請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100944完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂育道 | zh_TW |
| dc.contributor.advisor | Yuh-Dauh Lyuu | en |
| dc.contributor.author | 陳昱行 | zh_TW |
| dc.contributor.author | Justin Chen | en |
| dc.date.accessioned | 2025-11-26T16:11:59Z | - |
| dc.date.available | 2025-11-27 | - |
| dc.date.copyright | 2025-11-26 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-10-07 | - |
| dc.identifier.citation | Bank of England and Financial Conduct Authority (FCA) (2024, Oct). Statement on the end of LIBOR. Technical report.
Black, F. (1976). The pricing of commodity contracts. Journal of Financial Economics 3(1-2), 167–179. Brace, A., D. Gatarek, and M. Musiela (1997). The market model of interest rate dynamics. Mathematical Finance 7(2), 127–155. Brigo, D. and F. Mercurio (2006). Interest Rate Models–Theory and Practice: With Smile, Inflation and Credit (2nd ed.). Berlin: Springer-Verlag. Chang, C.-H. (2010). Using GPU to accelerate the pricing of Parisian options. Master’s thesis, Department of Computer Science and Information Engineering, National Taiwan University. Chen, H.-C. (2016). Using GPU to accelerate the least-squares Monte Carlo method. Master’s thesis, Department of Computer Science and Information Engineering, National Taiwan University. Cox, J. C., S. A. Ross, and M. Rubinstein (1979). Option pricing: A simplified approach. Journal of Financial Economics 7(3), 229–263. Dai, T.-S., H.-M. Chung, and C.-J. Ho (2009). Using the LIBOR market model to price the interest rate derivatives: A recombining binomial tree methodology. NTU Management Review 20(1), 41–68. Heath, D., R. Jarrow, and A. Morton (1990). Bond pricing and the term structure of interest rates: A discrete time approximation. Journal of Financial and Quantitative Analysis 25(4), 419–440. Heath, D., R. Jarrow, and A. Morton (1992). Bond pricing and the term structure of interest rates: A new methodology for contingent claims valuation. Econometrica 60(1), 77–105. Heath, D., R. Jarrow, A. Morton, and M. Spindel (1992). Easier done than said. Risk 5(10). Hillis, W. D. and J. Steele, Guy L. (1986). Data parallel algorithms. Communications of the ACM 29(12), 1170–1183. Ho, T.-S., R. C. Stapleton, and M. G. Subrahmanyam (1995). Multivariate binomial approximations for asset prices with nonstationary variance and covariance characteristics. The Review of Financial Studies 8(4), 1125–1152. Hsu, H. K. (2023). An efficient tree for the LIBOR market model. Master’s thesis, Department of Computer Science and Information Engineering, National Taiwan University. Hull, J. C. and A. D. White (1993). Efficient procedures for valuing European and American path-dependent options. The Journal of Derivatives 1(1), 21–31. International Swaps and Derivatives Association (ISDA) (2023). ISDA transition to RFRs review: First half 2023. Technical report. Jäckel, P. (2002). Monte Carlo Methods in Finance. Chichester, UK: Wiley. Li, L. X., R.-R. Chen, and F. J. Fabozzi (2024). GPU-accelerated American option pricing: The case of the Longstaff-Schwartz Monte Carlo model. The Journal of Derivatives 32(2), 72–101. Lyashenko, A. and F. Mercurio (2019). Looking forward to backward-looking rates: A modeling framework for term rates replacing LIBOR. Available online at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3330240. NVIDIA (2023). NVIDIA H100 Tensor Core GPU. https://www.nvidia.com/en-us/data-center/h100/. Pelsser, A. (2000). Efficient Methods for Valuing Interest Rate Derivatives. London: Springer. Tang, Y. and J. Lange (2001). A nonexploding bushy tree technique and its application to the multifactor interest rate market model. The Journal of Computational Finance 4(4), 5–31. TechPowerUp (2023). NVIDIA GeForce RTX 4070 Ti Specs. https://www.techpowerup.com/gpu-specs/geforce-rtx-4070-ti.c3950. U.S. General Services Administration (1996). Telecommunications: Glossary of telecommunication terms. Federal Standard 1037C. Wu, Y.-C. (2008). Performance of GPU for a tree model for convertible bonds pricing with stock price, interest rate, and default risks. Master’s thesis, Department of Computer Science and Information Engineering, National Taiwan University. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100944 | - |
