請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100972完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅敏輝 | zh_TW |
| dc.contributor.advisor | Min-Hui Lo | en |
| dc.contributor.author | 張祐瑄 | zh_TW |
| dc.contributor.author | Yu-Hsuan Chang | en |
| dc.date.accessioned | 2025-11-26T16:18:28Z | - |
| dc.date.available | 2025-11-27 | - |
| dc.date.copyright | 2025-11-26 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-10-08 | - |
| dc.identifier.citation | Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., & Arkin, P. (2003). The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). Journal of Hydrometeorology, 4(6), 1147–1167. https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2
Anderson, W., Cook, B. I., Slinski, K., Schwarzwald, K., McNally, A., & Funk, C. (2023). Multiyear La Niña events and multiseason drought in the Horn of Africa. Journal of Hydrometeorology, 24(1), 119–131. https://doi.org/10.1175/JHM-D-22-0043.1 Baltagi, B. H. (2005). Econometric analysis of panel data (3rd ed.). John Wiley & Sons. Burke, M., Hsiang, S. M., & Miguel, E. (2015). Global non-linear effect of temperature on economic production. Nature, 527(7577), 235–239. https://doi.org/10.1038/nature15725 Chang, C.-C. (2002). The potential impact of climate change on Taiwan’s agriculture. Agricultural Economics, 27(1), 51–64. https://doi.org/10.1016/S0169-5150(01)00060-3 Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Garcia, R., ... & Strand, W. G. (2020). The Community Earth System Model version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 12(2), e2019MS001916. https://doi.org/10.1029/2019MS001916 Dell, M., Jones, B. F., & Olken, B. A. (2012). Temperature shocks and economic growth: Evidence from the last half century. American Economic Journal: Macroeconomics, 4(3), 66–95. https://doi.org/10.1257/mac.4.3.66 FAO. (2023). Crops and livestock products: Mangoes, guavas and mangosteens – Area harvested and production. FAOSTAT. https://www.fao.org/faostat/en/#data/QC FAO. (2025). La Niña: Anticipatory Action and Response Plan, January 2025 update – Mitigating the expected impacts of La Niña‑induced climate extremes on agriculture and food security. Food and Agriculture Organization of the United Nations. https://openknowledge.fao.org/handle/20.500.14283/cd4047en Geng, T., Jia, F., Cai, W., Wu, L., Gan, B., Jing, Z., Li, S., & McPhaden, M. J. (2023). Increased occurrences of consecutive La Niña events under global warming. Nature, 619, 774–781. https://doi.org/10.1038/s41586-023-06380-5 Gill, A. E. (1980). Some simple solutions for heat-induced tropical circulation. Quarterly Journal of the Royal Meteorological Society, 106(449), 447–462. https://doi.org/10.1002/qj.49710644905 Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., & Thépaut, J.-N. (2023). ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.adbb2d47 Hsiao, C. (2003). Analysis of panel data (2nd ed.). Cambridge University Press. https://doi.org/10.6342/NTU202001691 Jiang, Q., Li, W., Fan, Z., He, X., Sun, W., Chen, S., Wen, J., Gao, J., & Wang, J. (2021). Evaluation of the ERA5 reanalysis precipitation dataset over Chinese Mainland. Journal of Hydrology, 595, 125660. https://doi.org/10.1016/j.jhydrol.2020.125660 Kahn, M. E., Mohaddes, K., Ng, R. N. C., Pesaran, M. H., Raissi, M., & Yang, J.-C. (2021). Long-term macroeconomic effects of climate change: A cross-country analysis. Energy Economics, 104, 105624. https://doi.org/10.1016/j.eneco.2021.105624 Lam, W.-F., Tang, C.-P., & Tang, S.-K. (2021). Bureaucratising co-production: Institutional adaptation of irrigation associations in Taiwan. Water Alternatives, 14(2), 435–452. water-alternatives.org Lam, W.