請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100940完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱士維 | zh_TW |
| dc.contributor.advisor | Shi-Wei Chu | en |
| dc.contributor.author | 廖品淳 | zh_TW |
| dc.contributor.author | Pin-Chun Liao | en |
| dc.date.accessioned | 2025-11-26T16:10:56Z | - |
| dc.date.available | 2025-11-27 | - |
| dc.date.copyright | 2025-11-26 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-11-05 | - |
| dc.identifier.citation | 1 Kennedy, D. & Norman, C. What don't we know? Science 309, 75 (2005). https://doi.org/10.1126/science.309.5731.75
2 Lin, M. Z. & Schnitzer, M. J. Genetically encoded indicators of neuronal activity. Nature Neuroscience 19, 1142-1153 (2016). https://doi.org/10.1038/nn.4359 3 Weisenburger, S. & Vaziri, A. A Guide to Emerging Technologies for Large-Scale and Whole-Brain Optical Imaging of Neuronal Activity. Annual Review of Neuroscience 41, 431-452 (2018). https://doi.org/10.1146/annurev-neuro-072116-031458 4 Inácio, A.R., Lam, K.C., Zhao, Y. Pereira, F. Lee, G. Lee, S. Brain-wide presynaptic networks of functionally distinct cortical neurons. Nature 641, 162–172 (2025). https://doi.org/10.1038/s41586-025-08631-w 5 Choi, J. R., Kim, S. M., Ryu, R. H., Kim, S. P. & Sohn, J. W. Implantable Neural Probes for Brain-Machine Interfaces - Current Developments and Future Prospects. Experimental Neurobiology 27, 453-471 (2018). https://doi.org/10.5607/en.2018.27.6.453 6 Goense, J., Bohraus, Y. & Logothetis, N. K. fMRI at High Spatial Resolution: Implications for BOLD-Models. Frontiers in Computational Neuroscience 10, 66 (2016). https://doi.org/10.3389/fncom.2016.00066 7 Dombeck, D. A., Harvey, C. D., Tian, L., Looger, L. L. & Tank, D. W. Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat Neurosci 13, 1433-1440 (2010). https://doi.org/10.1038/nn.2648 8 Kim, W. & Kim, S. K. Neural circuit remodeling and structural plasticity in the cortex during chronic pain. The Korean Journal of Physiology & Pharmacology 20, 1-8 (2016). https://doi.org/10.4196/kjpp.2016.20.1.1 9 Dipalo, M. Amin, H. Lovato, L. Moia, F. Caprettini, V. Messina, Gabriele C. Tantussi, F. Berdondini, L. De Angelis, F. Intracellular and Extracellular Recording of Spontaneous Action Potentials in Mammalian Neurons and Cardiac Cells with 3D Plasmonic Nanoelectrodes. Nano Letters 17, 3932-3939 (2017). https://doi.org/10.1021/acs.nanolett.7b01523 10 Jung, J. C., Mehta, A. D., Aksay, E., Stepnoski, R. & Schnitzer, M. J. In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy. Journal Neurophysiol 92, 3121-3133 (2004). https://doi.org/10.1152/jn.00234.2004 11 Wu, Z., Lin, D. & Li, Y. Pushing the frontiers: tools for monitoring neurotransmitters and neuromodulators. Nature Reviews Neuroscience 23, 257-274 (2022). https://doi.org/10.1038/s41583-022-00577-6 12 Kim, T. H. & Schnitzer, M. J. Fluorescence imaging of large-scale neural ensemble dynamics. Cell 185, 9-41 (2022). https://doi.org/10.1016/j.cell.2021.12.007 13 Dana, H. Sun, Y. Mohar, B. Hulse, B.K. Kerlin, A.M. Hasseman, J.P. Tsegaye, G. Tsang, A. Wong, A. Patel, R. Macklin, J.J. Chen, Y. Konnerth, A. Jayaraman, V. Looger, L.L. Schreiter, E.R. Svoboda, K. Kim, D.S. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nature Methods 16, 649-657 (2019). https://doi.org/10.1038/s41592-019-0435-6 14 Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nature Methods 2, 932-940 (2005). https://doi.org/10.1038/nmeth818 15 Vasquez-Lopez, S.A., Turcotte, R., Koren, V. Plöschner, M. Padamsey, Z. Booth, M.J. Čižmár, T. Emptage, N.J. Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber. Light: Science & Applications 7, 110 (2018). https://doi.org/10.1038/s41377-018-0111-0 16 Luu, P., Fraser, S. E. & Schneider, F. More than double the fun with two-photon excitation microscopy. Communications Biology 7, 364 (2024). https://doi.org/10.1038/s42003-024-06057-0 17 Schubert, M.C., Soyka, S.J., Tamimi, A. Maus , E. Schroers, J. Wißmann, N. Reyhan, E. Tetzlaff, S.K. Yang, Y. Denninger, R. Peretzke, R. Beretta, C. Drumm, M. Heuer , A. Buchert, V. Steffens, A. Walshon, J. McCortney, K. Heiland, S. Bendszus, M. Neher, P. Golebiewska, A. Wick , W. Winkler , F. Venkataramani, V. Deep intravital brain tumor imaging enabled by tailored three-photon microscopy and analysis. Nature Communications 15, 7383 (2024). https://doi.org/10.1038/s41467-024-51432-4 18 Levene, M. J., Dombeck, D. A., Kasischke, K. A., Molloy, R. P. & Webb, W. W. In vivo multiphoton microscopy of deep brain tissue. J Neurophysiol 91, 1908-1912 (2004). https://doi.org/10.1152/jn.01007.2003 19 Zhao, C., Chen, S., Zhang, L. Zhang, D. Wu, R. Hu, Y. Zeng, E. Li, Y. Wu, D. Yu, F. Zhang, Y. Zhang, J. Chen, L. Wang, a. Cheng, H. Miniature three-photon microscopy maximized for scattered fluorescence collection. Nature methods 20, 617-622 (2023). https://doi.org/10.1038/s41592-023-01777-3 20 Li, Y. Xu, X. Zhang, C. Sun, X. Zhou, S. Li, X. Guo, J. Hu, R. Qu, J. Liu, L. In Vivo Neurodynamics Mapping via High-Speed Two-Photon Fluorescence Lifetime Volumetric Projection Microscopy. Advanced Science 12, 7 (2024). https://doi.org/10.1002/advs.202410605 21 Chen, Y. Luo, C. Wang, S. Li, Y. Shen, B. Hu, R. Qu, J. Liu, L. Rapid, high-contrast, and steady volumetric imaging with Bessel-beam-based two-photon fluorescence microscopy. Journal of Biomedical Optics 29, 1 (2024). https://doi.org/10.1117/1.Jbo.29.1.016501 22 Wang, S. W., Liu, J., Goh, C. C., Ng, L. G. R. & Liu, B. NIR-II-Excited Intravital Two-Photon Microscopy Distinguishes Deep Cerebral and Tumor Vasculatures with an Ultrabright NIR-I AIE Luminogen. Advanced Materials 31, 44 (2019). https://doi.org/10.1002/adma.201904447 23 Meng, G. Liang, Y. Sarsfield, S. Jiang, W. Lu, R. Dudman, J. Aponte, Y. Ji, N. High-throughput synapse-resolving two-photon fluorescence microendoscopy for deep-brain volumetric imaging in vivo. eLife 8, e40805 (2019). https://doi.org/10.7554/eLife.40805 24 Chen, Q. Cichon, J. Wang, W. Qiu, L. Lee, S. Campbell, N. Destefino, N. Goard, M. Fu, Z. Yasuda, R. Looger, L. Arenkiel, B. Gan, W. Feng , G. Imaging neural activity using Thy1-GCaMP transgenic mice. Neuron 76, 297-308 (2012). https://doi.org/10.1016/j.neuron.2012.07.011 25 Zhang, Y. Rózsa, M. Liang, Y. Bushey, D. Wei, Z. Zheng, J. Reep, D. Broussard, G. Tsang, A. Tsegaye, G. Narayan, S. Obara, C. Lim, J. Patel, Zhang, R. Ahrens, M. Turner, G. Wang, S. Korff, W. Schreiter, E. Svoboda, K. Hasseman, J. Kolb, I. Looger, L.L. Fast and sensitive GCaMP calcium indicators for imaging neural populations. Nature 615, 884-891 (2023). https://doi.org/10.1038/s41586-023-05828-9 26 Xu, C., Nedergaard, M., Fowell, D. J., Friedl, P. & Ji, N. Multiphoton fluorescence microscopy for <em>in vivo</em> imaging. Cell 187, 4458-4487 (2024). https://doi.org/10.1016/j.cell.2024.07.036 27 Prevedel, R. Ortas, J. Kerr, J. Waters, J. Breckwoldt, M. Deneen, B. Monje, M. Soyka, S. Venkataramani, V. Three-photon microscopy: an emerging technique for deep intravital brain imaging. Nature Reviews Neuroscience 26, 521-537 (2025). https://doi.org/10.1038/s41583-025-00937-y 28 Liu, H. Deng, X. Tong, S. He, C. Cheng, H. Zhuang, Z. Gan, M. Li, J. Xie, W. Qiu, P. Wang, K. In Vivo Deep-Brain Structural and Hemodynamic Multiphoton Microscopy Enabled by Quantum Dots. Nano Letters 19, 5260-5265 (2019). https://doi.org/10.1021/acs.nanolett.9b01708 29 Wang, C. & Ji, N. Characterization and improvement of three-dimensional imaging performance of GRIN-lens-based two-photon fluorescence endomicroscopes with adaptive optics. Optics Express 21, 27142-27154 (2013). https://doi.org/10.1364/OE.21.027142 30 Sancataldo, G., Silvestri, L., Allegra Mascaro, A. L., Sacconi, L. & Pavone, F. S. Advanced fluorescence microscopy for in vivo imaging of neuronal activity. Optica 6, 758-765 (2019). https://doi.org/10.1364/OPTICA.6.000758 31 Lu, K. Chen, Z. Chen, H. Zhou, W. Zhang, Z. Tsang, H. Tong, Y. Empowering high-dimensional optical fiber communications with integrated photonic processors. Nature Communications 15, 3515 (2024). https://doi.org/10.1038/s41467-024-47907-z 32 Bortoletto, F., Bonoli, C., Panizzolo, P., Ciubotaru, C. D. & Mammano, F. Multiphoton Fluorescence Microscopy with GRIN Objective Aberration Correction by Low Order Adaptive Optics. PLOS ONE 6, e22321 (2011). https://doi.org/10.1371/journal.pone.0022321 33 Zhang, L. Liang, B. Barbera, G. Hawes, S. Zhang, Y. Stump, K. Baum, I. Yang, Y. Li, Y. Lin, D. Miniscope GRIN Lens System for Calcium Imaging of Neuronal Activity from Deep Brain Structures in Behaving Animals. Current Protocols in Neuroscience 86, e56 (2019). https://doi.org/10.1002/cpns.56 34 Liu, G. Ahn, S. Kang, J. Bhagavatula, S. Matthew, D. Martin, S. Marlin, C. So, P. Tearney, G. Jonas, O. Two-site microendoscopic imaging probe for simultaneous three-dimensional imaging at two anatomic locations in tissues. Optics Letters 49, 3312-3315 (2024). https://doi.org/10.1364/OL.525945 35 Helmchen, F., Fee, M. S., Tank, D. W. & Denk, W. A Miniature Head-Mounted Two-Photon Microscope: High-Resolution Brain Imaging in Freely Moving Animals. Neuron 31, 903-912 (2001). https://doi.org/https://doi.org/10.1016/S0896-6273(01)00421-4 36 Uhlířová, H., Čižmár, T., Pakan, J. M. P. & Gomes, A. Special Section Guest Editorial: Exploiting Complex Media Photonics to Illuminate Brain's Hidden Depth. Neurophotonics 11, S11501 (2024). https://doi.org/10.1117/1.NPh.11.S1.S11501 37 Zhou, Z. Gordon-Fennell, A. Piantadosi, S. Ji, N. Smith, L. Bruchas, M. Stuber, G. Deep-brain optical recording of neural dynamics during behavior. Neuron 111, 3716-3738 (2023). https://doi.org/https://doi.org/10.1016/j.neuron.2023.09.006 38 Weber, T. D., Moya, M. V., Kılıç, K., Mertz, J. & Economo, M. N. High-speed multiplane confocal microscopy for voltage imaging in densely labeled neuronal populations. Nature Neuroscience 26, 1642-1650 (2023). https://doi.org/10.1038/s41593-023-01408-2 39 Yang, Y., Forbes, A. & Cao, L. A review of liquid crystal spatial light modulators: devices and applications. Opto-Electronic Science 2, 230026-230029 (2023). https://doi.org/10.29026/oes.2023.230026 40 Wang, D., Meng, Y., Chen, D., Yam, Y. & Chen, S.-C. High-speed 3D imaging based on structured illumination and electrically tunable lens. Chinese Optics Letters 15, 090004 (2017). 41 Chien, Y. Lin, J. Yeh, P. Hsu, K. Tsai, Y. Chen, S. Chu, S. Dual GRIN lens two-photon endoscopy for high-speed volumetric and deep brain imaging. Biomedical Optics Express 12, 162-172 (2021). https://doi.org/10.1364/BOE.405738 42 Gillies, R. J., Kinahan, P. E. & Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 278, 563-577 (2016). https://doi.org/10.1148/radiol.2015151169 43 Lambin, P. Leijenaar, R. Deist, T. Peerlings, J. de Jong, E. Timmeren, J. Sanduleanu, S. Larue, R. Even, A. Jochems, A. Wijk, Y. Woodruff, H. Soest, J. Lustberg, T. Roelofs, E. Elmpt, W. Dekker, A. Mottaghy, F. Wildberger, J. Walsh, S. Radiomics: the bridge between medical imaging and personalized medicine. Nature Reviews Clinical Oncology 14, 749-762 (2017). https://doi.org/10.1038/nrclinonc.2017.141 44 Eom, M. Han, S. Park, P. Kim, G. Cho, E. Sim, J. Lee, K. Kim, S. Tian, H. Böhm, U. Lowet, E. Tseng, H. Choi, J. Lucia, S. Ryu, S. Rózsa, M. Chang, S. Kim, P. Han, X. Piatkevich, Choi, M. Kim, C. Cohen, A. Chang, J. Yoon, Y. Statistically unbiased prediction enables accurate denoising of voltage imaging data. Nature Methods 20, 1581-1592 (2023). https://doi.org/10.1038/s41592-023-02005-8 45 Choi, W. Park, B. Choi, S. Oh, D. Kim, J. Kim, C. Recent Advances in Contrast-Enhanced Photoacoustic Imaging: Overcoming the Physical and Practical Challenges. Chemical Reviews Journal - ACS Publications 123, 7379-7419 (2023). https://doi.org/10.1021/acs.chemrev.2c00627 46 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436-444 (2015). https://doi.org/10.1038/nature14539 47 Qu, L. Zhao, S. Huang, Y. Ye, X. Wang, K. Liu, Y. Liu, X. Mao, H. Hu, G. Chen, W. Guo, C. He, J. Tan, J. Li, H. Chen, L. Zhao, W. Self-inspired learning for denoising live-cell super-resolution microscopy. Nature Methods 21, 1895-1908 (2024). https://doi.org/10.1038/s41592-024-02400-9 48 van den Boom, B. E, A. Rasmussen, P. Beest, E. Parthasarathy , A. Denys, D. Willuhn, I. Unraveling the mechanisms of deep-brain stimulation of the internal capsule in a mouse model. Nature Communications 14, 5385 (2023). https://doi.org/10.1038/s41467-023-41026-x 49 Lehtinen, J. Munkberg, J. Hasselgren, J. Laine, S. Karras, T. Aittala, M. Aila, T.Noise2Noise: Learning Image Restoration without Clean Data. ArXiv, 10.48550.1803.04189 (2018). https://doi.org/10.48550/arXiv.1803.04189 50 Özgün, Ç., Ahmed, A., S., S. L., Thomas, B. & Olaf, R.3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. arXiv, 10.48550.1606.0665 (2016). https://arxiv.org/abs/1606.06650 51 Antonini, A. Sattin, A. Moroni, M. Bovetti, S. Moretti, C. Succol, F. Forli, A. Vecchia, D. Rajamanickam, V. Bertoncini, A. Panzeri, S. Liberale, C. Fellin, T.Extended field-of-view ultrathin microendoscopes for high-resolution two-photon imaging with minimal invasiveness. Elife 9, e58882 (2020). https://doi.org/10.7554/eLife.58882 52 Zhu, J., Natan, R., Zhong, J., Kang, I. & Ji, N. Aberration measurement and correction for ultrafast two-photon fluorescence imaging. SPIE, 13328 (2025). 53 Sattin, A. Nardin, C. Daste, S. Moroni, M. Reddy, I. Liberale, C. Panzeri, S. Fleischmann, A. Fellin, T. Aberration correction in long GRIN lens-based microendoscopes for extended field-of-view two-photon imaging in deep brain regions. eLife 13, 101420 (2024).https://doi.org/10.7554/eLife.101420.3 54 Adie, S., Graf, B., Ahmad, A., Carney, P. & Boppart, S. Computational adaptive optics for broadband optical interferometric tomography of biological tissue. Proceedings of the National Academy of Sciences of the United States of America 109, 7175-7180 (2012). https://doi.org/10.1073/pnas.1121193109 55 Meijer, J. H., Michel, S., Vanderleest, H. T. & Rohling, J. H. Daily and seasonal adaptation of the circadian clock requires plasticity of the SCN neuronal network. Eur J Neurosci 32, 2143-2151 (2010). https://doi.org/10.1111/j.1460-9568.2010.07522.x 56 Tsuno, Y. Peng, Y. Horike, S. Wang, M. Matsui, A. Yamagata, K. Sugiyama, M. Nakamura, T. Daikoku, T. Maejima, T. Mieda, M. In vivo recording of suprachiasmatic nucleus dynamics reveals a dominant role of arginine vasopressin neurons in circadian pacesetting. PLOS Biology 21, e3002281 (2023). https://doi.org/10.1371/journal.pbio.3002281 57 Yeh, P. Jhan, K. Chua, E. Chen, W. Wu, S. Chen, S. Discrete photoentrainment of mammalian central clock is regulated by bi-stable dynamic network in the suprachiasmatic nucleus. Nature Communications 16, 3331 (2025). https://doi.org/10.1038/s41467-025-58661-1 58 Ness, N. & Brancaccio, M. Network-level time computations in the suprachiasmatic nucleus. Cell Research 34, 471-472 (2024). https://doi.org/10.1038/s41422-024-00969-6 59 Wang, Z. Yu, J. Zhai, M. Wang, Z. Sheng, K. Zhu, Y. Wang, T. Liu, M. Wang, L. Yan, M. Zhang, M. Xu, Y. Wang, X. Ma, L. Hu, W. Cheng, H. System-level time computation and representation in the suprachiasmatic nucleus revealed by large-scale calcium imaging and machine learning. Cell Research 34, 493-503 (2024). https://doi.org/10.1038/s41422-024-00956-x 60 Xu, C. & Webb, W. W. Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. Journal of the Optical Society of America B 13, 481-491 (1996). https://doi.org/10.1364/JOSAB.13.000481 61 Zhao, Z. Zhou, Y. Liu, B. He, J. Zhao, J. Cai, Y. Fan, J. Li, X. Wang, Z. Lu, Z. Wu, J. Qi, H. Dai, Q. Two-photon synthetic aperture microscopy for minimally invasive fast 3D imaging of native subcellular behaviors in deep tissue. Cell 186, 2475-2491 (2023). https://doi.org/10.1016/j.cell.2023.04.016 62 Takasaki, K., Abbasi-Asl, R. & Waters, J. Superficial Bound of the Depth Limit of Two-Photon Imaging in Mouse Brain. eneuro 7, 0255-0219 (2020). https://doi.org/10.1523/eneuro.0255-19.2019 63 Drobizhev, M., Makarov, N. S., Tillo, S. E., Hughes, T. E. & Rebane, A. Two-photon absorption properties of fluorescent proteins. Nature Methods 8, 393-399 (2011). https://doi.org/10.1038/nmeth.1596 64 Ma, L. Zhang, X. Xu, Z. Späth, A. Xing, Z. Sun, T. Tai, R. Three-dimensional focal stack imaging in scanning transmission X-ray microscopy with an improved reconstruction algorithm. Optics Express 27, 7787-7802 (2019). https://doi.org/10.1364/OE.27.007787 65 Durr, N. J., Weisspfennig, C. T., Holfeld, B. A. & Ben-Yakar, A. Maximum imaging depth of two-photon autofluorescence microscopy in epithelial tissues. J Biomed Opt 16, 026008 (2011). https://doi.org/10.1117/1.3548646 66 He, C. Chang, J. Hu, Q. Wang, J. Antonello, J. He, H. Liu, S. Lin, J. Dai, B. Elson, D. Xi, P. Ma, H. Booth, M. Complex vectorial optics through gradient index lens cascades. Nature Communications 10, 4264 (2019). https://doi.org/10.1038/s41467-019-12286-3 67 Jung, J. C. & Schnitzer, M. J. Multiphoton endoscopy. Optics Letters 28, 902-904 (2003). https://doi.org/10.1364/OL.28.000902 68 Göbel, W., Kerr, J. N., Nimmerjahn, A. & Helmchen, F. Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective. Opt Lett 29, 2521-2523 (2004). https://doi.org/10.1364/ol.29.002521 69 Moretti, C., Antonini, A., Bovetti, S., Liberale, C. & Fellin, T. Scanless functional imaging of hippocampal networks using patterned two-photon illumination through GRIN lenses. Biomedical Optics Express 7, 3958-3967 (2016). https://doi.org/10.1364/BOE.7.003958 70 Sato, M. Motegi, Y. Yagi, S. Gengyo-Ando, K. Ohkura, M. Nakai, J. Fast varifocal two-photon microendoscope for imaging neuronal activity in the deep brain. Biomed Opt Express 8, 4049-4060 (2017). https://doi.org/10.1364/boe.8.004049 71 Mermillod-Blondin, A., McLeod, E. & Arnold, C. B. High-speed varifocal imaging with a tunable acoustic gradient index of refraction lens. Optics Letters 33, 2146-2148 (2008). https://doi.org/10.1364/OL.33.002146 72 Yamato, K., Tanaka, Y., Oku, H., Yasutomi, K. & Kawahito, S. Quasi-simultaneous multi-focus imaging using a lock-in pixel image sensor and TAG lens. Optics Express 28, 19152-19162 (2020). https://doi.org/10.1364/OE.394760 73 Theriault, C., Guttenfelder, J. & Arnold, C. B. TAG Lens: Revolutionizing Optical Microscopy With Ultra-High Speed Variable Focus. Microscopy and Microanalysis 20, 1092-1093 (2014). https://doi.org/10.1017/S1431927614007181 74 Goodman, J. W. & Cox, M. E. Introduction to Fourier Optics. Physics Today 22, 97-101 (1969). https://doi.org/10.1063/1.3035549 75 Olivier, N., Mermillod-Blondin, A., Arnold, C. B. & Beaurepaire, E. Two-photon microscopy with simultaneous standard and extended depth of field using a tunable acoustic gradient-index lens. Opt Lett 34, 1684-1686 (2009). https://doi.org/10.1364/ol.34.001684 76 Kang, S., Duocastella, M. & Arnold, C. B. Variable optical elements for fast focus control. Nature Photonics 14, 533-542 (2020). https://doi.org/10.1038/s41566-020-0684-z 77 Du, X., Florian, C. & Arnold, C. B. Single-lens dynamic z-scanning for simultaneous in situ position detection and laser processing focus control. Light: Science & Applications 12, 274 (2023). https://doi.org/10.1038/s41377-023-01303-2 78 Li, Y. Su, Y. Guo, M. Han, X. Liu, J. Vishwasrao, H. Li, X. Christensen, R. Sengupta , T. Moyle, M. Rey-Suarez, I. Chen, J. Upadhyaya, A. Usdin, T. Colón-Ramos, D. Liu, H. Wu, Y. Shroff, H. Incorporating the image formation process into deep learning improves network performance. Nature Methods 19, 1427-1437 (2022). https://doi.org/10.1038/s41592-022-01652-7 79 Li, X. Li, Y., Zhou, Y. Wu, J. Zhao, Z. Fan, J. Deng, F. Wu, Z. Xiao, G. He, J. Zhang, Y. Zhang, G. Hu, X. Chen, X. Zhang, Y. Qiao, H. Xie, H. Li, Y. Wang, H. Fang, L. Dai, Q. Real-time denoising enables high-sensitivity fluorescence time-lapse imaging beyond the shot-noise limit. Nature Biotechnology 41, 282-292 (2023). https://doi.org/10.1038/s41587-022-01450-8 80 Jung, W. Lee, H. Seo, M. Nam, Y. Choi, Y. Shin, N. Ahn, K. Kim, B. Jang, J. MR-self Noise2Noise: self-supervised deep learning-based image quality improvement of submillimeter resolution 3D MR images. European Radiology 33, 2686-2698 (2023). https://doi.org/10.1007/s00330-022-09243-y 81 Li, X. Zhang, G. Wu, J. Zhang,Y. Zhao,Z. Lin, X. Qiao, H. Xie, H. Wang, H. Fang, L. Dai, Q. Reinforcing neuron extraction and spike inference in calcium imaging using deep self-supervised denoising. Nature Methods 18, 1395-1400 (2021). https://doi.org/10.1038/s41592-021-01225-0 82 Deng, Q. Wen, Z. Dong, Z. Tang, J. Chen, W. Liu, X. Yang, Q. Spatially variant deblur and image enhancement in a single multimode fiber imaged by deep learning. Optics Letters 47, 5040-5043 (2022). https://doi.org/10.1364/OL.469034 83 Hsieh, Y. Jhan, K. Lee, J. Huang, G. Chung, C. Chen, W. Chang, T. Chen, B. Pan, M. Wu, S. Chu, S. TAG-SPARK: Empowering High-Speed Volumetric Imaging With Deep Learning and Spatial Redundancy. Advanced Science 11, e2405293 (2024). https://doi.org/10.1002/advs.202405293 84 Turcotte, R., Sutu, E., Schmidt, C. C., Emptage, N. J. & Booth, M. J. Deconvolution for multimode fiber imaging: modeling of spatially variant PSF. Biomedical Optics Express 11, 4759-4771 (2020). https://doi.org/10.1364/BOE.399983 85 Wang, X., Park, J., Susztak, K., Zhang, N. R. & Li, M. Bulk tissue cell type deconvolution with multi-subject single-cell expression reference. Nature Communications 10, 380 (2019). https://doi.org/10.1038/s41467-018-08023-x 86 Bertero, M. & Boccacci, P. From Cells to Proteins: Imaging Nature across Dimensions. Springer Netherlands, 349-370 (2005). https://DOI:10.1007/1-4020-3616-7 87 Sage, D. Donati, L. Soulez, F. Fortun, D. Schmit, G. Seitz, G. Seitz, A. Guiet, R. Vonesch , C. Unser, M. DeconvolutionLab2: An open-source software for deconvolution microscopy. Methods 115, 28-41 (2017). https://doi.org/https://doi.org/10.1016/j.ymeth.2016.12.015 88 Yanny, K., Monakhova, K., Shuai, R. W. & Waller, L. Deep learning for fast spatially varying deconvolution. Optica 9, 96-99 (2022). https://doi.org/10.1364/OPTICA.442438 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100940 | - |
| dc.description.abstract | 理解大腦的複雜結構與功能仍然是神經科學中的一項重大挑戰。雙光子激發顯微術克服了傳統光學顯微術的限制,實現了更深層的組織穿透、更低的光毒性,以及具備體積解析度的活體成像。近期的技術進展,例如可調式聲學梯度(TAG)透鏡,透過沿 z 軸快速調制焦點,進一步將雙光子激發拓展至高速體積成像。當 TAG 透鏡與梯度折射率(GRIN)透鏡結合時,可進行活體深層神經迴路成像,並達到近乎影像速率的體積獲取。我們開發了一套自製的雙光子內窺系統,結合 TAG 與 GRIN 透鏡,以捕捉位於小鼠大腦深層 6 毫米的視交叉上核(SCN)的神經動態。然而,這些技術進步的代價是在深層組織成像時影像對比度降低。為了提升影像品質,我們應用了基於深度學習的後處理方法,利用自監督模型挖掘時空冗餘以達到有效的降噪。此外,我們還開發了一套客製化演算法用於像差校正。我們的系統成功地獲取了活體中三維的神經元群體活動,並提升了影像的對比與清晰度,從而捕捉到 SCN 的神經動態。這個方法能幫助我們更清楚地研究晝夜節律和大腦深部的神經連結,也提供了一個實用的工具來進一步探索深腦中複雜的神經活動。 | zh_TW |
| dc.description.abstract | Understanding the intricate structure and function of the brain remains a critical challenge in neuroscience. Two-photon excitation microscopy has addressed the limitations of traditional optical microscopy, enabling deep tissue penetration, reduced phototoxicity, and volumetric resolution for in vivo imaging. Recent advancements, such as tunable acoustic gradient (TAG) lenses, have extended two-photon excitation capabilities to high-speed volumetric imaging by rapidly modulating focus along the z-axis. When integrated with gradient-index (GRIN) lenses, TAG lenses enable in vivo imaging of deep neural circuits, achieving nearly video-rate volumetric acquisition. We have developed a home-built two-photon endoscopy system incorporating TAG and GRIN lenses to capture neural dynamics in the suprachiasmatic nucleus (SCN), located 6 mm deep in the mouse brain. However, these advancements come at the cost of reduced image contrast, particularly during deep tissue imaging. To enhance image quality, we applied deep-learning-based post-processing techniques, leveraging self-supervised models that exploit spatiotemporal redundancies for effective denoising. Moreover, a customized algorithm is developed for aberration calibration. Our system successfully derived three-dimensional neuronal population activity in vivo with enhanced contrast and clarity, capturing neuronal dynamics in the SCN. This innovative approach provides a powerful tool for advancing our understanding of circadian rhythms and deep brain functional connectivity, paving the way for further exploration of complex neural processes. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:10:56Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-11-26T16:10:56Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書………………………………………………………………. i
致謝………………………………………………………………………………. ii 中文摘要…………………………………………………………………………. iv 英文摘要…………………………………………………………………………. v CONTENTS………………………………………………………………………. vi LIST OF FIGURES……………………………………………………………… viii LIST OF TABLES……………………………………………………………… x Chapter 1 Introduction…………………………………………………………… 1 1.1. The challenge of understanding the deep brain region…………………………… 1 1.2. Two-photon Fluorescence Microscopy in vivo………………………………… 4 1.3. Extending Depth and Speed in Optical Imaging………………………………… 6 1.4. Handling Image Degradation Caused by Deep Imaging and Optical Aberrations…… 10 1.5. Deep brain target of interest – the Suprachiasmatic Nucleus……………………… 12 1.6. Aim of this Study…………………………………………………………… 14 Chapter 2 Principle……………………………………………………………… 15 2.1. Two-photon laser scanning microscopy……………………………………… 15 2.2. Gradient-index lenses (GRIN) lens………………………………………… 18 2.3. Tunable Acoustic Gradient Lens (TAG lens) ………………………………… 21 2.4. TAG-SPARK 2.0 model ………………………………………………… 28 2.5. Deconvolution …………………………………………………………… 33 Chapter 3 Method………………………………………………………………36 3.1. Optical setup……………………………………………………………36 3.2. Sample preparation………………………………………………………38 3.3. SCN Mouse preparation……………………………………………………41 3.4. Performance evaluation of the optical system…………………………………41 3.5. Image processing…………………………………………………………50 Chapter 4 Results and Discussion………………………………………………56 4.1. SCN structure in an in vivo mouse…………………………………………56 4.2. High-speed volumetric image of SCN neural activity in an in vivo mouse………57 4.3. Evaluation and comparison of functional images pre- and post-processing………60 Chapter 5 Conclusion and Outlooks………………………………………………65 Reference list………………………………………………………………………68 | - |
| dc.language.iso | en | - |
| dc.subject | 雙光子內視鏡 | - |
| dc.subject | 高速體積成像 | - |
| dc.subject | 視交叉上核 | - |
| dc.subject | 深度學習降噪 | - |
| dc.subject | 像差校正 | - |
| dc.subject | 神經連結 | - |
| dc.subject | Two-photon endoscopy | - |
| dc.subject | High-speed volumetric imaging | - |
| dc.subject | Suprachiasmatic nucleus | - |
| dc.subject | Deep-learning denoising | - |
| dc.subject | Aberration calibration | - |
| dc.subject | Neural connection | - |
| dc.title | 基於雙光子內視鏡與深度學習增強的高速深腦神經體積成像 | zh_TW |
| dc.title | Rapid Volumetric Imaging of Deep-Brain Neural Activity Using Two-Photon Endoscopy and Post-Processing Contrast Enhancement | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳順吉;陳示國 | zh_TW |
| dc.contributor.oralexamcommittee | Shun-Chi Wu;Shih-Kuo Chen | en |
| dc.subject.keyword | 雙光子內視鏡,高速體積成像視交叉上核深度學習降噪像差校正神經連結 | zh_TW |
| dc.subject.keyword | Two-photon endoscopy,High-speed volumetric imagingSuprachiasmatic nucleusDeep-learning denoisingAberration calibrationNeural connection | en |
| dc.relation.page | 79 | - |
| dc.identifier.doi | 10.6342/NTU202504634 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-11-05 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| dc.date.embargo-lift | 2025-11-27 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf | 12.79 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
