請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10096
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳俊宗 | |
dc.contributor.author | Ming-Hsuan Chou | en |
dc.contributor.author | 周明玄 | zh_TW |
dc.date.accessioned | 2021-05-20T21:01:38Z | - |
dc.date.available | 2011-07-26 | |
dc.date.available | 2021-05-20T21:01:38Z | - |
dc.date.copyright | 2011-07-26 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-07-19 | |
dc.identifier.citation | 江殷儒。2002。鯉魚潭中葡萄藻代謝物質之生物毒性。國立臺灣大學植物學研究所碩士論文。
行政院環境保護署環境檢驗所。2000。水中總有機碳檢測方法-過氧焦硫酸鹽加熱氧化/紅外線測定法:NIEA W532.51C 周昌弘、吳俊宗、謝昱暲、彭鏡毅、邱志郁、楊棋明、黃元勳、高文媛。1998。中央研究院植物研究所第四期五年發展計畫大型合作研究計畫三、植物歧異度與生態系研究:研究成果摘要。中央研究院植物研究所。 劉麗純。2007。嘉南平原高砷地下水腐植物質的特性。國立臺灣大學地質學研究所碩士論文。 Alberts, J. J., Takács, M., and Egeberg, P. K. 2002. Total luminescence spectral characteristics of natural organic matter (NOM) size fractions as defined by ultrafiltration and high performance size exclusion chromatography (HPSEC). Organic Geochemistry 33:817–828. Aoki, S., Ohara, S., Kimura, K., Mizuguchi, H., Fuse, Y., and Yamada, E. 2008. Characterization of Dissolved Organic Matter Released from Microcystis aeruginosa. Analytical Sciences 24:389–394. Chen, J. S. and Chiu, C. Y. 2000. Effect of topography on the composition of soil organic substances in a perhumid sub-tropical montane forest ecosystem in Taiwan. Geoderma 96:19–30. Coble, P. G. 1996. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Marine Chemistry 51:325–346. Cole, J. J., Pace, M. L., Carpenter, S. R., and Kitchell, J. F. 2000. Persistence of net heterotrophy in lakes during nutrient addition and food web manipulation. Limnology and Oceanography 45:1718–1730. Cuthbert, I. D. and Giorgio, P. D. 1992. Toward a standard method of measuring color in freshwater. Limnology and Oceanography 37(6):1319–1326. Eish, M. Y. Z. A. 2003. Characterization of humic substances using chemical, chromatographic, and spectroscopic techniques. Doctoral dissertation, Tennessee Technological University, Tennessee. Gorski, P. R., Armstrong, D. E., Hurley, J. P., and Krabbenhoft, D. P. 2008. Influence of natural dissolved organic carbon on the bioavailability of mercury to a freshwater alga. Environmental Pollution 154:116–123. Gross, E. M., Meyer, H., and Schilling, G. 1996. Release and ecological impact of algicidal hydrolysable polyphenols in Myriophyllum spicatum. Phytochemistry 41:133–138. Houser, J. N. 2006. Water color affects the stratification, surface temperature, heat content, and mean epilimnetic irradiance of small lakes. Canadian Journal of Fisheries and Aquatic Sciences 63:2447–2455. Körner, S. and Nicklisch, A. 2002. Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes. Journal of Phycology 38:862–871. Lai, I. L., Chang, S. C., Lin, P. H., Chou, C. H., and Wu, J. T. 2006. Climatic characteristics of the subtropical mountainous cloud forest at the Yuanyang Lake long-term ecological research site, Taiwan. Taiwania 51(4):317–329. Libes, S. M. 1992. An Introduction to Marine Biogeochemistry. New York: John Wiley & Sons, p. 411. Maie, N., Yang, C. Y., Miyoshi, T., Parish, K., and Jaffé, R. 2005. Chemical characteristics of dissolved organic matter in an oligotrophic subtropical wetland/estuarine ecosystem. Limnology and Oceanography 50(1):23–35. Mobed, J. J., Hemmingsen, S. L., Autry, J. L., and Mcgown, L. B. 1996. Fluorescence characterization of IHSS humic substances: Total luminescence spectra with absorbance correction. Environmental Science and Technology 30:3061-3065. Pace, M. L. and Cole, J. J. 2002. Synchronous variation of dissolved organic carbon and color in lakes. Limnology and Oceanography 47(2):333–342. Prakash, A. and Rashid, M. A. 1968. Influence of humic substances on the growth of marine phytoplankton--Dinoflagellates. Limnology and Oceanography 13:598–607. Qiu, S., McComb, A. J., Bell, R. W., and Davis, J. A. 2005. Estimating production of gilvin from catchment leaf litter during seasonal rains. Marine and Freshwater Research 56:843–849. Rees, R., Chang, S. C., Wang, C. P., and Matzner, E. 2006. Release of nutrients and dissolved organic carbon during decomposition of Chamaecyparis obtusa var. formosana leaves in a mountain forest in Taiwan. Journal of Plant Nutrition and Soil Science 169:792–798. Sachse, A., Babenzien, D., Ginzel, G., Gelbrecht, J., and Steinberg, C. E. W. 2001. Characterization of dissolved organic carbon (DOC) in a dystrophic lake and an adjacent fen. Biogeochemistry 54:279–296. Schulten, H. R. and Leineweber, P. 2000. New insights into organic-mineral particles: composition, properties and models of molecular structure. Biology and Fertility of Soils 30:399–432. Senesi, N. 1990. Molecular and quantitative aspects of the chemistry if fulvic acid and its interaction with metal ions and organic chemicals. Analytica Chimica Acta 232:77-106. Sierra, M. M. D., Giovanela, M., Parlanti, E., and Soriano-Sierra, E. J. 2005. Fluorescence fingerprint of fulvic and humic acids from varied origins as viewed by single-scan and excitation/emission matrix techniques. Chemosphere 58:715–733. Steinberg, C. E. W. 2003. Ecology of Humic Substances in Freshwaters. Determinants from Geochemistry to Ecological Niches. Springer, Berlin. Steinberg, C. E. W., Kamara, S., Prokhotskaya, V. Y., Manusadžianas, L., Karasyova, T. A., Timofeyev, M. A., Jie, Z., Paul, A., Meinelt, T., Farjalla, V. F., Matsuo, A. Y. O., Burnison, B. K., and Menzel, R. 2006. Dissolved humic substances – ecological driving forces from the individual to the ecosystem level? Freshwater Biology 51: 1189–1210. Steinberg, C. E. W., Paul, A., Pflugmacher, S., Meinelt, T., Klöcking, R., and Wiegand, C. 2003. Pure humic substances have the potential to act as xenobiotic chemicals – A review. Fresenius Environmental Bulletin 12:391–401. Sun, B. K., Tanji, Y., and Unno, H. 2005. Influences of iron and humic acid on the growth of the cyanobacterium Anabaena circinalis. Biochemical Engineering Journal 24:195–201. Takeda, H. 1995. A 5-year study of litter decomposition processes in a Chamaecyparis-obtusa Endl. forest. Ecological Research 10:95–104. Thurman, E. M. 1985. Organic Geochemistry of Natural Waters. Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht. Thurman, E. M. and Malcolm, R. L. 1981. Preparative isolation of humic substances. Environmental Science and Technology 15(4):463-466. Tsai, J. W., Kratz, T. K., Hanson, P. C., Wu, J. T., Chang, W. Y. B., Arzberger, P. W., Lin, B. S., Lin, F. P., Chou, H. M., and Chiu, C. Y. 2008. Seasonal dynamics, typhoons and the regulation of lake metabolism in a subtropical humic lake. Freshwater Biology 53:1929–1941. US Environmental Protection Agency. 1992. In vitro determination of chlorophyll a and pheophytin a in marine and freshwater phytoplankton by fluorescence. Method 445.0. Cincinnati, Ohio. Wu, J. T., Chang, S. C., Wang, Y. S., Wang, Y. F., and Hsu, M. K. 2001. Characteristics of the acidic environment of the Yuanyang Lake (Taiwan). Botanical Bulletin of Academia Sinica 42:17–22. Yamashita, Y. and Tanoue, E. 2003. Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids. Marine Chemistry 82:255–271. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10096 | - |
dc.description.abstract | 鴛鴦湖為位於台灣北部之中高海拔湖泊,其湖色呈現深褐色且偏酸性,被認為可能由溶解性有機碳(DOC)所造成。為進一步了解DOC在此湖泊生態系所扮演的角色,本研究乃探討湖水中DOC的來源以及其對藻類生長的影響。實驗採集湖區陸域的杜鵑、扁柏之凋落物及附生苔蘚進行淋洗、萃取湖周之表土和分離純化湖水中的藻類,以分析淋洗液、土壤、湖水及藻液的DOC。結果顯示,高比例的DOC為深褐色、不易被分解的腐植物質。湖水DOC的苯環化程度(SUVA254)相當高。在偏酸性雨水的淋洗下,苔蘚產生更酸的淋洗液。降雨量為影響湖水DOC濃度、pH值、水色(A440)的重要因子,且這些變量間有高度的相關性。由螢光光譜儀所做之激發-發射矩陣光譜(EEMs)及用高效液相層析(HPLC)儀所做之分子量檢測顯示,湖水的DOC以外源性的腐植物質為主,其性質與杜鵑和蘚的淋洗液較為接近。以鴛鴦湖湖水之DOC對分離自此湖的藻類做培養試驗,結果顯示DOC濃度愈高,則藻類生長愈多。對照藻液的EEMs圖譜,顯示藻類生長時會產生小分子的有機物及大分子的腐植物質,但因其在水中的濃度很低,僅在湖水量較少時較能看出其對湖水DOC性質的貢獻。綜言之,在扁柏為優勢植被的鴛鴦湖集水區中,林下的灌木及苔蘚等附生植物的淋洗液以及表土有機質層中的腐植物質可能為鴛鴦湖湖水DOC之重要來源,也是使土壤及湖水酸化的主要原因。 | zh_TW |
dc.description.abstract | Yuan-yang Lake is a subalpine lake situated in northern Taiwan. The lake water is characterized by brown color with low pH. In order to know more about the role of dissolved organic carbon (DOC) in the lake ecosystem, this study is attempted to elucidate the sources of DOC and its effect on algae in this lake. Litters from dominant plants, rhododendron and cypress, and epiphytic liverworts were collected and used for leaching experiments. In addition, surface soil of forest was collected and extracted for comparison with lake water. The results showed that DOC in lake water was contributed mainly by the refractory, humic substances (HS). High values of SUVA254 in lake water suggested that it is in high degree of aromaticity. The acidity of leachates from epiphytic liverworts was higher than rain water. The amount of precipitates was an important factor that affected the DOC concentration, pH, and color (A440) in lake water. The results of excitation-emission matrices (EEMs) and high performance liquid