請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100938完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 歐陽彥正 | zh_TW |
| dc.contributor.advisor | Yen-Jen Oyang | en |
| dc.contributor.author | 陳新博 | zh_TW |
| dc.contributor.author | Shin-Bo Chen | en |
| dc.date.accessioned | 2025-11-26T16:10:27Z | - |
| dc.date.available | 2025-11-27 | - |
| dc.date.copyright | 2025-11-26 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-11-03 | - |
| dc.identifier.citation | 1. Choi WW, McBride CA, Bourke C, Borzi P, Choo K, Walker R, et al. Long-term review of sutureless ward reduction in neonates with gastroschisis in the neonatal unit. J Pediatr Surg. 2012;47(8):1516–20. https://doi.org/10.1016/j.jpedsurg.2012.01.010 PMID: 22901910
2. Shevell M, Ashwal S, Donley D, Flint J, Gingold M, Hirtz D, et al. Evaluation of the child with global developmental delay and intellectual disability: recommendations of the Canadian Paediatric Society and the American Academy of Neurology. Paediatr Child Health. 2011;16(7):422-8. 3. Noritz GH, Murphy NA. Motor delays: Early identification and evaluation. Pediatrics. 2013;131(6): e2016–27. 4. Park ES, Kim DY, Kim AR, Rha DW, Park CI. Clinical characteristics and rehabilitation potential in children with cerebral palsy based on MRI classification system. Ann Rehabil Med. 2024;48(2):112-22. 5. Whyte J, Dijkers MP, Hart T, Zanca JM, Packel A, Ferraro M, et al. Treatment taxonomy for rehabilitation: past, present, and prospects. Arch Phys Med Rehabil. 2014;95(1 Suppl): S6-16. 6. Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M, Damiano D, et al. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl. 2007; 109:8-14. 7. Katuwal G. Machine learning-based autism detection using brain imaging. Rochester (NY): Rochester Institute of Technology. 2017. https://scholarworks.rit.edu 8. Smythe T, Zuurmond M, Tann CJ, Gladstone M, Kuper H. Early intervention for children with developmental disabilities in low and middle-income countries - the case for action. Int Health. 2021;13(3):222–31. https://doi.org/10.1093/inthealth/ihaa044 PMID: 32780826 9. Reynolds AJ, Temple JA, Robertson DL, Mann EA. Long-term effects of an early childhood intervention on educational attainment and juvenile arrest: a 15-year follow-up of low-income children. JAMA. 2001;285(18):2339–46. https://doi.org/10.1001/jama.285.18.2339 PMID: 11343481 10. Estes A, Munson J, Rogers SJ, Greenson J, Winter J, Dawson G. Long-term outcomes of early intervention in 6-year-old children with autism spectrum disorder. J Am Acad Child Adolesc Psychiatry. 2015;54(7):580–7. https://doi.org/10.1016/j.jaac.2015.04.005 PMID: 26088663 11. Fuller EA, Kaiser AP. The effects of early intervention on social communication outcomes for children with autism spectrum disorder: a meta-analysis. J Autism Dev Disord. 2019;49(3): 1257–75. https://doi.org/10.1007/s10803-018-3844-7 PMID: 30632057 12. Hirve Y, Bhatia R, Richter LM, et al. Effect of early childhood development interventions delivered through health services on cognitive outcomes: pooled analysis of trials. Arch Dis Child. 2023;108(4):247-54. https://doi.org/10.1136/archdischild-2022-324844 PMID: 36848782 13. Reichow B, Hume K, Barton EE, Boyd BA. Early intensive behavioral intervention (EIBI) for young children with autism spectrum disorders. Cochrane Database Syst Rev. 2018;(5):CD009260. https://doi.org/10.1002/14651858.CD009260.pub3 PMID: 29770488 14. Shalev-Shwartz S, Ben-David S. Understanding Machine Learning: From Theory to Algorithms. Cambridge: Cambridge University Press; 2014. 15. Hair FJ, Sarstedt M. Data, measurement, and causal inferences in machine learning: opportunities and challenges for marketing. J Mark Theory Pract. 