Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100967
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉浩澧zh_TW
dc.contributor.advisorHao-Li Liuen
dc.contributor.author黃芯柔zh_TW
dc.contributor.authorHsin-Jou Huangen
dc.date.accessioned2025-11-26T16:17:17Z-
dc.date.available2025-11-27-
dc.date.copyright2025-11-26-
dc.date.issued2025-
dc.date.submitted2025-10-18-
dc.identifier.citationG. Arakawa, S. Suzuki, T. Kamigaki, Y. Makino, and H. Shinoda, “Acous tic levitation of super wavelength elastic films using ultrasound phased ar rays,” Applied Physics Letters, vol. 126, no. 5, 2025. Accessed 11 July 2025. https://pubs.aip.org/aip/apl/article-abstract/126/5/054101/ 3240217/Acoustic-levitation-of-super-wavelength-elastic.
Ultraleap, “How does ultraleap's mid-air haptics technology work?.” Accessed 5 July 2025. https://www.ultraleap.com/blog/ how-does-ultraleaps-mid-air-haptics-technology-work/, 2022.
G. Korres and M. Eid, “Haptogram: Ultrasonic point-cloud tactile stimulation,” IEEE Access, vol. 4, pp. 7758–7769, 2016.
A. Marzo, T. Corkett, and B. W. Drinkwater, “Ultraino: An open phased-array sys tem for narrowband airborne ultrasound transmission,” IEEE Transactions on Ultra sonics, Ferroelectrics, and Frequency Control, vol. 65, pp. 102–111, 2018.
S. Suzuki, S. Inoue, M. Fujiwara, Y. Makino, and H. Shinoda, “Autd3: Scalable airborne ultrasound tactile display,” IEEE Transactions on Haptics, vol. 14, no. 4, pp. 740–749, 2021.
R.Morales, I. Ezcurdia, J. Irisarri, M. A. B. Andrade, and A. Marzo, “Generating air borne ultrasonic amplitude patterns using an open hardware phased array,” Applied Sciences, vol. 11, p. 2981, 2021.
C.-F. Li, M.-Y. Yang, G.-W. Hong, and H.-L. Liu, “Design and implementation of a fpga-based airborne ultrasound sensing and radiation phased array device,” in IEEE Ultrasonics, Ferroelectrics, and Frequency Control Joint Symposium (UFFC-JS), 2024.
I. I. I. Al Nuaimi and M. N. Mahyuddin, “Robust indirect adaptive control of acous tic levitation standing waves based scheme for robotic non contact manipulation applications,” International Journal of Control, Automation and Systems, vol. 23, pp. 1816–1828, 2025. Accessed 11 July 2025. https://link.springer.com/ article/10.1007/s12555-024-1038-2.
M. Yoneyama, J. Fujimoto, Y. Kawamo, and S. Sasabe, “The audio spotlight: An application of nonlinear interaction of sound waves to a new type of loudspeaker system,” The Journal of the Acoustical Society of America, vol. 73, no. 5, pp. 1532 1536, 1983. Accessed 11 July 2025. https://asa.scitation.org/doi/10. 1121/1.389261.
Audfly Speaker, “What is parametric speaker?.” Accessed 11 July 2025. https: //www.audflyspeaker.com/what-is-parametric-speakers/, 2024.
T. Hoshi, M. Takahashi, T. Iwamoto, and H. Shinoda, “Noncontact tactile display based on radiation pressure of airborne ultrasound,” IEEE Transactions on Haptics, vol. 3, no. 3, pp. 155–165, 2010.
T. Hoshi et al., “Control method of a noncontact tactile display using airborne ultra sound,” in Eurohaptics, 2006.
D. Pittera, D. Ablart, and M. Obrist, “Creating an illusion of movement between the hands using mid-air touch,” IEEE Transactions on Haptics, vol. 12, no. 4, pp. 615 623, 2019.
Ultraleap, “Official website.” Accessed 5 July 2025. https://www.ultraleap. com.