| dc.description.abstract | LIBOR市場模型(LMM)是定價利率衍生性金融商品的重要框架。然而,在統一測度下模擬多個遠期LIBOR利率時,因爲對長天期漂移項的依賴,其數值計算面臨挑戰。雖然已有研究提出高效的重組三元樹來近似LMM動態,但該方法在波動較高的情況下,由於近似誤差累積而有失準。本論文提出了一種創新的遞迴元樹,把誤差最高、機率權重最大的中央節點當作新子樹的根節點,而非與現有節點重組,透過選擇性地解除中央節點的重組限制,以提升定價準確性。此「遞迴」結構重置了沿著重組樹中央高機率路徑所累積的局部動差近似誤差。數值實驗驗證了此方法的有效性,顯示其在定價普通選擇權與離散障礙選擇權時達到了顯著提升的精準度,優於先前方法。因此,遞迴三元樹為LIBOR模型下的利率衍生工具定價提供了另一個選擇,在效率與精確度之間取得平衡。 | zh_TW |
| dc.description.abstract | The LIBOR Market Model (LMM) is a fundamental framework for pricing interest rate derivatives. However, modeling multiple forward LIBOR rates under a common measure introduces complex, state-dependent drift terms that complicate numerical valuation. When recombining trinomial trees are applied to the LMM, the model's state-dependent drift terms prevent the asymptotic matching of both local mean and variance at the majority of nodes. This mismatch between the tree's local moments and those dictated by the LMM results in convergence issues. Numerical experiments reveal that significant deviations in local moments, and consequently potential pricing inaccuracies, concentrate along the tree's central region. This tree's central nodes initiate sub-trees periodically after every predetermined number of time steps. This recursion resets the accumulated errors from mismatched local moments. Numerical experiments confirm its effectiveness in raising precision for the prices of vanilla and discrete barrier options compared to the standard recombining trinomial tree. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:11:58Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-11-26T16:11:59Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
Abstract iii Contents v List of Figures vii List of Tables ix Chapter1 Introduction 1 Chapter2 Preliminaries 7 2.1 The LIBOR Market Model 7 2.2 Caplets and Floorlets 9 2.3 Caps and Floors 10 2.4 Discrete Barrier Caps 10 Chapter3 An Efficient Trinomial Tree for the One-Factor LMM 13 3.1 Construction of the Trinomial Tree 13 3.2 Local Moments Mismatches and Error Accumulation 18 3.3 Width of the High-Error Region 21 3.4 Summary 24 Chapter4 Recursion on the Trinomial Tree 27 4.1 The Recursive Tree 27 4.2 Construction of the Recursive Tree 27 4.3 Complexity Analysis 28 Chapter5 Numerical Results 31 5.1 Valuation of Caplets and Caps 31 5.1.1 Pricing Accuracy of Hsu’s (2023) Trinomial Tree 31 5.1.2 Improved Accuracy with the Recursive Tree 35 5.2 Wall-Clock Execution Time 41 5.3 Valuation of Discrete Barrier Options 46 5.3.1 Pricing Accuracy of the Recombining Trinomial Tree of Hsu (2023) 46 5.3.2 Improved Accuracy with the Recursive Tree 51 Chapter6 Conclusion 55 References 57 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | LIBOR 市場模型 | - |
| dc.subject | 三元樹 | - |
| dc.subject | 遞迴方法 | - |
| dc.subject | 利率衍生性金融商品 | - |
| dc.subject | 誤差減少 | - |
| dc.subject | 數值方法 | - |
| dc.subject | 平行計算 | - |
| dc.subject | LIBOR Market Model | - |
| dc.subject | trinomial tree | - |
| dc.subject | recursive method | - |
| dc.subject | interest rate derivatives | - |
| dc.subject | error reduction | - |
| dc.subject | numerical methods | - |
| dc.subject | parallel computing | - |
| dc.title | LIBOR 市場模型的遞迴三元樹 | zh_TW |
| dc.title | A Recursive Trinomial Tree for the LIBOR Market Model | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張經略;陸裕豪 | zh_TW |
| dc.contributor.oralexamcommittee | Ching-Lueh Chang;U-Hou Lok | en |
| dc.subject.keyword | LIBOR 市場模型,三元樹遞迴方法利率衍生性金融商品誤差減少數值方法平行計算 | zh_TW |
| dc.subject.keyword | LIBOR Market Model,trinomial treerecursive methodinterest rate derivativeserror reductionnumerical methodsparallel computing | en |
| dc.relation.page | 59 | - |
| dc.identifier.doi | 10.6342/NTU202504551 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-10-08 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf 未授權公開取用 | 3.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