2021;29(1):65–77. 16. Wall DP, Kosmicki J, Deluca TF, Harstad E, Fusaro VA. Use of machine learning to shorten observation-based screening and diagnosis of autism. Transl Psychiatry. 2012;2(4): e100. https://doi.org/10.1038/tp.2012.10 PMID: 22832900 17. Mueller A, Candrian G, Kropotov J, Ponomarev V, Baschera G. Classification of ADHD patients on the basis of independent ERP components using a machine learning system. Nonlinear Biomed Phys. 2010; 4:1. 18. Bedi G, Carrillo F, Cecchi GA, Slezak DF, Sigman M, Mota NB, et al. Automated analysis of free speech predicts psychosis onset in high-risk youths. NPJ Schizophr. 2015; 1:15030. https://doi.org/10.1038/npjschz.2015.30 PMID: 27336038 19. Bishop-Fitzpatrick L, Movaghar A, Greenberg JS, Page D, DaWalt LS, Brilliant MH, et al. Using machine learning to identify patterns of lifetime health problems in decedents with autism spectrum disorder. Autism Res. 2018; 11(8):1120-8. https://doi.org/10.1002/aur.1960 PMID: 29734508 20. Herring S, Gray K, Taffe J, Tonge B, Sweeney D, Einfeld S. Behaviour and emotional problems in toddlers with pervasive developmental disorders and developmental delay: associations with parental mental health and family functioning. J Intellect Disabil Res. 2006;50(Pt 12): 874-82. https://doi.org/10.1111/j.1365-2788.2006.00904.x PMID: 17100948 21. Altay O, Ulas M. Prediction of the autism spectrum disorder diagnosis with linear discriminant analysis classifier and K-nearest neighbor in children. In: 2018 6th International Symposium on Digital Forensic and Security (ISDFS). IEEE. 2018. 22. Büyükoflaz F, Öztürk A. Early autism diagnosis of children with machine learning algorithms. In: 2018 26th Signal Processing and Communications Applications Conference (SIU). IEEE. 2018. 23. Dvornek NC, Ventola P, Duncan JS. Combining phenotypic and resting-state fMRI data for autism classification with recurrent neural networks. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018); 2018; Washington (DC), USA: IEEE; 2018.8 24. Liao D, Lu H. Classify autism and control based on deep learning and community structure on resting-state fMRI. In: 2018 IEEE 10th International Conference on Advanced Computational Intelligence (ICACI); 2018; Xiamen, China: IEEE; 2018. 25. Dekhil O, Ismail M, Shalaby A, et al. A novel CAD system for autism diagnosis using structural and functional MRI. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017); 2017; Melbourne (VIC), Australia: IEEE; 2017. 26. Jiao Y, Lu Z. Predictive models for ASD based on multiple cortical features. In: 2011 IEEE 8th International Conference on Fuzzy Systems and Knowledge Discovery; 2011; Shanghai, China: IEEE; 2011. p.1611-5. 27. Heinsfeld AS, Franco AR, Craddock RC, Buchweitz A, Meneguzzi F. Identification of autism spectrum disorder using deep learning and the ABIDE dataset. Neuroimage Clin. 2017; 17:16-23. https://doi.org/10.1016/j.nicl.2017.08.017 PMID: 29034163 28. Bone D, Bishop SL, Black MP, Goodwin MS, Lord C, Narayanan SS. Use of machine learning to improve autism screening and diagnostic instruments: effectiveness, efficiency, and multi-instrument fusion. J Child Psychol Psychiatry. 2016;57(8): 927-37. https://doi.org/10.1111/jcpp.12559 PMID: 27090613 29. Jin Y, Wee C-Y, Shi F, Thung K-H, Ni D, Yap P-T, et al. Identification of infants at high-risk for autism spectrum disorder using multiparameter multiscale white matter connectivity networks. Hum Brain Mapp. 2015;36(12):4880–96. https://doi.org/10.1002/hbm.22957 PMID: 26368659 30. Kim B-M, Kang B-Y, Kim H-G, Baek S-H. Prognosis prediction for Class III malocclusion treatment by feature wrapping method. Angle Orthod. 2009;79(4):683. https://doi.org/10.2319/071508-371.1 PMID: 19537866 31. Song C, Jiang Z-Q, Liu D, Wu L-L. Application and research progress of machine learning in the diagnosis and treatment of neurodevelopmental disorders in children. Front Psychiatry. 2022; 13:960672. https://doi.org/10.3389/fpsyt.2022.960672 PMID: 36090350 32. Megerian JT, Dey S, Melmed RD, Coury DL, Lerner M, Nicholls CJ, et al. Evaluation of an artificial intelligence-based medical device for diagnosis of autism spectrum disorder. NPJ Digit Med. 2022;5(1):57. https://doi.org/10.1038/s41746-022-00598-6 PMID: 35513550 33. Maharjan J, Garikipati A, Dinenno FA, Ciobanu M, Barnes G, Browning E, et al. Machine learning determination of applied behavioral analysis treatment plan type. Brain Inform. 2023;10(1):7. https://doi.org/10.1186/s40708-023-00186-8 PMID: 36862316. 34. Tariq Q, Fleming SL, Schwartz JN, Dunlap K, Corbin C, Washington P, et al. Detecting Developmental Delay and Autism Through Machine Learning Models Using Home Videos of Bangladeshi Children: Development and Validation Study. J Med Internet Res. 2019;21(4): e13822. https://doi.org/10.2196/13822 PMID: 31017583 35. American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-5. 5th ed. ed. Washington (DC): American Psychiatric Association. 2013. 36. El-Baz F, El-Aal MA, Kamal TM, Sadek AA, Othman AA. Study of the C677T and 1298AC polymorphic genotypes of MTHFR Gene in autism spectrum disorder. Electron Physician. 2017;9(9):5287–93. https://doi.org/10.19082/5287 PMID: 29038711 37. World Health Organization. International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM). Geneva: WHO; 1979. 38. World Health Organization. International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM). Geneva: WHO; 1990. 39. Centers for Disease Control and Prevention. ICD-10-CM official guidelines for coding and reporting. Atlanta (GA): CDC; 2016. 40. Remeseiro B, Bolon-Canedo V. A review of feature selection methods in medical applications. Comput Biol Med. 2019; 112:103375. https://doi.org/10.1016/j.compbiomed.2019.103375 PMID: 31382212. 41. James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical learning. New York: Springer. 2013. 42. Cho S, Hong H, Ha B. A hybrid approach based on the combination of variable selection using decision trees and case-based reasoning using the Mahalanobis distance for bankruptcy prediction. Expert Syst Appl. 2010;37(5): 3482-8. 43. Kallenberg W, Oosterhoff J, Schriever B. The number of classes in chi-squared goodness-of-fit tests. J Am Stat Assoc. 1985;80(392): 959-68. 44. Maimon O, Rokach L. Data mining with decision trees: theory and applications. 2nd ed. ed. Hackensack (NJ): World Scientific. 2014. 45. Bai J, Li Y, Li J, Jiang Y, Xia S. Rectified decision trees: towards interpretability, compression, and empirical soundness. arXiv. https://arxiv.org/abs/1903.05965. 2019. Accessed 2025 March 17. 46. Tharwat A. Classification assessment methods. Appl Comput Inform. 2020;17(2): 168-92. 47. Xue, Hui, Qiang Yang, and Songcan Chen. "SVM: Support vector machines." The top ten algorithms in data mining. Chapman and Hall/CRC, 2009. 51-74. 48. Desai VS, Crook JN, Overstreet GAJ. A comparison of neural networks and linear scoring models in the credit union environment. Eur J Oper Res. 1996;95(1): 24-37. 49. Ho T-S, Weng T-C, Wang J-D, Han H-C, Cheng H-C, Yang C-C, et al. Comparing machine learning with case-control models to identify confirmed dengue cases. PLoS Negl Trop Dis. 2020;14(11):e0008843. https://doi.org/10.1371/journal.pntd.0008843 PMID: 33170848 50. Chiu H-YR, Hwang C-K, Chen S-Y, Shih F-Y, Han H-C, King C-C, et al. Machine learning for emerging infectious disease field responses. Sci Rep. 2022;12(1):328. https://doi.org/10.1038/s41598-021-03687-w PMID: 35013370 51. Fushiki T. Estimation of prediction error by using K-fold cross-validation. Stat Comput. 2011;21(2):137-46. 52. Wong TT, Yeh PY. Reliable accuracy estimates from k-fold cross-validation. IEEE Trans Knowl Data Eng. 2019;32(8): 1586-94. 53. Munsch N, Martin A, Gruarin S, Nateqi J, Abdarahmane I, Weingartner-Ortner R, et al. Diagnostic Accuracy of Web-Based COVID-19 Symptom Checkers: Comparison Study. J Med Internet Res. 2020; 22(10): e21299. https://doi.org/10.2196/21299 PMID: 33001828 54. Lundberg SM, Lee S. A unified approach to interpreting model predictions. Adv Neural Inf Process Syst. 2017: 30: 4765-74. 55. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143(1): 29-36. https://doi.org/10.1148/radiology.143.1.7063747 PMID: 7063747 56. Fawcett T. An introduction to ROC analysis. Pattern Recognit Lett. 2006; 27(8):861-74. 57. Herring S, Gray K, Taffe J, Tonge B, Sweeney D, Einfeld S. Behaviour and emotional problems in toddlers with pervasive developmental disorders and developmental delay: associations with parental mental health and family functioning. J Intellect Disabil Res. 2006;50(Pt 12): 874-82. https://doi.org/10.1111/j.1365-2788.2006.00904.x PMID: 17100948 58. Saito T, Rehmsmeier M. The precision–recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS One. 59. Russell G, Steer C, Golding J. Social and demographic factors that influence the diagnosis of autistic spectrum disorders. Soc Psychiatry Psychiatr Epidemiol. 2011;46(12):1283-93. https://doi.org/10.1007/s00127-010-0294-z PMID: 20938640 60. Fombonne E. Epidemiology of pervasive developmental disorders. Pediatr Res. 2009; 65(6): 591-8. https://doi.org/10.1203/PDR.0b013e31819e7203 PMID: 19218885. customer carecustomer careauthor billing. 61. Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2001;29(5):1189–232. 62. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32. 63. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, et al. LightGBM: A highly efficient gradient boosting decision tree. Adv Neural Inf Process Syst. 2017; 30:3149–5. 64. Zhou Z-H. Ensemble methods: foundations and algorithms. Boca Raton (FL): Chapman & Hall/CRC; 2012. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100938 | - |
| dc.description.abstract | 研究目的:對臨床治療師而言,準確鑑別可能出現發展遲緩(DD)的兒童始終是一項挑戰。近年研究指出,若兒童能及早接受介入治療,其臨床預後顯著優於未接受介入者。本研究旨在探討兒童接受三類治療(物理治療、職能治療與語言治療)的頻率,是否可作為檢測其是否罹患發展遲緩的依據。此方法的核心價值在於,相關特徵取得成本極低,若能建立有效的預測模型,將可用於初步篩檢,在進行昂貴且複雜的診斷程序之前,先行辨識可能有 DD 風險的兒童。
研究方法:本研究使用台灣某醫院於 2012 至 2016 年間蒐集之臨床資料,共涵蓋 2,552 位門診個案(共 34,862 筆就診紀錄,平均年齡 72.34 月)。基於該資料集,本研究分別建立三種機器學習預測模型:深度神經網路(Deep Neural Network, DNN)、支援向量機(Support Vector Machine, SVM)以及決策樹(Decision Tree, DT),以評估所提出方法的效能。 研究結果:實驗結果顯示,就 F1 分數(靈敏度與陽性預測值的調和平均數)而言,當需要維持高靈敏度時,DT 模型的表現優於 DNN 與 SVM 模型。具體而言,本研究所建立的 DT 模型達成靈敏度 0.902 與陽性預測值 0.723 的表現。 研究結論:本研究結果顯示,兒童接受治療的頻率蘊含重要訊息,能有效應用於發展遲緩的預測。由於此類特徵可在不增加額外成本的情況下獲取,且實驗結果展現良好效能,因此可合理推測,依此建立之預測模型具備高度臨床應用潛力,並有望顯著改善發展遲緩兒童的治療成效。 | zh_TW |
| dc.description.abstract | Objective: Accurate identification of children who will develop delay (DD) is challenging for ther¬apists because recent studies have reported that children who underwent early inter¬vention achieved more favorable outcomes than those who did not. In this study, we have investigated how the frequencies of three types of therapy, namely the physical therapy, the occupational therapy, and the speech therapy, received by a child can be exploited to predict whether the child suffers from DD or not. The effectiveness of the proposed approach is of high interest as these features can be obtained with essen¬tially no cost and therefore a prediction model built accordingly can be employed to screen the subjects who may develop DD before advanced and costly diagnoses are carried out.
Methods: This study has been conducted based on a data set comprising the records of 2,552 outpatients (N = 34,862 visits, mean age = 72.34 months) collected at a hospital in Tai¬wan from 2012 to 2016. We then built 3 types of machine learning based prediction models, namely the deep neural network models (DNN), the support vector machine (SVM) models, and the decision tree (DT) models, to evaluate the effectiveness of the proposed approach. Results: Experimental results reveal that in terms of the F1 score, which is the harmonic mean of the sensitivity and the positive predictive value, the DT models outperformed the DNN models and the SVM models, if a high level of sensitivity is desired. In particular, the DT model developed in this study delivered the sensitivity at 0.902 and the positive predictive value at 0.723. Conclusions: What has been learned from this study is that the frequencies of the therapies that a child has received provide valuable information for predicting whether the child suffers from DD. Due to the performance observed in the experiments and the fact that these features can be obtained essentially without any cost, it is conceivable that the prediction models built accordingly can be wide exploited in clinical practices and significantly improve the treatment outcomes of the children who develop DD. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:10:27Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-11-26T16:10:27Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II Acknowledgements III 中文摘要 IV Abstract VI 目次 VIII List of Figures X List of Tables XI Chapter I Introduction 1 1-1 Background 1 1-2 Motivation 3 1-3 Organization of this thesis 5 Chapter II Literature Reviews 10 Chapter III Methods 23 3-1. Data collection and outcome measurement 23 3-2. Experimental procedures 26 3-3. Feature selection 27 3-4. Development of prediction models and performance evaluation 28 Chapter IV Results 31 Chapter V Discussion 36 Limitations 39 Chapter VI Conclusion 41 Chapter VII Future works 43 1. Methodological Enhancements 43 2. Expansion of Predictive Features 43 3. Multimodal Predictive Frameworks 44 4. Evaluation Strategies 44 5. Addressing False Negatives 44 6. Age-Specific Therapy Patterns 45 7. Validation and Generalizability 45 8. Ethical and Clinical Integration 46 Summary 46 References 47 List of Figures Figure 1. Flow diagram for generating the study dataset 25 Figure 2. The experimental procedure 27 Figure 3. The structure of the DT model generated by feeding our dataset into the software package and with cp and prior set to 0.01 and 0.55, respectively 34 Figure 4. ROC curves of the DNN, DT, SVM models 34 List of Tables Table 1. A summary of the existing machine learning based predictors for identifying patients who may develop DD 19 Table 2. Demographic and clinical characteristics of patients with DD (n = 2,552) 26 Table 3. Results of the feature selection by logistic regression (with odds ratios) 28 Table 4. Software packages and parameter settings employed to build the models 30 Table 5. Detailed performance characteristics of alternative prediction models 35 | - |
| dc.language.iso | en | - |
| dc.subject | 發展遲緩 | - |
| dc.subject | 職能治療服務 | - |
| dc.subject | 治療頻率 | - |
| dc.subject | 機器學習 | - |
| dc.subject | 決策樹 | - |
| dc.subject | 支援向量機 | - |
| dc.subject | 深度神經網路 | - |
| dc.subject | Developmental Delay | - |
| dc.subject | Occupational Therapy service | - |
| dc.subject | Frequency of therapy | - |
| dc.subject | Machine Learning | - |
| dc.subject | Decision Tree | - |
| dc.subject | Support Vector Machine | - |
| dc.subject | Deep Neural Networks | - |
| dc.title | 運用機器學習方法檢測小兒發展遲緩病症 | zh_TW |
| dc.title | Detection of Pediatric Developmental Delay (DD) with Machine Learning Technologies | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 傅楸善;張瑞峰;郭柏齡;楊孟翰 | zh_TW |
| dc.contributor.oralexamcommittee | Chiou-Shann Fuh;Ruey-Feng Chang;Po-Ling Kuo;Meng-Han Yang | en |
| dc.subject.keyword | 發展遲緩,職能治療服務治療頻率機器學習決策樹支援向量機深度神經網路 | zh_TW |
| dc.subject.keyword | Developmental Delay,Occupational Therapy serviceFrequency of therapyMachine LearningDecision TreeSupport Vector MachineDeep Neural Networks | en |
| dc.relation.page | 58 | - |
| dc.identifier.doi | 10.6342/NTU202504505 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-11-04 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | - |
| dc.date.embargo-lift | 2025-11-27 | - |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf | 1.87 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