R. Ciriza et al., Mid-air haptics to support spatial awareness for visually impaired users. 2024.
T. Carter, S. A. Seah, B. Long, B. Drinkwater, and S. Subramanian, “Ultrahaptics: multi-point mid-air haptic feedback for touch surfaces,” in Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, UIST ’13, (New York, NY, USA), p. 505–514, Association for Computing Machinery, 2013.
K. Hasegawa and H. Shinoda, “Aerial vibrotactile display based on multiunit ultra sound phased array,” IEEE Transactions on Haptics, vol. 11, no. 3, pp. 367–377, 2018.
H.-J. H. Cihun-Siyong Gong and H.-L. Liu, “Reconfigurable dual-mode airborne ultrasound phased array with scalable modular design,” IEEE Sensors Letters, 2025. submitted.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100967-
dc.description.abstract本研究針對空氣超音波相位陣列的發展需求,設計並實現了一套具備大規模擴充能力與雙向功能的新型系統。傳統系統雖已廣泛應用於醫學影像,但在空氣中應用時往往受限於輸出聲壓不足、僅能發射無法接收、以及更新率偏低等問題,難以支撐懸浮操控、觸覺回饋與定向音響等新興技術的進一步發展。為克服這些挑戰,本研究採用FPGA為核心控制平台,建立Master–Slave架構並搭配模組化拼接設計,使陣列通道數可由百級擴展至千級,並能依需求靈活配置,同時實現每一通道獨立相位控制以精準塑造三維聲場。類比驅動電路則能於保持低功耗的同時提供高達40V的操作電壓,使系統能輸出更強的聲壓,確保在多點聚焦與大範圍聲場操控下仍具穩定性。另一方面,系統亦首次整合高取樣率的接收功能,為後續聲學成像、姿態追蹤與手勢辨識等應用奠定基礎。實驗結果證實,本系統在最大擴充陣列下輸出超過7kPa的聲壓,展現出足以支援懸浮與觸覺合成的效能。整體而言,本研究所提出的架構不僅突破了傳統系統在輸出功率與接收能力上的限制,更強調透過擴大陣列規模來提升聲壓的重要性,提供一個兼具高擴充性與高效能的開發平台,為超音波相位陣列在人機互動、三維聲場控制及智慧感測等領域的未來應用開啟更多可能性。zh_TW
dc.description.abstractThis research addresses the development needs of airborne ultrasonic phased arrays by designing and implementing a novel system with large-scale scalability and bidirec tional functionality. While conventional systems have been widely applied in medical imaging, their use in air is often limited by insufficient acoustic output pressure, lack of receiving capability, and relatively low update rates, which constrain further advance ments in emerging technologies such as acoustic levitation, haptic feedback, and direc tional audio. To overcome these challenges, this work employs an FPGA as the central control platform, establishing a Master–Slave architecture combined with a modular tiling design. This enables the array to scale flexibly from hundreds to thousands of channels while allowing adaptive configuration according to application needs, with each channel supporting independent phase control for precise three-dimensional sound field shaping. The analog driving circuit maintains low power consumption while providing up to 40 V operating voltage, thereby enabling stronger acoustic output pressure and ensuring stabil ity under multi-focus and large-area field control. Furthermore, the system integrates, for the first time, a high-sampling-rate receiving function, laying the foundation for applica tions such as acoustic imaging, posture tracking, and gesture recognition. Experimental results demonstrate that the system achieves an output pressure exceeding 7 kPa with the maximum expanded array, sufficient to support levitation and haptic synthesis. Overall, the proposed architecture not only overcomes the limitations of conventional systems in terms of output power and reception capability, but also emphasizes the importance of scaling up array size to enhance acoustic pressure. It provides a highly scalable and high performance development platform, opening new possibilities for the future application of ultrasonic phased arrays in human–machine interaction, three-dimensional sound field control, and intelligent sensing.