-F., Tang, C.-P., & Tang, S.-K. (2021). Bureaucratising co-production: Institutional adaptation of irrigation associations in Taiwan. Water Alternatives, 14(2), 435–452. Retrieved from http://www.water-alternatives.org Lin, L.-Y., Lin, C.-T., Chen, Y.-M., Cheng, C.-T., Li, H.-C., & Chen, W.-B. (2022). The Taiwan Climate Change Projection Information and Adaptation Knowledge Platform: A Decade of Climate Research. Water, 14(3), 358. https://dx.doi.org/10.3390/w14030358 Liu, Y., Cai, W., Lin, X., Li, Z., & Zhang, Y. (2023). Nonlinear El Niño impacts on the global economy under climate change. Nature Communications, 14, 5887. https://doi.org/10.1038/s41467-023-41667-1 Lu, Z., Schultze, A., Carré, M., Brierley, C., Hopcroft, P. O., Zhao, D., Zheng, M., Braconnot, P., Yin, Q., Jungclaus, J. H., Shi, X., Yang, H., & Zhang, Q. (2025). Increased frequency of multi-year El Niño–Southern Oscillation events across the Holocene. Nature Geoscience, 18, 337–343. https://doi.org/10.1038/s41561-025-01368-w Matsuno, T. (1966). Quasi-geostrophic motions in the equatorial area. Journal of the Meteorological Society of Japan. Ser. II, 44(1), 25–43. https://doi.org/10.2151/jmsj1965.44.1_25 Muñoz-Sabater, J. (2019). ERA5-Land hourly data from 1950 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.18739/A2RX93G07 Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., ... & Vogt, J. (2021). ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Journal of Climate, 34(23), 9051–9071. https://doi.org/10.1175/JCLI-D-20-0500.1 Newell, R. G., Prest, B. C., & Sexton, S. E. (2021). The GDP-temperature relationship: Implications for climate change damages. Journal of Environmental Economics and Management, 108, 102445. https://doi.org/10.1016/j.jeem.2021.102445 NOAA Climate Prediction Center. (n.d.). Oceanic Niño Index (ONI) version 5. National Weather Service. Retrieved May 30, 2025, from https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php Okumura, Y. M., DiNezio, P., & Deser, C. (2017). Evolving impacts of multiyear La Niña events on atmospheric circulation and U.S. drought. Geophysical Research Letters, 44(22), 11614–11623. https://doi.org/10.1002/2017GL075034 Panda, A. (2021). Climate change and agricultural insurance in the Asia and Pacific region (Asian Development Outlook 2021 Update Background Paper). Asian Development Bank. https://www.adb.org/sites/default/files/institutional-document/731791/adou2021bp-climate-change-agri-insurance-asia-pacific.pdf Wang, B., Wu, R., & Fu, X. (2000). Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? Journal of Climate, 13(9), 1517–1536. https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2 Watson D. (1994). Nngridr: An implementation of natural neighbor interpolation.,Dave Watson Publiser, Claremont, Australia, 170pp. 陳盟松(2012)。芒果隔年結果原因之探討。收錄於台中區農業改良場(編),101年度專題討論專集(頁 299–302)。台中區農業改良場。 黃和炎、劉銘峰(1998)。《芒果》。台南區農業改良場特刊第3號。農業部。取自 https://book.tndais.gov.tw/Brochure/pub3-3.htm(查詢日期:2025年6月3日) 簡榮成(2020)。《農業氣象災害對芒果產量之影響與調適策略》(碩士論文)。國立臺灣大學農業經濟學研究所。https://hdl.handle.net/11296/c226kx 李雪如、陳思如、周國隆、李承翰(2011)。《行政院農業委員會高雄區農業改良場100年度科技計畫研究報告》。台北市:行政院農業委員會高雄區農業改良場。 林修立、童裕翔、王俊寓、林士堯(2023年1月1日)。AR6 統計降尺度雨量資料生產履歷(第 1.0 版)。臺灣氣候變遷推估資訊與調適知識平台。取自 https://tccip.ncdr.nat.gov.tw/upload/data_profile/20220718101540.pdf 林業試驗所台北植物園(2025)。芒果 ─ 開花情報。林業試驗所。取自 https://tpbg.tfri.gov.tw/FlowersContent.php?ID=4100&edM=4&edY=2025&pn=1&stM=01&stY=2025&utm_source=chatgpt.com 劉玫婷、李欣輯、徐永衡、陳永明(2022)。〈2022年1~2月農作物寒害暨雨害損失調查紀實〉。《災害防救電子報》,203期。國家災害防救科技中心。取自 https://www.ncdr.nat.gov.tw/ 劉銘峰、張明聰、黃和炎(1988)。提前或延後芒果產期需技術。收錄於台南區農業改良場(編),良技術專刊 園藝-1(No.45)。台南區農業改良場。取自: https://book.tndais.gov.tw/Brochure/tech45.htm 內政部(2024年12月24日)。《直轄市、縣市界線(TWD97經緯度)– SHP格式》[資料集]。內政部開放資料平台。https://data.moi.gov.tw/MoiOD/System/DownloadFile.aspx?DATA=72874C55-884D-4CEA-B7D6-F60B0BE85AB0 農業部農糧署(1960-2023)。59-112年農業統計年報。取自 https://agrstat.coa.gov.tw/ 農業部農糧署(2024)。《縣市作物查詢系統》。取自農情報告資訊網:https://agr.afa.gov.tw/afa/afa_frame.jsp(查詢日期:2025年6月2日) 農業部農業知識入口網(2023)。芒果生態-生育週期。取自 https://kmweb.moa.gov.tw/subject/subject.php?id=10690 農業部農業知識入口網(2024)。花果生育習性 ─ 芒果主題館。農業部。取自 https://kmweb.moa.gov.tw/subject/subject.php?id=10692 石佩玉(2021)。《農作物防減災與生產調適:芒果》。台南區農業改良場技術專刊 110-1 號。台南:農業部台南區農業改良場。 楊承道,王俊寓,林士堯(2024年1月12日)。網格化觀測雨量 V2 版資料生產履歷(第 4.1.1 版)。臺灣氣候變遷推估資訊與調適知識平台。取自 https://tccip.ncdr.nat.gov.tw/upload/data_profile/20220706104221.pdf 張錦興(2017)。芒果產期調節研究發展與產業調適。臺中區農業改良場特刊,131-140 https://www.airitilibrary.com/Article/Detail?DocID=P20131108002-201712-201805150014-201805150014-131-140 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100972 | - |
| dc.description.abstract | 隨著氣候變遷加劇,多年份反聖嬰事件的頻率與強度已出現變化,對東南亞地區的水文氣候與農業生產構成潛在威脅。然而,其背後的大氣動力機制及對高經濟價值作物(如芒果)的長期影響,迄今仍缺乏明確的理解。本研究探討多年份反聖嬰事件如何影響東南亞的水文氣候,並量化其對台灣芒果產量的影響。研究中利用 NCAR Community Earth System Model Version 2(CESM2),氣候模式結合大氣再分析資料與觀測降水資料,分析多年份反聖嬰的降水變化以及動力機制。模擬結果顯示,此類事件呈現第一年偏乾、第二年偏濕的「乾–濕」階段轉換特徵,與太平洋海溫配置及菲律賓氣旋異常有密切關聯。在升溫 2°C 的氣候情境下,模擬結果亦顯示暖化可能改變此種乾濕結構,需進一步評估對農業系統的潛在衝擊。另一方面,本研究亦透過經濟計量模型評估氣候異常對台灣芒果產量的影響。結果顯示,「第一年偏乾、第二年偏濕」的氣候條件對產量產生相反的效果,在假設對數線性關係的情況下,二月降雨量每增加 10 毫米,平均每公頃的芒果產量將減少約 0.5%。綜合農業生理知識推論,花期期間若降雨過多,可能導致授粉受阻,進而造成產量下降。最後,本研究分析 CMIP6 模擬資料中不同暖化情境下,台灣二月降水的變化趨勢。結果指出未來降水偏多的異常機率有上升趨勢,顯示芒果花期所面臨的氣候風險可能進一步加劇,需及早規劃調適對策。本研究結合氣候模擬與經濟分析,深入探討多年份反聖嬰事件下東亞地區「乾濕循環」的動態驅動機制,並量化其對芒果產業的衝擊。研究成果有助於提升對農業部門在當前與未來氣候變異下脆弱性的理解,亦可作為制定農業調適策略的重要科學依據。 | zh_TW |
| dc.description.abstract | As climate change intensifies, the frequency and strength of multi-year La Niña events have shifted, increasing potential threats to the climate and agricultural production across Southeast Asia. However, the underlying climate dynamics and their long-term impacts on high-value crops, such as mangoes, remain poorly understood. This study investigates how multi-year La Niña events influence atmospheric processes and rainfall in Southeast Asia and quantifies their effects on Taiwan’s mango yields. The NCAR Community Earth System Model Version 2 (CESM2) climate model combined with atmospheric reanalysis dataset and observed rainfall data are used to explore the dynamic mechanisms behind these events. Results reveal a distinct "dry–wet" phase transition, characterized by drier conditions in the first year and wetter conditions in the second. This precipitation pattern is associated with Pacific sea surface temperature patterns and the development of the Philippine Sea anomalous cyclone (PSCC). Further model simulations under a +2°C warming scenario suggest that such dry–wet structures may intensify under future climate conditions, with important implications for agricultural systems. Additionally, a panel data model is applied to assess the effects of climate anomalies on mango yields in Taiwan. The analysis shows that drier conditions in the first year of a multi-year La Niña tend to increase yields, while wetter conditions in the second year may result in excessive rainfall during flowering, which can disrupt pollination and lower productivity. To quantify this effect, we estimate that assuming a log-linear relationship within the observed range, a 10 mm increase in February precipitation is associated with an average reduction of approximately 0.5% in mango yield per hectare. Finally, projections based on CMIP6 simulations indicate an increased likelihood of positive precipitation anomalies across Taiwan in February under future warming scenarios. This points to rising climate risks during the mango flowering period and highlights the need for proactive adaptation strategies. By integrating climate modeling and economic analysis, this study reveals the dynamic drivers behind the dry–wet cycles associated with multi-year La Niña events in Southeast Asia and quantifies their impacts on Taiwan’s mango industry. The findings provide a scientific foundation for understanding agricultural vulnerability under both current and future climate extremes and support the formulation of targeted adaptation strategies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:18:28Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-11-26T16:18:28Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iv ABSTRACT v CONTENTS vii LIST OF FIGURES x LIST OF TABLES xii Chapter 1 Introduction 1 1.1 ENSO Shifts and the Rising Risk of Multi-Year La Niña Events 1 1.2 Sensitive Agricultural Products: Mango 2 1.3 Research Aims and Objectives 4 Chapter 2 Data and Methods 5 2.1 Meteorological Datasets 5 2.1.1 Regional-Scale Climate Datasets for East and Southeast Asia 5 2.1.2 High-Resolution Climate Datasets for Taiwan 6 2.2 Agricultural Datasets 7 2.3 Identification and Categorization of La Niña Events 8 2.4 Econometric model 9 2.4.1 Panel Data Model 9 2.4.2 Empirical Model Design 11 Chapter 3 Results 13 3.1 Precipitation Anomalies in Multi-La Niña Events 13 3.2 Atmospheric Mechanisms 13 3.2.1 Influence of Philippine Sea Anomalous Cyclone 13 3.2.2 Role of the Philippine Sea Anomalous Cyclone 14 3.2.3 Prescribed SST experiments in climate model 15 3.2.4 Analyses in Moisture Transport 16 3.2.5 Warmer SST experiments 19 3.3 Assessing the Climate Impact on Agricultural Products 20 3.3.1 Panel Regression Results 20 3.3.2 Visualizing Regional Yield Responses 21 3.4 Rainfall Projections from Fully Coupled CMIP6 Models 23 Chapter 4 Discussion 25 4.1 Limitations and Uncertainty of Climate Datasets Used 25 4.2 Limitations Related to Mango Phenology and Regional Variation 26 4.2.1 Regional Differences in Flowering Timing and February Rainfall Sensitivity 27 4.2.2 Localized Yield Patterns and Limitations of Spatial Aggregation 29 4.3 Limitations of the Economic Model 31 Chapter 5 Conclusions 35 5.1 Summary of Key Findings 35 5.2 Future Research Directions 36 FIGURES 38 TABLES 54 REFERENCE 67 | - |
| dc.language.iso | en | - |
| dc.subject | 反聖嬰現象 | - |
| dc.subject | 芒果 | - |
| dc.subject | 雨量 | - |
| dc.subject | 氣候變遷 | - |
| dc.subject | La Niña | - |
| dc.subject | Mango | - |
| dc.subject | Precipitation | - |
| dc.subject | Climate change | - |
| dc.title | 多年份反聖嬰事件對東南亞降雨與農業影響之探討:以芒果為案例 | zh_TW |
| dc.title | Exploring the Impacts of Multi-Year La Niña Events on Rainfall and Agriculture in Southeast Asia: A Case Study of Mango | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 洪志誠;羅正宗;楊睿中;梁禹喬 | zh_TW |
| dc.contributor.oralexamcommittee | Chi-Cherng Hong;Jeng-Chung Lo;Jui-Chung Yang;Yu-Chiao Liang | en |
| dc.subject.keyword | 反聖嬰現象,芒果雨量氣候變遷 | zh_TW |
| dc.subject.keyword | La Niña,MangoPrecipitationClimate change | en |
| dc.relation.page | 72 | - |
| dc.identifier.doi | 10.6342/NTU202504528 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-10-09 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 氣候變遷與永續發展國際學位學程 | - |
| dc.date.embargo-lift | 2025-11-27 | - |
| 顯示於系所單位: | 氣候變遷與永續發展國際學位學程(含碩士班、博士班) | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf | 4.3 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