chromatographic (HPLC) analysis showed that a high similarity existed between the fluorescence plots and molecular weight spectra between lake water and the leachates of rhododendron and epiphytes, suggesting that DOC in lake water should be mainly allochthonous in origin. In experiments of cultivating the algae isolated from lake with DOC, it is revealed that algae grew faster in higher concentrations of DOC. The plots of EEMs showed that algal cells produced low molecular weight molecules and high molecular weight HS. However, owing to low algal density in lake water, the role played by the algal-derived DOC in lake water was minor and could be negligible. The source of DOC and its effects on algae in this lake were discussed. This study provides data showing that the DOC in YYL is contributed mainly by the leachates from forest under-layers and epiphytes. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T21:01:38Z (GMT). No. of bitstreams: 1 ntu-100-R97b44018-1.pdf: 2433864 bytes, checksum: 92e59e2bc13c4bfb2d3e7d7e62271cf0 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 目 錄
圖目錄 IV 表目錄 VI 縮寫表 VII 中文摘要 1 英文摘要 2 一、 前言 3 1.1. 溶解性有機物、腐植物質與水質的關係 3 1.2. 研究地點 5 1.3. 研究動機與探討目標 6 二、 材料與方法 9 2.1 樣本採集 9 2.1.1 採集植物凋落物 9 2.1.2 採集表土 9 2.1.3 採集湖水 9 2.2 樣本處理 9 2.2.1 淋洗實驗 10 2.2.1.1 淋洗裝置之設計(圖2-2) 10 2.2.1.2 淋洗瓶中之植體量(乾重) 11 2.2.1.3 淋洗設置數量及收集之時距 11 2.2.1.4 接收淋洗之方式 11 2.2.1.5 蘚之短期淋洗 11 2.2.2 各水樣之處理 11 2.2.2.1 過濾 11 2.2.2.2 萃取腐植物質(humic substance, HS) 11 2.2.3 表土之處理 13 2.2.3.1 過篩 13 2.2.3.2 萃取HS 13 2.3 DOC分析 14 2.3.1 DOC性質量化 14 2.3.1.1 酸鹼度( pH值) 14 2.3.1.2 吸光值 14 2.3.1.3 DOC濃度 15 2.3.2 DOC性質探討 15 2.3.2.1 高效液相層析(high performance liquid chromatography, HPLC):分析分子量 15 2.3.2.2 螢光激發-發射矩陣光譜(excitation-emission matrices, EEMs):分析螢光發色團 16 2.4 DOC對藻類生長之影響 17 2.4.1 分離純化藻類 17 2.4.2 不同DOC濃度之培養液 17 2.4.3 藻類培養條件 19 2.4.4 葉綠素a濃度測定法(江,2002;US EPA, 1992) 20 2.4.5 生長速率之計算 20 2.4.6 培養中之藻液之DOC性質變化 20 2.4.6.1 高效液相層析(HPLC) 20 2.4.6.2 螢光激發-發射矩陣光譜(EEMs) 20 2.5 統計分析 20 三、 結果 22 3.1 pH值變化 22 3.1.1 淋洗液 22 3.1.2 湖水 24 3.2 吸光值變化 25 3.2.1 水色(A440) 25 3.2.1.1 淋洗液 25 3.2.1.2 湖水 26 3.2.2 苯環化程度(SUVA254) 28 3.2.2.1 淋洗液 28 3.2.2.2 湖水 29 3.3 DOC變化 30 3.3.1 植物凋落物的DOC淋出量 30 3.3.2 湖水的DOC濃度變化 33 3.3.3 DOC與HS的關係 33 3.4 DOC濃度、pH值與水色(A440)的關係 35 3.4.1 DOC濃度與pH值的關係 35 3.4.2 DOC濃度與水色(A440)的關係 37 3.5 DOC結構的EEMs圖譜分析 39 3.5.1 淋洗液 40 3.5.2 表土之HS萃取液與HA對照品 45 3.5.3 湖水 49 3.5.4 培養之藻液 51 3.6 DOC分子量的分析 58 3.6.1 各水樣及萃取液之分子量 58 3.6.2 培養藻液之分子量 60 3.7 不同DOC濃度對藻類生長的影響 62 四、 討論 65 4.1 淋洗液與湖水 65 4.1.1 pH值變化 65 4.1.2 吸光值變化 66 4.1.2.1 水色(A440) 66 4.1.2.2 苯環化程度(SUVA254) 67 4.1.3 凋落物的DOC淋洗狀況 68 4.2 DOC的螢光激發-發射矩陣光譜(EEMs)與分子量的關係 70 4.2.1 淋洗液 71 4.2.2 表土之HS萃取液 72 4.2.3 湖水 72 4.2.4 培養之藻液 73 4.2.5 萃取液與原水 74 4.3 DOC濃度與藻類生長的關係 75 五、 結論 78 六、 參考文獻 80 圖目錄 圖 1–1 腐植物質的可能結構圖(Libes, 1992) 5 圖 2–1鴛鴦湖湖水等深線以及本研究之湖水與表土採樣點 9 圖 2–2 野外及室內組的淋洗裝置 10 圖 2–3 分離自鴛鴦湖的藻種 18 圖 3–1 在2010/4~9(淋洗第1~6個月)期間,每月採集之野外淋洗液的pH值變化 22 圖 3–2 在2010/4~2011/3(淋洗第1~12個月)期間,每月採集之室內淋洗液的pH值變化 23 圖 3–3 在2010/4~2011/3 (淋洗第1~12個月)期間,每克乾燥植體所淋洗出的水色(A440)變化 26 圖 3–4 在2009/7/19~2010/9/23期間,鴛鴦湖水樣的水色變化(A440)與採集前一週雨量之對照圖 27 圖 3–5 在2009/7/19~2010/9/23期間,鴛鴦湖湖心表水的水色變化(A440)與採集前一週雨量之關係圖 27 圖 3–6 在2010/4~2011/3 (淋洗第1~12個月)期間,野外與室內淋洗液的SUVA254變化 29 圖 3–7 在2010/5/20~9/23期間,鴛鴦湖水樣的SUVA254值變化圖 30 圖 3–8 在2010/4~2011/3(淋洗第1~12個月)期間,每月每克乾燥植體的DOC淋出量 31 圖 3–9 在2010/4~2011/3 (淋洗第1~12個月)期間,每克乾燥植體的DOC淋出量累計圖 32 圖 3–10 在2010/5/20~9/23期間,湖水的DOC濃度及採集前一週的雨量變化 33 圖 3–11 第1~3個月的野外及室內淋洗液與其所含HS的DOC濃度之關係圖 34 圖 3–12 三種植物淋洗液原水樣與其所含HS的DOC濃度比較圖 34 圖 3–13 在2010/4~2011/3(淋洗第1~12個月)期間,室內淋洗液的DOC濃度與pH值之關係圖 35 圖 3–14 在2010/5/20~9/23期間,所有湖水水樣的DOC濃度與pH值之關係圖 36 圖 3–15 在2010/5/20~9/23期間,湖心及出水口表水DOC濃度與pH值之關係圖 36 圖 3–16 在2010/4~9 (淋洗第1~6個月)期間,野外淋洗液DOC濃度與水色(A440)的關係圖 37 圖 3–17 室內淋洗液(第2~12個月)的DOC濃度與吸光值(A440)之關係圖 38 圖 3–18在2010/5/20~9/23期間,所有湖水水樣的DOC濃度與吸光值(A440)的關係圖 38 圖 3–19 室內淋洗液(第1個月)的DOC濃度與吸光值(A440)之關係圖 39 圖 3–20 鴛鴦湖湖心表水的螢光激發-發射矩陣光譜(EEM) 40 圖 3–21 杜鵑淋洗液(淋洗設置第28天)的EEM圖譜 40 圖 3–22 扁柏淋洗液(淋洗設置第28天)的EEM圖譜 41 圖 3–23 蘚淋洗液(淋洗設置第28天)的EEM圖譜 41 圖 3–24 蘚之短時間淋洗實驗的EEM圖譜 42 圖 3–25 扁柏淋洗液(淋洗設置第63天)的EEM圖譜 43 圖 3–26 杜鵑淋洗液(淋洗設置第286天)的EEM圖譜 44 圖 3–27 扁柏淋洗液(淋洗設置第286天)的EEM圖譜 44 圖 3–28 蘚淋洗液(淋洗設置第286天)的EEM圖譜 45 圖 3–29 表層土壤之FA萃液(未稀釋)的EEM圖譜 46 圖 3–30 表層土壤之FA萃液(稀釋20倍)的EEM圖譜 46 圖 3–31 表層土壤之HA萃液(未稀釋)的EEM圖譜 47 圖 3–32 表層土壤之HA萃液(稀釋20倍)的EEM圖譜 47 圖 3–33 10000 ppm的HA (No. 53680, Sigma)的EEM圖譜 48 圖 3–34 10 ppm的HA (No. 53680, Sigma)的EEM圖譜 48 圖 3–35 10 ppm的HA鈉鹽 (No. H16752, Sigma)的EEM圖譜 49 圖 3–36 鴛鴦湖第3號入水口表水(2010/1/25)的EEM圖譜 50 圖 3–37 鴛鴦湖第5號入水口表水(2010/5/20)的EEM圖譜 50 圖 3–38 鴛鴦湖湖心表水(2010/5/20)的EEM圖譜 51 圖 3–39 三種DOC濃度培養液之EEM圖譜比較 54 圖 3–40 O. limnetica在三種DOC濃度培養液中,第0天與第3天藻液之EEM圖譜比較。#0D組第3天藻液稀釋5倍;*10D組第3天藻液稀釋10倍 55 圖 3–41 C. vulgaris在三種DOC濃度培養液中,第0天與第3天藻液之EEM圖譜比較。 *10 D組第3天藻液稀釋10倍。 56 圖 3–42 T. wisconsinensis在三種DOC濃度培養液中,第0天與第3天藻液之EEM圖譜比較。 *10 D組第3天藻液稀釋10倍。 57 圖 3–43 分子量標準品(77000 Da)之高效液相層析圖 58 圖 3–44 三種藻在不同初始DOC濃度下培養三天,起始與結束培養時之藻液分子量(單位:Da)。(a) O. limnetica; (b) C. vulgaris; (c) T. wisconsinensis. 61 圖 3–45 三種分離自鴛鴦湖之浮游藻在不同DOC濃度培養條件下,連續培養三天之(a)葉綠素a濃度及(b)生長速率變化 63 表目錄 表 2 1 DOC於EEMs圖譜中出現發射峰值(Em max)時之Ex與Em的位置(nm) 16 表 2 2 NC無機培養液 18 表 3 1 在2009/7/19~2010/9/23期間,鴛鴦湖水樣的pH值與雨水pH值、雨量之對照表 24 表 3 2 在2009/7/19~2010/9/23期間,鴛鴦湖水樣之水色變化(A440)與採集前一週雨量之對照表 28 表 3 3 三種藻在三種濃度之DOC培養液中,連續培養三天,每日藻液之EEMs圖譜的螢光發射峰值變化。 53 表 3 4 各水樣及萃取液之分子量(單位:Dalton (Da)) 59 | |
dc.language.iso | zh-TW | |
dc.title | 鴛鴦湖湖水溶解性有機碳之來源探討 | zh_TW |
dc.title | Sources of dissolved organic carbon of Yuan-Yang Lake | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 邱志郁,王立志,張世杰,王巧萍 | |
dc.subject.keyword | 鴛鴦湖,溶解性有機碳,腐植物質, | zh_TW |
dc.subject.keyword | Yuan-Yang Lake,dissolved organic carbon (DOC),humic substance (HS),SUVA254,A440,HPLC,EEMs, | en |
dc.relation.page | 82 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2011-07-20 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生態學與演化生物學研究所 | zh_TW |
顯示於系所單位: | 生態學與演化生物學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf | 2.38 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。