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:17:16Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-11-26T16:17:17Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書i
致謝ii
摘要iii
Abstract iv
目次vi
圖次ix
表次xiii
第一章緒論1
1.1超音波相位陣列1
1.2空氣用超音波相位陣列於人機介面之應用潛力3
1.2.1應用1:物體懸浮(AcousticLevitation) 5
1.2.2應用2:參數式揚聲器(指向型音響)(ParametricLoudspeaker)6
1.2.3應用3:觸覺合成(UltrasoundMid-AirHaptics) 7
1.3超音波相位陣列系統回顧8
1.3.1 Haptgram’sWork(2016) 8
1.3.2 Marzo’sWork(2018) 9
1.3.3 Suzuki’sWork(2021) 10
1.3.4 Morales’sWork(2021) 11
1.3.5本團隊的先前研究(2024) 12
1.4研究目的與論文架構15
第二章方法與理論16
2.1系統總覽16
2.2類比驅動電路板架構17
2.2.1系統電源轉換與供給18
2.2.2數位訊號緩衝與發射通道擴展20
2.2.3發射訊號電壓放大及收發通道切換22
2.3超音波傳感器模組24
2.4 USB3.0架構25
2.5 FPGA架構26
2.5.1 USB3.0控制模組設計29
2.5.1.1訊號定義與功能說明29
2.5.1.2狀態機設計與操作流程30
2.5.1.3時序對應與訊號穩定處理31
2.5.2跨時脈域的資料與控制訊號同步機制32
2.5.3 SPI傳輸協定33
2.5.4 MasterController 34
2.5.5 MasterMemoryController 36
2.5.6 SPIController 38
2.5.7 SlaveController 39
2.5.7.1 Transmitdata 39
2.5.7.2 Receivedata 40
2.5.8 SlaveMemoryController 41
2.5.9 SlaveBurstController42
2.5.10ADCController 43
2.5.11 SlaveReceiveController 44
2.6使用者圖形化介面46
2.7相位陣列技術原理47
2.8實驗設備與規劃49
2.8.1實驗設備介紹49
2.8.2實驗規劃52
第三章實驗設置與結果55
3.1實驗目的55
3.2相位陣列聚焦能力量測與分析56
3.3接收能力分析73
3.4系統性能量測與分析85
3.5文獻比較89
第四章結論與未來展望91
4.1結論91
4.2未來展望92
參考文獻94
-
dc.language.isozh_TW-
dc.subject超音波相位陣列-
dc.subjectFPGA-
dc.subject觸覺合成-
dc.subject指向型音響-
dc.subject物體懸浮-
dc.subject類比電路設計-
dc.subject超音波回波接收-
dc.subjectUSB3.0-
dc.subjectUltrasonic phased array-
dc.subjectFPGA (Field-Programmable Gate Array)-
dc.subjectHaptic synthesis-
dc.subjectDirectional acoustics-
dc.subjectObject levitation-
dc.subjectAnalog circuit design-
dc.subjectUltrasonic echo reception-
dc.subjectUSB3.0-
dc.title基於現場可程式化邏輯閘陣列之空氣超音波發射與接收雙向功能之大規模相位陣列系統設計與實現zh_TW
dc.titleDesign and Implementation of Large-Scale Dual Transmit/ Receive Function Airborne Ultrasound Arrayen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee龔存雄;沈哲州zh_TW
dc.contributor.oralexamcommitteeCihun-Siyong Gong;Che-Chou Shenen
dc.subject.keyword超音波相位陣列,FPGA觸覺合成指向型音響物體懸浮類比電路設計超音波回波接收USB3.0zh_TW
dc.subject.keywordUltrasonic phased array,FPGA (Field-Programmable Gate Array)Haptic synthesisDirectional acousticsObject levitationAnalog circuit designUltrasonic echo receptionUSB3.0en
dc.relation.page96-
dc.identifier.doi10.6342/NTU202504582-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-10-20-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電機工程學系-
dc.date.embargo-lift2025-11-27-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
37.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved