt protein expression.This not only provides a non-invasive strategy for insulin resistance treatment but also reveals the potential of photobiomodulation therapy in clinical applications.
This research demonstrates the powerful therapeutic potential of combining NIR with nanotechnology for plants and animals, providing strategies for versatile practical applications.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:19:00Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-11-26T16:19:00Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
摘要 III
Abstract V
Contents VII
Figure Contents XIII
Table Contents XX
Abbreviation List XXI
Chapter 1 Introduction 1
1.1 Mitochondria 1
1.1.1 Physiological functions 2
1.1.2 Mitochondria dysfunction 5
1.2 Parkinson’s Disease 7
1.2.1 Pathogenesis of Parkinson’s disease 9
1.2.2 Therapy of Parkinson’s disease 10
1.3 Ischemic Stroke 11
1.3.1 Pathogenesis of ischemic stroke injury 14
1.3.2 Therapy of ischemic stroke 15
1.4 Diabetes Mellitus 17
1.4.1 Pathogenesis of insulin resistance 20
1.4.2 Therapy of insulin resistance 21
1.5 Near-Infrared Light 22
1.5.1 Near-infrared light and animal 23
1.5.2 Near-infrared light and plant 27
1.6 Plants’ Secondary Metabolites 29
1.6.1 Medical applications of natural compounds 29
1.6.3 Rosmarinic acid 30
1.6.4 Curcumin 31
1.7 Nanoplatform 33
1.7.1 Liposome 36
1.7.2 Liposome and disease treatment 38
1.8 Research Motivation 40
Chapter 2. Experimental Approaches and Techniques 42
2.1 Chemicals and Materials 43
2.2 Experimental Steps in Topic 1 (Chapter 3) 45
2.2.1 Experiments in Plant 45
2.2.1.3 Characterization of chlorophyll fluorescence parameters 46
2.2.1.8 Regression analysis 48
2.2.2 In vitro test 49
2.2.3 In vivo test 50
2.3 Experimental Steps in Topic 2 (Chapter 4) 50
2.3.1 Synthesis and characterization of material 50
2.3.2 In vitro test 52
2.4. Experimental Steps in Topic 3 (Chapter 5) 55
2.4.1 Synthesis and characterization of material 55
2.4.2 In vitro test 56
2.4.3 In vivo test 58
2.5 Experimental Steps in Topic 4 (Chapter 6) 64
2.5.1 In vitro test 64
2.6 Instruments 66
2.6.1 Instruments for material analysis 66
2.6.2 Instruments for biological analysis 80
Chapter 3. Infrared-Induced Biosynthesis of Secondary Metabolites in Mesona procumbens Hemsl and Its Application in Cancer Treatment 88
3.1 Introduction 88
3.2 Experimental section 92
3.2.1 Synthesis of Gd3Al2Ga3O12:Cr3+ (GAGOC) 92
3.2.2 Plant growth conditions 93
3.2.4 Characterization of chlorophyll fluorescence parameters 93
3.2.5 Characterization of chlorophyll content 93
3.2.6 Characterization of nitrate content 94
3.2.5 Characterization of total polyphenolic content (TPC) 94
3.2.7 Characterization of rosmarinic acid content 94
3.2.8 Regression analysis 95
3.2.9 Synthesis of EXT@LP 95
3.2.10 U87-MG cell line cultivation 96
3.2.11 Cell viability assay 96
3.2.12 In vivo test 97
3.3 Results and Discussion 97
3.3.1 Analysis of NIR light source 97
3.3.3 Physiological analysis of NIR-treated Mesona procumbens Hemsl 100
3.3.4 Analysis of metabolites 102
3.3.5 Statistical analysis 104
3.4 Summary 108
Chapter 4. Dual-Modal Therapy Complexed by Photobiomodulation and Rosmarinic Acid-Loaded Liposomes to Parkinson’s Disease 110
4.1. Introduction 110
4.2 Experimental 116
4.2.1 Synthesis of RA@LP 116
4.2.2 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay 117
4.2.3 Stability assay of RA@LP 117
4.2.4 Encapsulation efficiency of RA@LP 118
4.2.5 In vitro test 118
4.3. Characterization of RA@LP 121
4.1.1 Morphological and spectral analysis of RA@LP 121
4.1.2 Stability and antioxidative analysis 123
4.4 In Vitro Test 124
4.2.1 Cell differentiation and ROT-induced model 124
4.2.2 Cell viability under treatment 126
4.2.3 Analysis of intracellular ROS levels and mitochondrial function 129
4.5 Summary 131
Chapter 5. Dual-modal Therapy for Ischemic Stroke: Near Infrared Irradiation and Curcumin-Loaded Liposomes 134
5.1 Introduction 134
5.2 Characterization of CUR@LP 139
5.2.1 Pilot assay of antioxidant 139
5.2.2 Structural and morphological analysis of liposomes 141
5.2.3 Stability assay 142
5.2.4 Spectral analysis 144
5.3 In Vitro Test 147
5.4 In Vivo Test 148
5.4.1 Focused ultrasound (FUS)-induced blood-brain barrier (BBB) opening 148
5.4.2 In vivo drug accumulation assay 150
5.4.2 In vivo photothrombotic ischemic stroke model 151
5.4.3 In vivo therapy of CUR@LP-SHp 154
5.4.4 Histochemical staining 156
5.4.5 H&E staining 158
5.4.6 In vivo therapy of NIR 159
5.5 Summary 160
Chapter 6. Near-Infrared Light Therapy for Glycemic Control: A Novel Non-Invasive Approach in Diabetes Management 162
6.1 Introduction 162
6.2 Experimental section 166
6.3 Results and Discussion 167
6.3.1 IR model establishment 167
6.3.2 Verification of the signaling pathway of the IR model 168
6.4 Summary 180
Chapter 7. Conclusions 182
References 185
Publications in International Scientific Journals 197
Patents 198
-
dc.language.isoen-
dc.subject近紅外光-
dc.subject植物二級代謝物-
dc.subject光生物調節-
dc.subject動物之粒線體-
dc.subject帕金森氏症-
dc.subject缺血型腦中風-
dc.subject糖尿病-
dc.subjectNear-infrared light-
dc.subjectPlant secondary metabolites-
dc.subjectPhotobiomodulation-
dc.subjectAnimal mitochondria-
dc.subjectParkinson's disease-
dc.subjectIschemic stroke-
dc.subjectDiabetes-
dc.title應用於植物與動物之近紅外光與其奈米技術zh_TW
dc.titleNear-Infrared Light and Nanotechnology in Plants and Animalsen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee陳平;杜宜殷;黃鵬林;林淑宜;楊重熙;何佳安zh_TW
dc.contributor.oralexamcommitteePing Cheng;Yi-Yin Do;Pung-Lin Huang;Shu-Yi Lin;Chung-Shi Yang;Jia-An Hoen
dc.subject.keyword近紅外光,植物二級代謝物光生物調節動物之粒線體帕金森氏症缺血型腦中風糖尿病zh_TW
dc.subject.keywordNear-infrared light,Plant secondary metabolitesPhotobiomodulationAnimal mitochondriaParkinson's diseaseIschemic strokeDiabetesen
dc.relation.page198-
dc.identifier.doi10.6342/NTU202504567-
dc.rights.note未授權-
dc.date.accepted2025-10-15-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
dc.date.embargo-liftN/A-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf
  未授權公開取用
17.67 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved