Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100943
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳忠幟zh_TW
dc.contributor.advisorChung-Chih Wuen
dc.contributor.author高浩哲zh_TW
dc.contributor.authorHao-Che Kaoen
dc.date.accessioned2025-11-26T16:11:44Z-
dc.date.available2025-11-27-
dc.date.copyright2025-11-26-
dc.date.issued2025-
dc.date.submitted2025-11-03-
dc.identifier.citationChapter1
[1] M. Pope, H. P. Kallmann, and P. Magnante, J. Chem. Phys. (1963), 38, 2042.
[2] C. W. Tang, and S. A. VanSlyke, Appl. Phys. Lett. (1987) , 51, 913.
[3] C. W. Tang, S. A. VanSlyke, and C. H. Chen, J. Appl. Phys. (1989) , 65, 3610.
[4] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature. (1990), 347, 539.
[5] S. Miyata, H. S. Nalwa,“Organic Electroluminescent Materials and Devides”Gordon and Breach Science Publishers. (1997), Chap.1.
[6] K. Sugiyama, D. Yoshimura, T. Miyamae, T. Miyazaki, H. Ishii, Y.Ouchi, and K. Seki., J. Appl. Phys. (1998) , 83, 4928.
[7] Y. Kawamura, K. Goushi, J. Brooks, J. J. Brown, H. Sasabe, and C. Adachi, Appl. Phys. Lett. (2005), 86, 071104.
[8] B. W. D’Andrade, and S.R. Forrest, Adv. Mater. (2004), 16, 1585.
[9] A. Gilbert, “Essentials of Molecular Photochemistry”, Oxford, U.K. (1991).
[10] D. L. Dexter, J. Chem. Phys. (1953) , 21, 836.
[11] A. Adamovich, J. Brooks, A. Tamayo, A. M. Alexander, P. I. Diurovich, M. E. Thompson, C. Adachi, B. W. D’Andrade, and S. R. Forrest, New J. Chem. (2002), 26, 1171.
[12] B. W. D’Andrade, M. E. Thompson, and S. R. Forrest, Adv. Mater. (2002) , 14, 147.
[13] J.-J. Lin, C.-I. Chao and C.-C. Lee, Proceedings of SID. (2006), 06, 1459.
[14] D. F. O’Andrade, M. E. Thompson, and S. R. Forrest, Appl. Phs. Lett. (1991) , 74, 442.
[15] M. A. Baldo, M. E. Thompson, and S. R. Forrest, Nature (London). (2000) , 403, 750.
[16] S. Okada, H. Iwawaki, M. Furugori, J. Kamatani, S. Igawa, T. Moriyama, S. Miura, A. Tsuboyama, T. Takiguchi, and H. Mizutani, SID’02 Digest. (2002) , 1360.
[17] A. Tsuboyama, H. Mizutani, M. Furugori, T. Mukaide, J. Kamatani, S. Igawa, T. Moriyama, S. Miura, T. Takiguchi, S. Okada, M. Hoshino, and K. Ueno, J. Am. Chem. Soc. (2003), 125, 12971.
[18] Y. J. Su, H. L. Huang, C. L. Li, C. H. Chien, Y. T. Tao, P. T. Chou, S. Datta, and R.-S. Lin, Adv. Mater. (2003), 15, 884.
[19] R. Guo, W. Zhang, Q. Zhang, X. LV, and L. Wang, Front. Optoelectron. (2018), 11, 375.
[20] W. Jiang, W. Hou, C. Yan, Z. Nie, Q. Chang, X. Li, and W. Liu, Molecules. (2024), 29, 3183.
[21] C. H. Lin, C. W. Hsu, J. L. Liao, Y. M. Cheng, Y. Chi, T. Y. Lin, M. W. Chung, P. T. Chou, G. H. Lee, C. C. Chang, C. Y. Shih, and C. L. Ho, J. Mater. Chem. (2012), 22, 10684.
[22] S. W. Kang, D. H. Baek, B. K. Ju, and Y. W. Park, Nature. (2021), 11, 8436.
[23] Q. Zhu, and J. Xu, Heliyon. (2023), 9, 22428.
[24] C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett. (2001), 79, 2982.
[25] R. J. Holmes, B. W. D’Andrde, S. R. Forrest, X. Ren, J. Li, and M. E. Thompson, Appl. Phys. Lett. (2003), 83, 3818.
[26] S. J. Yeh, W. C. Wu, C. T. Chen, Y. H. Song, Y. Chi, M. H. Ho, S. F. Hsu, and C. H. Chen, Adv. Mater. (2005), 17, 285.
[27] A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, and C. Adachi, Appl. Phys. Lett. (2011), 98, 083302.
[28] A. Endo, M. Ogasawara, A. Takahashi, D. Yokoyama, Y. Kato, and C. Adachi, Adv. Mater. (2009), 21, 4802.
[29] S. Y. Lee, T. Yasuda, H. Nomura, and C. Adachi, Appl. Phys. Lett. (2012), 101, 093306.
[30] A. J. Taal, I. Uguz, S. Hillebrandt, C.-K. Moon, V. Andino-Pavlovsky, J. Choi, C. Keum, K. Deisseroth, M. C. Gather, and K. L. Shepard, Nat. Electron. (2023), 6, 669-679.
[31] M. Kielar, M. Kenna, P. Blanchard, and P. Sah, Photonics. (2025), 12, 281.
[32] S. L. Jacques, Phys. Med. Biol. (2013), 58, 37-61.
[33] F. Deng, R. Yang, Y. Yang, X. Li, J. Hou, Y. Liu, J. Lu, S. Huang, Y. Meng, S. Wu, and L. Zhang, Commun. Biol. (2024), 7, 1266.
[34] N. J. Prindeze, L. T. Moffatt, and J. W. Shupp, Exp. Biol. Med. (2012), 237, 1241–1248 .
[35] A. Yadav and A. Gupta, Photodermatol. Photoimmunol. Photomed. (2017), 33, 4–13.
[36] Y. I. Lee, S. G. Lee, S. Ham, I. Jung, J. Suk, and J. H. Lee, Yonsei Med. J. (2024), 65, 98–107.
[37] M. R. Hamblin, AIMS Biophys. (2017), 4, 337–361.
[38] J. A. F. Neto, C. F. W. Nonaka, and M. H. C. V. Catão, Lasers Med. Sci. (2019), 34, 721–728.
[39] A. Conti, M. Brilli, E. Norgini, S. Falini, L. De Fina, G. Spargi, and S. Gasperini, Wounds Int. (2023), 14, 41–46.
[40] Y. Zhang, Y. Zhu, A. Gupta, Y. Huang, C. K. Murray, M. S. Vrahas, M. E. Sherwood, D. G. Baer, M. R. Hamblin, and T. Dai, J. Infect. Dis. (2014), 209, 1963–1971.
[41] X. Yang, G. Mu, K. Weng, and X. Tang, Photonics. (2024), 11, 864.
Chapter2
[1] H. Xiang, J. Cheng, X. Ma, X. Zhou, J. J. Chruma, Chem. Soc. Rev. (2013), 42, 6128-6185.
[2] Y. Zhang, Y. Wang, J. Song, J. Qu, B. Li, W. Zhu, W.-Y. Wong, Adv. Opt. Mater. (2018), 6, 1088266..
[3] J. O. Escobedo, O. Rusin, S. Lim, R. M. Strongin, Curr. Opin. Chem. Biol. (2010), 14, 64-70.
[4] V. Pansare, S. Hejazi, W. Faenza, R. K. Prud'homme, Chem. Mater. (2012), 24, 812-827.
[5] A. Zampetti, A. Minotto, F. Cacialli, Adv. Funct. Mater. (2019), 29, 1807623.
[6] Y. Ning, M. Zhu, J.-L. Zhang, Coord. Chem. Rev. (2019), 399, 213028.
[7] X. Tang, Y.-T. Lee, Z. Feng, S. Y. Ko, J. W. Wu, V. Placide, J.-C. Ribierre, A. D’Aléo, C. Adachi, ACS Materials Lett. (2020), 2, 1567-1574.
[8] C. Wang, X.-L. Li, Y. Gao, L. Wang, S. Zhang, L. Zhao, P. Lu, B. Yang, S.-J. Su, Y. Ma, Adv. Opt. Mater. (2017), 5, 1700441.
[9] J. L. Liao, Y. Chi, C. C. Yeh, H. C. Kao, C. H. Chang, M. A. Fox, P. J. Low, G. H. Lee, J. Mater. Chem. C, (2015), 3, 4910-4920.
[10] Y. Zhang, Z. Chen, X. Wang, J. He, J. Wu, H. Liu, J. Song, J. Qu, W. T. Chan, W. Y. Wong, Inorg. Chem. (2018), 57, 14208-14217.
[11] Y. Zhang, F. Meng, C. You, S. Yang, W. Xiong, Y. Wang, S. Su, W. Zhu, Dyes. Pigm. (2017), 138, 100-106.
[12] W. Xiong, F. Meng, H. Tan, Y. Wang, P. Wang, Y. Zhang, Q. Tao, S. Su, W. Zhu, J. Mater. Chem. C. (2016), 4, 6007-6015.
[13] V. Selamneni, H. Raghavan, A. Hazra, P. Sahatiya, Adv. Mater. Interfaces (2021), 8, 2001988.
[14] S. Kesarkar, W. Mroz, M. Penconi, M. Pasini, S. Destri, M. Cazzaniga, D. Ceresoli, P. R. Mussini, C. Baldoli, U. Giovanella, A. Bossi, Angew. Chem. Int. Ed. (2016), 55, 2714-2718.
[15] J. Xue, L. Xin, J. Hou, L. Duan, R. Wang, Y. Wei, J. Qiao, Chem. Mater. (2017), 29, 4775-4782.
[16] D. Ma, T. Tsuboi, Y. Qiu, L. Duan, Adv. Mater. (2017), 29, 1603253.
[17] X. Cao, J. Miao, M. Zhu, C. Zhong, C. Yang, H. Wu, J. Qin, Y. Cao, Chem. Mater. (2014), 27, 96-104.
[18] J. L. Liao, Y. Chi, S. H. Liu, G. H. Lee, P. T. Chou, H. X. Huang, Y. D. Su, C. H. Chang, J. S. Lin, M. R. Tseng, Inorg. Chem. (2014), 53, 9366-9374.
[19] M. Schulze, A. Steffen, F. Wurthner, Chem. Mater. (2015), 54, 1570-1573.
[20] B. Laramee-Milette, N. Zaccheroni, F. Palomba, G. S. Hanan, Chem. Eur. J. (2017), 23, 6370-6379.
[21] L. Y. Zhang, Y. J. Hou, M. Pan, L. Chen, Y. X. Zhu, S. Y. Yin, G. Shao, C. Y. Su, Dalton Trans. (2015), 44, 15212-15219.
[22] X. Wu, D. G. Chen, D. Liu, S. H. Liu, S. W. Shen, C. I. Wu, G. Xie, J. Zhou, Z. X. Huang, C. Y. Huang, S. J. Su, W. Zhu, P. T. Chou, J. Am. Chem. Soc. (2020), 142, 7469-7479.
[23] K. Tuong Ly, R.-W. Chen-Cheng, H.-W. Lin, Y.-J. Shiau, S.-H. Liu, P.-T. Chou, C.-S. Tsao, Y.-C. Huang, Y. Chi, Nat. Photon. (2016), 11, 63-68.
[24] X. Wu, Y. Liu, Y. Wang, L. Wang, H. Tan, M. Zhu, W. Zhu, Y. Cao, Org. Electron. (2012), 13, 932-937.
[25] X. Chen, W. Qiao, B. Liu, J. Ren, Z. Wang, Sci. China. Chem. (2016), 60, 77-83.
[26] C. You, D. Liu, J. Yu, H. Tan, M. Zhu, B. Zhang, Y. Liu, Y. Wang, W. Zhu, Adv. Opt. Mater. (2020), 8, 2000154.
[27] J. Zhao, K. Yan, G. Xu, X. Liu, Q. Zhao, C. Xu, S. Gou, Adv. Funct. Mater. (2020), 31, 2008525.
[28] Z. Chen, H. Zhang, D. Wen, W. Wu, Q. Zeng, S. Chen, W. Y. Wong, Chem. Sci. (2020), 11, 2342-2349.
[29] G. Fu, H. Zheng, Y. He, W. Li, X. Lü, H. He, J. Mater. Chem. C. (2018), 6, 10589-10596.
[30] G. Zhang, H. Zhang, Y. Gao, R. Tao, L. Xin, J. Yi, F. Li, W. Liu, J. Qiao, Organometallics (2013), 33, 61-68.
[31] M. C. Jung, J. Facendola, J. Kim, D. S. Muthiah Ravinson, P. I. Djurovich, S. R. Forrest, M. E. Thompson, Adv. Mater. (2021), 2102882.
[32] M. Idris, S. C. Kapper, A. C. Tadle, T. Batagoda, D. S. Muthiah Ravinson, O. Abimbola, P. I. Djurovich, J. Kim, C. Coburn, S. R. Forrest, M. E. Thompson, Adv. Opt. Mater. (2021), 9, 2001994.
[33] W. Cheng, L.-D. Wang, Y.-Y. Zhou, Z.-Q. Bian, B.-H. Tong, Z.-W. Liu, S. Wang, Dyes. Pigm. (2020), 177, 1082257.
[34] X. Liu, Z. Yu, M. Yu, X. Zhang, Y. Xu, P. Lv, S. Chu, C. Liu, W. Y. Lai, W. Huang, ACS Appl. Mater. Interfaces (2019), 11, 26174-26184.
[35] L. S. Cui, Y. Liu, X. Y. Liu, Z. Q. Jiang, L. S. Liao, ACS Appl. Mater. Interfaces (2015), 7, 11007-11014.
[36] Z. Lu, C.-H. Jun, S.- R. Gala, M.-P. Sigalas, O. Eisenstein, R.-H. Crabtree, Organometallics (1995), 14, 1168-1175.
[37] Z. Lu, C.-H. Jun, S.- R. Gala, Sigalas, M.-P. Sigalas, O. Eisenstein, R.-H. Crabtree, J. Am. Chem. Soc. Commun. (1993), 1877-1880.
[38] J. L. Liao, Y. Chi, Z. T. Sie, C. H. Ku, C. H. Chang, M. A. Fox, P. J. Low, M. R. Tseng, G. H. Lee, Inorg. Chem. (2015), 54, 10811-10821.
[39] J. L. Liao, L. R. Devereux, M. A. Fox, C. C. Yang, Y. Chiang, C. H. Chang, G. H. Lee, Y. Chi, Chem. Eur. J. (2018), 24, 624 - 635
[40] C. Shi, H. Huang, Q. Li, J. Yao, C. Wu, Y. Cao, F. Sun, D. Ma, H. Yan, C. Yang, A. Yuan, Adv. Opt. Mater. (2021), 9, 2002060.
[41] H. H. Kuo, Z. L. Zhu, C. S. Lee, Y. K. Chen, S. H. Liu, P. T. Chou, A. K. Jen, Y. Chi, Adv. Sci. (2018), 5, 1800846.
[42] B. Liu, M. A. Jabed, J. Guo, W. Xu, S. L. Brown, A. Ugrinov, E. K. Hobbie, S. Kilina, A. Qin, W. Sun, Inorg. Chem. (2019), 58, 14377-14388.
[43] K. R. Lee, M. S. Eum, C. S. Chin, S. C. Lee, I. J. Kim, Y. S. Kim, Y. Kim, S. J. Kim, N. H. Hur, Dalton Trans (2009), 3650-3652.
[44] C. M. Cardona, W. Li, A. E. Kaifer, D. Stockdale, G. C. Bazan, Adv. Mater. (2011), 23, 2367-2371.
[45] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö . Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Revision D.01 ed., Gaussian, Inc., Wallingford CT, (2009).
[46] Y. Zhang, H. C. Kao, C. Shi, C. Wu, M. Zhu, K. Li, C. C. Wu, C. Yang, Chem. Eur. J. (2022), 28, 1-9.
Chapter3.
[1] P. Boher, T. Leroux, V. C. Patton, T. Bignon, Optical characterization of OLED displays. J. Soc. Inf. Disp. (2015), 23, 429-437.
[2] J. Bauri, R. B. Choudhary, G. Mandal, Recent advances in efficient emissive materials-based OLED applications: a review. J. Mater. Sci. (2021), 56, 18837-18866.
[3] G.D. Cha, D.H. Kim, D.C. Kim, Wearable and implantable light Emitting diodes and their biomedical applications. Korean J. Chem. Eng. (2024), 41, 1-24.
[4] C.R. Fontana, A.D. Abernethy, S. Som, K. Ruggiero, S. Doucette, R.C. Marcantonio, C.I. Boussios, R. Kent, J.M. Goodson, A.C.R. Tanner, N.S. Soukos, The antibacterial effect of photodynamic therapy in dental plaque-derived biofilms. J. Periodont. Res. (2009), 44, 751-759.
[5] W.L. Chen, S.Y. Chen, D.C. Huang, D. Luo, H.W. Chen, C.Y. Wang, C.H. Chang, A method to realize efficient deep-red phosphorescent OLEDs with a broad spectral profile and low operating voltages. Materials (2021), 14, 1-13.
[6] Y. Jeon, H.R. Choi, K.C. Park, K.C. Choi, Flexible organic light-emitting-diode-based photonic skin for attachable phototherapeutics. J. Soc. Inf. Disp. (2020), 28, 1-9.
[7] S.Q. Sun, J.J. Shen, Y.F. Wang, Y.T. Jiang, L.F. Chen, H. Xin, J.N. Wang, X.B. Shi, X.Z. Zhu, Q. Sun, L.S. Liao, Q. Chen, M.K. Fung, S.T. Lee, Red organic light-emitting diodes based photobiomodulation therapy enabling prominent hair growth. Nano Res. (2023), 16, 7164-7170.
[8] Y. Park, H.R. Choi, Y. Jeon, H. Kim, J.W. Shin, C.H. Huh, K.C. Park, K.C. Choi, Cell proliferation effect of deep‑penetrating microcavity tandem NIR OLEDs with therapeutic trend analysis. Sci. Rep. (2022), 12, 1-11.
[9] M.J. Maisels, A.F. McDonagh, Phototherapy for neonatal jaundice. N. Engl. J. Med. (2008), 358, 920-928.
[10] M.J. Maisels, Neonatal jaundice. Pediatr. Rev. (2006), 27, 443-454.
[11] L.M. Gartner, Neonatal jaundice. Pediatr. Rev. (1994), 15, 422-432.
[12] R.S. Cohen, R.J. Wong, D.K. Stevenson, Understanding neonatal jaundice: A perspective on causation. Pediatr. Neonatol. (2010), 51, 143-148.
[13] L.C. Cardoso, R.M.L. Savedra, M.M. Silva, G.R. Ferreira, R.F. Bianchi, M.F. Siqueira, Effect of blue light on the electronic and structural properties of bilirubin isomers: Insights into the photoisomerization and photooxidation processes. J. Phys. Chem. A, 119 (2015) 9037-9042
[14] K.L. Tan, The pattern of bilirubin response to phototherapy for neonatal hyperbilirubinaemia. Pediatr. Res. (1982), 16, 670-674.
[15] V.K. Bhutani, Phototherapy to prevent severe neonatal hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Am. Acad. Pediatr. (2011), 128, 1046-1052.
[16] L.A. Stokowski, Fundamentals of phototherapy for neonatal jaundice. Adv. Neonatal Care (2006), 6, 303-312.
[17] S. Choi, Y. Jeon, J.H. Kwon, C. Ihm, S.Y. Kim, K.C. Choi, Wearable photomedicine for neonatal jaundice treatment using blue organic light-emitting diodes (OLEDs): Toward textile-based wearable phototherapeutics. Adv. Sci. (2022), 9, 1-10.
[18] J. Jayabharathi, V. Thanikachalam, S. Thiagavathy, Phosphorescent organic light-emitting devices: Iridium based emitter materials. Coord. Chem. Rev. (2023), 483, 1-65.
[19] X. Li, S. Fu, Y. Xie, Z. Li, Thermally activated delayed fluorescence materials for organic light-emitting diodes. Rep. Prog. Phys. (2023), 86, 1-47.
[20] C. Hosokawa, H. Higashi, H. Nakamura, T. Kusumoto, Highly efficient blue electroluminescence from a distyrylarylene emitting layer with a new dopant. Appl. Phys. Lett. (1995), 67, 3853-3855.
[21] R.J. Holmes, S.R. Forrest, Y.J. Tung, R.C. Kwong, J.J. Brown, S. Garon, M.E. Thompson, Blue organic electrophosphorescence using exothermic host–guest energy transfer. Appl. Phys. Lett. (2003), 82, 2422-2424.
[22] S.G. Ihn, N. Lee, S.O. Jeon, M. Sim, H. Kang, Y. Jung, D.H. Huh, Y.M. Son, S.Y. Lee, M. Numata, H. Miyazaki, R.G. Bombarelli, J.A. Iparraguirre, T. Hirzel, A.A. Guzik, S. Kim, S. Lee, An alternative host material for long-lifespan blue organic light-emitting diodes using thermally activated delayed fluorescence. Adv. Sci. (2017), 4, 1-7.
[23] G. Krucaite, D. Tavgeniene, M. Kirstukas, S. Grigalevicius, M.J. Lin, J.S. Hong, C.H. Chang, Blue aggregation-induced emission bipolar materials consisting of diphenylsulfone or benzophenone core and triphenylethene-carbazole fragments for highly efficient OLEDs. Dyes Pigments (2024), 228, 1-7.
[24] S.J. Su, Y. Takahashi, T. Chiba, T. Takeda, J. Kido, Structure–property relationship of pyridine-containing triphenyl benzene electron-transport materials for highly efficient blue phosphorescent OLEDs. Adv. Funct. Mater. (2009), 19, 1260-1267.
[25] S. Madagyal, A. Paul, F.Y. Yang, C.H. Huang, P. Verma, P. Chetti, C.H. Chang, S. Kothavale, A. Chaskar, Molecular designs featuring cyanobenzene decorated phenazine acceptor unit for the highly efficient deep-red/near infrared thermally activated delayed fluorescent emitters. ACS Appl. Opt. Mater. (2024), 2, 2248-2261.
[26] H. Keshari, N. Ansari, Y.T. Chen, Y.Q. Chao, C.H. Chang, V. Kumar, P. Chetti, A. Chaskar, Enhanced efficiency in green PhOLEDs using a simplified three-layer architecture with balanced bipolar carbazole-quinazolinone hosts. ACS Appl. Opt. Mater. (2024), 2, 2039-2050.
[27] X. Yang, X. Xu, G. Zhou, Recent advances of the emitters for high performance deep-blue organic light-emitting diodes. J. Mater. Chem. C (2015), 3, 913-944.
[28] D. Luo, W.Y. Chen, W.L. Syu, S.W. Liu, C.H. Chang, Enhancing tandem OLED performance with multiple electroluminescent units. ACS Photonics (2023), 10, 2874-2885.
[29] D. Luo, M.C. Hou, K.Y. Wang, C.H. Chang, S.W. Liu, C.W. Lu, H.C. Su, Efficient tandem white OLED/LEC hybrid devices. Adv. Mater. Technol. (2023), 8, 1-10.
[30] J.M. Wang, T.C. Lee, C.C. Chung, W.Y. Chen, S.Y. Wu, Y.D. Lin, Y.J. Chang, C.W. Lu, C.H. Chang, Toward ultra-high efficiency tandem OLEDs: benzothiazole-based bipolar hosts and specific device architectures. Chem. Eng. J. (2023), 472, 1-12.
[31] A. Jouaiti, D.C. Huang, V. Giuso, C. Cebrian, P. Mercandelli, K.H. Wang, C.H. Chang, M. Mauro, True-to-sky-blue emitters bearing the thiazolo[5,4-d]thiazole electron acceptor for single and tandem organic light-emitting diodes. ACS Appl. Electron. Mater. (2023), 5, 2781-2792.
[32] R.H. Yi, C.M. Shao, C.H. Lin, Y.C. Fang, H.L. Shen, C.W. Lu, K.Y. Wang, C.H. Chang, L.Y. Chen, Y.H. Chang, Dicyano-imidazole-based host materials possessing truly bipolar nature to realize efficient OLEDs with extremely high luminance. J. Phys. Chem. C (2020), 124, 20410-20423.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100943-
dc.description.abstract有機發光二極體Organic Light Emitting Diode(OLED)因具備自發光、面光源、可撓性、低熱輻射與光譜可設計等優勢,已被廣泛應用於次世代顯示與照明技術中,並於近年展現於生醫光電領域中的光療應用潛力。光療為一種非侵入式的醫療手段,透過特定波長的光照射人體,以達到促進傷口癒合、舒緩慢性疼痛或治療黃疸等目的。
紅光與近紅外光(600–1000 nm),適合應用於深層光療,包括組織修復、血液循環改善與疼痛緩解。然而,目前相關的 OLED 材料如 Iridium 錯合物磷光發光材料仍面臨效率低與壽命短等挑戰。為此,本論文與深圳大學材料學院楊楚羅教授及張友明博士合作,開發基於 [−2, −1, 0] 電荷配位組合的 Ir(III) 錯合物 OLED 發光元件。楊教授與張博士透過 bph、acac 與 bpy 配體的組合,成功設計出五種有機發光材料,使其展現深紅至近紅外的發光特性。這些新材料具備高熱穩定性、易昇華與純化等優勢,藉由光物理分析與透過發光元件優化後,製作出低驅動電壓之近紅外光 OLED 元件。
藍光(450–480 nm)則是新生兒黃疸光療的關鍵波段,主要透過觸發膽紅素的光異構化反應來促進其代謝。目前臨床應用大多採用高功率 LED 作為光源,但其高熱與體積龐大的特性不利於長時間照射。相比之下,OLED 具備面光源與低熱特性,因而成為理想的替代方案。然而,傳統藍光 OLED 多為窄頻發光,難以完整涵蓋膽紅素的吸收波段,為解決此挑戰,本論文採用藍光螢光材料 BCzVBi 與磷光材料 FIrpic 組成 tandem 結構,成功開發出涵蓋 430–530 nm 的寬頻藍光 OLED,能完整覆蓋膽紅素主要的吸收範圍,該元件可於 13–14 V 的驅動電壓下穩定運作,表面溫度維持在 42°C 以下,並展現 10–30 μW/cm²/nm 的光譜功率密度,展現了良好的穿戴應用潛力。
zh_TW
dc.description.abstractOrganic light-emitting diodes (OLEDs) have emerged as a core technology for next-generation display and lighting applications due to their unique advantages, including self-emission, planar light sources, mechanical flexibility, low thermal radiation, and tunable emission spectra. In recent years, these features have also demonstrated great potential in biomedical optoelectronics, particularly for phototherapeutic applications. Phototherapy is a non-invasive medical approach that uses specific wavelengths of light to modulate physiological functions or treat pathological conditions, such as wound healing, chronic pain relief, and neonatal jaundice treatment.
Red and NIR (Near-Infrared Red) light (600 – 1000 nm) possess strong tissue penetration, making them suitable for deep-tissue phototherapy applications such as promoting tissue regeneration, improving blood circulation, and relieving pain. However, current phosphorescent OLED materials for this spectral range, such as iridium-based complexes, face major challenges including low emission efficiency and short device lifetimes. To address these issues, this study collaborated with Professor Chuluo Yang and Dr. Youming Zhang from the College of Materials Science and Engineering at Shenzhen University to develop Ir(III)-based phosphorescent emitters using a novel [−2, −1, 0] ligand coordination scheme. Professor Yang and Dr. Chang successfully designed five organic luminescent materials using combinations of bph, acac, and bpy ligands, exhibiting deep red to NIR emission properties.These new materials exhibit high thermal stability, good sublimation properties, and excellent purity. With detailed photophysical characterization and device optimization, low-driving-voltage red and NIR OLEDs were successfully fabricated.
Blue light(450–480 nm)plays a critical role in phototherapy for neonatal jaundice by inducing the photoisomerization of bilirubin, thereby accelerating its metabolic clearance. Currently, high-power blue LEDs are the dominant clinical light source, but their large form factor and high thermal output pose risks for prolonged exposure to infants’ eyes and skin. In contrast, OLEDs offer uniform surface emission and low heat generation, making them promising alternatives. However, traditional blue OLEDs often emit narrowband spectra, limiting coverage of bilirubin’s absorption range (460–490 nm). To overcome these limitations, this study developed a tandem OLED structure combining a fluorescent blue emitter (BCzVBi) and a phosphorescent sky-blue emitter (FIrpic), achieving a broadband emission spanning 430–530 nm. This spectrum effectively covers the primary absorption range of bilirubin. The resulting devices operate stably at 13–14 V, maintain a surface temperature below 42 °C, and deliver a spectral power density of 10–30 μW/cm²/nm, making them well-suited for wearable phototherapy applications.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:11:44Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-11-26T16:11:44Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
中文摘要 iv
ABSTRACT v
CONTENTS vii
LIST OF TABLES ix
LSIT OF FIGURES x
Chapter 1 Introduction 1
1.1 Overview of OLED Light-Emitting Devices 1
1.2 Development of OLED materials 2
1-3 Biomedical Applications of OLEDs 4
1-4 Research Motivation 5
References 6
Table and Figures 10
Chapter 2 Iridium(III) Complexes for Deep-Red/Near-Infrared Phosphorescent OLEDs 15
2.1 Introduction 15
2.2 Research Methods 18
2.2.1 Materials 18
2.2.2 Optical Properties 19
2.2.3 Horizontal Dipole Ratio 20
2.2.4 Device Fabrication and Measurement 21
2.3 Photophysical Properties 23
2.4 Electroluminescence Properties 26
2.5 Summary 28
References 29
Tables and Figures 34
Chapter 3 Blue-emitting OLED with a Broad Spectral Profile for Phototherapy Light Source of Neonatal Jaundice 53
3.1 Introduction 53
3.2 Experiment 56
3.2.1 Absorption and photoluminescence spectrum measurements 56
3.2.2 OLED fabrication 56
3.2.3 Working Temperature Measurement 56
3.3 Results and Discussions 58
3.3.1 Organic Blue-emitting Materials 58
3.3.2 Tandem Devices with Broad EL Spectrum 60
3.3.3 OLED Lamps and Operating Temperature Measurements 63
3.4 Summary 66
Reference 67
Tables and Figures 71
Chapter 4 Summary 80
4.1 Summary 80
-
dc.language.isoen-
dc.subject有機發光二極體-
dc.subject紅色磷光材料-
dc.subject藍光發光體-
dc.subject光療-
dc.subjectOrganic light-emitting diode-
dc.subjectred phosphorescent material-
dc.subjectblue emitter-
dc.subjectphototherapy-
dc.title近紅外光磷光OLED發光材料及應用寬頻藍光OLED光源於光療之研究zh_TW
dc.titleStudies of Near-Infrared Phosphorescent OLED and Broadband Blue OLED for Phototherapyen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee蘇國棟;蔡志宏;張志豪;陳俐吟;黃奕翔zh_TW
dc.contributor.oralexamcommitteeGuo-Dung Su;Chih-Hung Tsai;Chih-Hao Chang;Li-Yin Chen;Yi-Hsiang Huangen
dc.subject.keyword有機發光二極體,紅色磷光材料藍光發光體光療zh_TW
dc.subject.keywordOrganic light-emitting diode,red phosphorescent materialblue emitterphototherapyen
dc.relation.page81-
dc.identifier.doi10.6342/NTU202504599-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-11-03-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
dc.date.embargo-lift2025-11-27-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf3.53 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved