請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100942完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾宇鳳 | zh_TW |
| dc.contributor.advisor | Yufeng Jane Tseng | en |
| dc.contributor.author | 王恆 | zh_TW |
| dc.contributor.author | Heng Wang | en |
| dc.date.accessioned | 2025-11-26T16:11:28Z | - |
| dc.date.available | 2025-11-27 | - |
| dc.date.copyright | 2025-11-26 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-10-27 | - |
| dc.identifier.citation | F. Simon et al., ‘Quantification and characterization of PFASs in suspended particulate matter (SPM) of German rivers using EOF, dTOPA, (non-)target HRMS’, Sci. Total Environ., vol. 885, p. 163753, Aug. 2023, doi: 10.1016/j.scitotenv.2023.163753.
J. Zweigle, B. Bugsel, J. Fabregat-Palau, and C. Zwiener, ‘PFΔScreen — an open-source tool for automated PFAS feature prioritization in non-target HRMS data’, Anal. Bioanal. Chem., vol. 416, no. 2, Art. no. 2, Jan. 2024, doi: 10.1007/s00216-023-05070-2. J. Zweigle, B. Bugsel, and C. Zwiener, ‘FindPFΔS: Non-Target Screening for PFAS─Comprehensive Data Mining for MS2 Fragment Mass Differences’, Anal. Chem., vol. 94, no. 30, Art. no. 30, Aug. 2022, doi: 10.1021/acs.analchem.2c01521. R. Aro, P. Carlsson, C. Vogelsang, A. Kärrman, and L. WY. Yeung, ‘Fluorine mass balance analysis of selected environmental samples from Norway’, Chemosphere, vol. 283, p. 131200, Nov. 2021, doi: 10.1016/j.chemosphere.2021.131200. E. L. Schymanski, J. Zhang, P. A. Thiessen, P. Chirsir, T. Kondic, and E. E. Bolton, ‘Per- and Polyfluoroalkyl Substances (PFAS) in PubChem: 7 Million and Growing’, Environ. Sci. Technol., vol. 57, no. 44, pp. 16918–16928, Nov. 2023, doi: 10.1021/acs.est.3c04855. R. C. Buck et al., ‘Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins’, Integr. Environ. Assess. Manag., vol. 7, no. 4, pp. 513–541, Oct. 2011, doi: 10.1002/ieam.258. B. Bugsel, J. Zweigle, and C. Zwiener, ‘Nontarget screening strategies for PFAS prioritization and identification by high resolution mass spectrometry: A review’, Trends Environ. Anal. Chem., vol. 40, p. e00216, Dec. 2023, doi: 10.1016/j.teac.2023.e00216. Z. Wang et al., ‘A New OECD Definition for Per- and Polyfluoroalkyl Substances’, Environ. Sci. Technol., vol. 55, no. 23, pp. 15575–15578, Dec. 2021, doi: 10.1021/acs.est.1c06896. Y. Liu, L. A. D’Agostino, G. Qu, G. Jiang, and J. W. Martin, ‘High-resolution mass spectrometry (HRMS) methods for nontarget discovery and characterization of poly- and per-fluoroalkyl substances (PFASs) in environmental and human samples’, TrAC Trends Anal. Chem., vol. 121, p. 115420, Dec. 2019, doi: 10.1016/j.trac.2019.02.021. H. Joerss and F. Menger, ‘The complex “PFAS world” - How recent discoveries and novel screening tools reinforce existing concerns’, Curr. Opin. Green Sustain. Chem., vol. 40, p. 100775, Apr. 2023, doi: 10.1016/j.cogsc.2023.100775. R. Aro, U. Eriksson, A. Kärrman, F. Chen, T. Wang, and L. W. Y. Yeung, ‘Fluorine Mass Balance Analysis of Effluent and Sludge from Nordic Countries’, ACS EST Water, vol. 1, no. 9, pp. 2087–2096, Sept. 2021, doi: 10.1021/acsestwater.1c00168. Y.-J. Chen, R.-D. Wang, Y.-L. Shih, H.-Y. Chin, and A. Y.-C. Lin, ‘Emerging Perfluorobutane Sulfonamido Derivatives as a New Trend of Surfactants Used in the Semiconductor Industry’, Environ. Sci. Technol., vol. 58, no. 3, pp. 1648–1658, Jan. 2024, doi: 10.1021/acs.est.3c04435. C. F. Kwiatkowski et al., ‘Scientific Basis for Managing PFAS as a Chemical Class’, Environ. Sci. Technol. Lett., vol. 7, no. 8, pp. 532–543, Aug. 2020, doi: 10.1021/acs.estlett.0c00255. G. Bera, G. A. Gómez-Ríos, R. Ullah, H. Al-Esawi, and Y. Liu, ‘A Novel Semiautomated Workflow for Quantitative Analysis of Per- and Polyfluoroalkyl Substances (PFAS) in Soil Samples’, ACS EST Water, July 2025, doi: 10.1021/acsestwater.5c00166. A. Koch, R. Aro, T. Wang, and L. W. Y. Yeung, ‘Towards a comprehensive analytical workflow for the chemical characterisation of organofluorine in consumer products and environmental samples’, TrAC Trends Anal. Chem., vol. 123, p. 115423, Feb. 2020, doi: 10.1016/j.trac.2019.02.024. ‘Stockholm Convention. The new POPs under the Stockholm Convention. 2022. http:// www. pops. int/ TheCo nvent ion/ ThePO Ps/ TheNe wPOPs/ tabid/ 2511/ Defau lt. aspx. Accessed 21.03.2023’. ‘ECHA. ECHA publishes PFAS restriction proposal. 2023. https:// echa. europa. eu/ de/-/ echa- publi shes- pfas- restr iction- propo sal. Accessed 12.06.2024’. ‘U. OECD: Toward a new comprehensive global database of per- and polyfluoroalkyl substances (PFASs): summary report on updating the OECD 2007 list of per- and poly-fluoroalkyl substances (PFASs). Organ. Econ. Coop. Dev. 2018.’ T. Hulleman, V. Turkina, J. W. O’Brien, A. Chojnacka, K. V. Thomas, and S. Samanipour, ‘Critical Assessment of the Chemical Space Covered by LC–HRMS Non-Targeted Analysis’, Environ. Sci. Technol., vol. 57, no. 38, pp. 14101–14112, Sept. 2023, doi: 10.1021/acs.est.3c03606. J. Zweigle, B. Bugsel, and C. Zwiener, ‘Efficient PFAS prioritization in non-target HRMS data: systematic evaluation of the novel MD/C-m/C approach’, Anal. Bioanal. Chem., vol. 415, no. 10, pp. 1791–1801, Apr. 2023, doi: 10.1007/s00216-023-04601-1. B. Bugsel and C. Zwiener, ‘LC-MS screening of poly- and perfluoroalkyl substances in contaminated soil by Kendrick mass analysis’, Anal. Bioanal. Chem., vol. 412, no. 20, pp. 4797–4805, Aug. 2020, doi: 10.1007/s00216-019-02358-0. H. Mohammed Taha et al., ‘The NORMAN Suspect List Exchange (NORMAN-SLE): facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry’, Environ. Sci. Eur., vol. 34, no. 1, p. 104, Oct. 2022, doi: 10.1186/s12302-022-00680-6. ‘USEPA, United States Environmental Protection Agency (USEPA), CompTox chemistry Dashboard PFAS Master list of PFAS Substances, 2025. URL: https:// comptox.epa.gov/dashboard/chemical_lists/pfasmaster. (Accessed 3 January 2025).’ S. Kim et al., ‘PubChem in 2021: new data content and improved web interfaces’, Nucleic Acids Res., vol. 49, no. D1, pp. D1388–D1395, Jan. 2021, doi: 10.1093/nar/gkaa971. J. A. Charbonnet et al., ‘Communicating Confidence of Per- and Polyfluoroalkyl Substance Identification via High-Resolution Mass Spectrometry’, Environ. Sci. Technol. Lett., vol. 9, no. 6, pp. 473–481, June 2022, doi: 10.1021/acs.estlett.2c00206. E. L. Schymanski et al., ‘Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence’, Environ. Sci. Technol., vol. 48, no. 4, pp. 2097–2098, Feb. 2014, doi: 10.1021/es5002105. R. Bushuiev, A. Bushuiev, R. Samusevich, C. Brungs, J. Sivic, and T. Pluskal, ‘Self-supervised learning of molecular representations from millions of tandem mass spectra using DreaMS’, Nat. Biotechnol., pp. 1–11, May 2025, doi: 10.1038/s41587-025-02663-3. ‘Searching molecular structure databases with tandem mass spectra using CSI:FingerID’. Accessed: Oct. 29, 2024. [Online]. Available: https://www.pnas.org/doi/epdf/10.1073/pnas.1509788112 S. Goldman, J. Xin, J. Provenzano, and C. W. Coley, ‘MIST-CF: Chemical Formula Inference from Tandem Mass Spectra’, J. Chem. Inf. Model., vol. 64, no. 7, pp. 2421–2431, Apr. 2024, doi: 10.1021/acs.jcim.3c01082. G. Voronov et al., ‘MS2Prop: A machine learning model that directly predicts chemical properties from mass spectrometry data for novel compounds’, Oct. 10, 2022, bioRxiv. doi: 10.1101/2022.10.09.511482. E. E. Litsa, V. Chenthamarakshan, P. Das, and L. E. Kavraki, ‘An end-to-end deep learning framework for translating mass spectra to de-novo molecules’, Commun. Chem., vol. 6, no. 1, pp. 1–12, June 2023, doi: 10.1038/s42004-023-00932-3. M. A. Stravs, K. Dührkop, S. Böcker, and N. Zamboni, ‘MSNovelist: de novo structure generation from mass spectra’, Nat. Methods, vol. 19, no. 7, pp. 865–870, July 2022, doi: 10.1038/s41592-022-01486-3. K. Dührkop et al., ‘SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information’, Nat. Methods, vol. 16, no. 4, pp. 299–302, Apr. 2019, doi: 10.1038/s41592-019-0344-8. S. Goldman, J. Wohlwend, M. Stražar, G. Haroush, R. J. Xavier, and C. W. Coley, ‘Annotating metabolite mass spectra with domain-inspired chemical formula transformers’, Nat. Mach. Intell., vol. 5, no. 9, pp. 965–979, Sept. 2023, doi: 10.1038/s42256-023-00708-3. K. Dührkop et al., ‘Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra’, Nat. Biotechnol., vol. 39, no. 4, pp. 462–471, Apr. 2021, doi: 10.1038/s41587-020-0740-8. ‘Jared Ragland, Benjamin Place (2023), Database Infrastructure for Mass Spectrometry - Per- and Polyfluoroalkyl Substances, National Institute of Standards and Technology, https://doi.org/10.18434/mds2-2905 (Accessed 2025-01-02)’. [Online]. Available: https://data.nist.gov/od/id/mds2-2905 ‘NIST 20 dataset. https://chemdata.nist.gov/dokuwiki/lib/exe/fetch.php? media=chemdata:asms2020:xiaoyu_yang_asms2020_presentation.pdf. Accessed: 2021-04-04.’ J. J. Irwin et al., ‘ZINC20—A Free Ultralarge-Scale Chemical Database for Ligand Discovery’, J. Chem. Inf. Model., vol. 60, no. 12, pp. 6065–6073, Dec. 2020, doi: 10.1021/acs.jcim.0c00675. C. A. Smith, E. J. Want, G. O’Maille, R. Abagyan, and G. Siuzdak, ‘XCMS: Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and Identification’, Anal. Chem., vol. 78, no. 3, pp. 779–787, Feb. 2006, doi: 10.1021/ac051437y. G. Libiseller et al., ‘IPO: a tool for automated optimization of XCMS parameters’, BMC Bioinformatics, vol. 16, no. 1, p. 118, Apr. 2015, doi: 10.1186/s12859-015-0562-8. ‘A Modular and Expandable Ecosystem for Metabolomics Data Annotation in R’. Accessed: Nov. 20, 2024. [Online]. Available: https://www.mdpi.com/2218-1989/12/2/173 D. Weininger, ‘SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules’, J. Chem. Inf. Comput. Sci., vol. 28, no. 1, pp. 31–36, Feb. 1988, doi: 10.1021/ci00057a005. ‘Rdkit: Open-source cheminformatics software. https://www.rdkit.org/.’ E. J. Bjerrum and B. Sattarov, ‘Improving Chemical Autoencoder Latent Space and Molecular De novo Generation Diversity with Heteroencoders’, Sept. 17, 2018, arXiv: arXiv:1806.09300. Accessed: Oct. 29, 2024. [Online]. Available: http://arxiv.org/abs/1806.09300 R. Winter, F. Montanari, F. Noé, and D.-A. Clevert, ‘Learning continuous and data-driven molecular descriptors by translating equivalent chemical representations’, Chem. Sci., vol. 10, no. 6, pp. 1692–1701, Feb. 2019, doi: 10.1039/C8SC04175J. E. J. Bjerrum, ‘SMILES Enumeration as Data Augmentation for Neural Network Modeling of Molecules’, May 17, 2017, arXiv: arXiv:1703.07076. doi: 10.48550/arXiv.1703.07076. Y. LeCun, Y. Bengio, and G. Hinton, ‘Deep learning’, Nature, vol. 521, no. 7553, pp. 436–444, May 2015, doi: 10.1038/nature14539. A. Vaswani et al., ‘Attention Is All You Need’, Aug. 02, 2023, arXiv: arXiv:1706.03762. doi: 10.48550/arXiv.1706.03762. Y. Hu, A. Huber, J. Anumula, and S.-C. Liu, ‘Overcoming the vanishing gradient problem in plain recurrent networks’, July 05, 2019, arXiv: arXiv:1801.06105. doi: 10.48550/arXiv.1801.06105. J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, ‘Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling’, Dec. 11, 2014, arXiv: arXiv:1412.3555. doi: 10.48550/arXiv.1412.3555. J. Su, Y. Lu, S. Pan, A. Murtadha, B. Wen, and Y. Liu, ‘RoFormer: Enhanced Transformer with Rotary Position Embedding’, Nov. 08, 2023, arXiv: arXiv:2104.09864. doi: 10.48550/arXiv.2104.09864. Y.-J. Chen, ‘Detection and Discovery of Novel Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) in the Environment – A Case Study of Semiconductor Wastewater’. July 11, 2024. [Online]. Available: https://tdr.lib.ntu.edu.tw/handle/123456789/93571?mode=full F. Wang, J. Liigand, S. Tian, D. Arndt, R. Greiner, and D. S. Wishart, ‘CFM-ID 4.0: More Accurate ESI-MS/MS Spectral Prediction and Compound Identification’, Anal. Chem., vol. 93, no. 34, pp. 11692–11700, Aug. 2021, doi: 10.1021/acs.analchem.1c01465. ‘Rapid Prediction of Electron–Ionization Mass Spectrometry Using Neural Networks | ACS Central Science’. Accessed: Sept. 05, 2025. [Online]. Available: https://pubs.acs.org/doi/10.1021/acscentsci.9b00085 ‘Tandem mass spectrum prediction for small molecules using graph transformers | Nature Machine Intelligence’. Accessed: Sept. 05, 2025. [Online]. Available: https://www.nature.com/articles/s42256-024-00816-8 R. L. Zhu and E. Jonas, ‘Rapid Approximate Subset-Based Spectra Prediction for Electron Ionization–Mass Spectrometry’, Anal. Chem., vol. 95, no. 5, pp. 2653–2663, Feb. 2023, doi: 10.1021/acs.analchem.2c02093. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100942 | - |
| dc.description.abstract | 對所有 PFAS(全氟與多氟烷基物質)化合物進行全面偵測在分析上仍是一項重大挑戰,其原因包括:化學結構多樣性高、可取得的參考標準品有限、環境與生物樣本基質複雜,以及需依賴高靈敏度儀器以定量極微量濃度。這些挑戰進一步受到背景污染風險與 PFAS 化合物種類龐大的加劇,使得開發一套能夠廣泛應用於各類環境樣本的通用檢測方法變得極為困難。
目前液相色譜-高分辨率質譜法(LC-HRMS)是 PFAS 分析中最主要的技術,因其能夠在水體、土壤與生物組織等複雜基質中檢測多種 PFAS 化合物,並被各國監管機構廣泛採用於法規監測。然而,LC-HRMS 分析流程仍面臨多項限制,包括易受污染、樣品前處理需求嚴謹,以及需達成極低的偵測極限。此外,數據處理階段亦相當繁瑣且耗時,需仰賴進階的計算工具與特定領域的專業知識,才能準確區分化學結構相近的 PFAS 化合物。 為了克服上述限制,我們提出 DeePFAS,一種基於深度學習的新穎方法,可用於快速註解 PFAS 化合物。DeePFAS 結合卷積神經網路(CNN)與 Transformer 架構之光譜編碼器,將原始 MS2 光譜投影至一個捕捉化學結構資訊的潛在特徵空間。該潛在表示來自於在大量未標註化合物上透過無監督學習所訓練的特徵萃取模型。透過比對光譜嵌入向量與多個候選分子的嵌入表示,模型可推斷其結構相似性,從而實現於大規模非目標 PFAS 篩檢中對MS2 質譜快速註解。此方法可大幅降低分析流程的複雜度,並提升 PFAS 鑑定工作流程的可擴展性與效率。該方法已公開於 https://github.com/CMDM-Lab/DeePFAS。 | zh_TW |
| dc.description.abstract | Comprehensively detecting all PFAS compounds remains a considerable analytical challenge due to their structural diversity, the limited availability of reference standards, the complexity of environmental and biological sample matrices, and the need for highly sensitive instrumentation capable of quantifying ultra-trace concentrations. These challenges are further exacerbated by the risk of background contamination and the vast number of PFAS substances, making developing a single, universal detection method applicable across diverse environmental contexts extremely difficult. Liquid chromatography–high-resolution mass spectrometry (LC-HRMS) is currently the predominant technique for PFAS analysis, as it enables the detection of a broad spectrum of compounds within complex matrices such as water, soil, and biological tissues, and is widely adopted by regulatory agencies for compliance monitoring. However, LC-HRMS workflows face several limitations, including susceptibility to contamination, the need for meticulous sample preparation, and the stringent requirements for low detection limits. Furthermore, the data processing stage is labor-intensive and time-consuming, requiring advanced computational tools and domain-specific expertise to accurately resolve structurally similar PFAS compounds. To overcome these limitations, we introduce DeePFAS, a novel deep learning-based approach for rapidly annotating PFAS compounds. DeePFAS employs a spectral encoder integrating convolutional neural networks (CNNs) and transformer architectures to project raw MS2 spectra into a latent feature space that captures structural information. This latent representation is learned through unsupervised training on a large corpus of unlabeled compounds. The model infers structural similarity by comparing the spectral embeddings against those of multiple candidate molecules, facilitating efficient MS2 spectra annotation in large-scale, non-targeted PFAS screening. This approach substantially reduces analytical complexity and enhances the scalability and efficiency of PFAS identification workflows. The implementation is available at https://github.com/CMDM-Lab/DeePFAS. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:11:28Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-11-26T16:11:28Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iv CONTENTS vi LIST OF FIGURES viii LIST OF TABLES xi Chapter 1 Introduction 1 1.1 Perfluoroalkyl and polyfluoroalkyl substances (PFAS) 1 1.2 Non-Targeted Screening of PFAS Using High-Resolution Mass Spectrometry (HRMS) 3 1.3 Recent Advances in Structural Elucidation for Mass Spectrometry of Small Molecules 6 1.4 Deep Learning-Enabled Rapid Annotation of PFAS 7 Chapter 2 Materials and Methods 11 2.1 Workflow Overview of DeePFAS 11 2.2 MS Data Processing 12 2.3 Dataset Preparation and Preprocessing for Training and Testing DeePFAS 13 2.4 Dataset Partition 16 2.5 Oversampling Strategy for Dataset Balancing 17 2.6 Adding Loss Features 17 2.7 Constructing DeePFAS to Predict SMILES from MS2 Spectra for PFAS Annotations 18 2.8 Model Architecture and Optimization 19 2.9 Data Availability 22 2.10 Code Availability 22 Chapter 3 Results and Discussion 24 3.1 Overview of DeePFAS 24 3.2 Evaluation Metrics for DeePFAS 24 3.3 Evaluation of DeePFAS Performance on the NIST20, NIST PFAS, and std_150 Datasets 26 3.4 Evaluation with a Wastewater Sample 40 Chapter 4 Conclusions 61 REFERENCE 63 | - |
| dc.language.iso | en | - |
| dc.subject | 全氟與多氟烷基物質 | - |
| dc.subject | 深度學習 | - |
| dc.subject | 液相層析串聯質譜 | - |
| dc.subject | 非目標 PFAS 篩檢 | - |
| dc.subject | 化學潛在空間 | - |
| dc.subject | PFAS (Per- and Polyfluoroalkyl Substances) | - |
| dc.subject | deep learning | - |
| dc.subject | unsupervised learning | - |
| dc.subject | LC-HRMS | - |
| dc.subject | NTS (non-targeted screening) | - |
| dc.subject | chemical latent space | - |
| dc.title | 利用深度學習透過質譜嵌入和分子化學潛在空間加速對全氟烷基與多氟烷基物質的非靶向註釋研究 | zh_TW |
| dc.title | DeePFAS: Deep Learning-Enabled Rapid Annotation of PFAS for Enhancing Non-Targeted Screening through Spectral Encoding and Latent Space Analysis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 郭天爵;王三源 | zh_TW |
| dc.contributor.oralexamcommittee | Tien-Chueh Kuo;San-Yuan Wang | en |
| dc.subject.keyword | 全氟與多氟烷基物質,深度學習液相層析串聯質譜非目標 PFAS 篩檢化學潛在空間 | zh_TW |
| dc.subject.keyword | PFAS (Per- and Polyfluoroalkyl Substances),deep learningunsupervised learningLC-HRMSNTS (non-targeted screening)chemical latent space | en |
| dc.relation.page | 66 | - |
| dc.identifier.doi | 10.6342/NTU202504611 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-10-27 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊工程學系 | - |
| dc.date.embargo-lift | 2025-11-27 | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf | 2.83 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
