Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100935
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙鍵哲zh_TW
dc.contributor.advisorJen-Jer Jawen
dc.contributor.author黃琳軒zh_TW
dc.contributor.authorLin-Hsuan Huangen
dc.date.accessioned2025-11-26T16:09:42Z-
dc.date.available2025-11-27-
dc.date.copyright2025-11-26-
dc.date.issued2025-
dc.date.submitted2025-11-07-
dc.identifier.citationAldoma, A., Marton, Z. C., Tombari, F., Wohlkinger, W., Potthast, C., Zeisl, B., and Vincze, M., 2012. Tutorial: Point cloud library: Three-dimensional object recognition and 6 dof pose estimation. IEEE Robotics and Automation Magazine, 19(3), 80-91.
Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., and Silva, C. T., 2001. Point set surfaces, Proceedings of IEEE Visualization 2001 (VIS'01), pp. 21–29.
Benhabiles, H., Aubreton, O., Barki, H., and Tabia, H., 2013. Fast simplification with sharp feature preserving for 3D point clouds, Proceedings of the 11th International Symposium on Programming and Systems (ISPS), pp. 47–52.
Chao, J., Lei, J., Zhou, X., and Xie, L., 2025. A general and flexible point cloud simplification method based on feature fusion, Displays, 88:103007.
Chen, H., Cui, W., Bo, C., and Yang, N., 2023. Point cloud simplification for the boundary preservation based on extracted four features, Displays, 78:102414.
Chen, Y., and Yue, L., 2016. A method for dynamic simplification of massive point cloud, Proceedings of the IEEE International Conference on Industrial Technology (ICIT), pp. 1690–1693.
Cheng, Y. Q., Li, W. L., Jiang, C., Wang, D. F., Mao, J. C., and Xu, W., 2022. A novel point cloud simplification method using local conditional information, Measurement Science and Technology, 33(12):125203.
Cignoni, P., Rocchini, C., and Scopigno, R., 1998, June. Metro: Measuring error on simplified surfaces. Computer Graphics Forum, 17(2), 167–174.
Demantké, J., Mallet, C., David, N., and Vallet, B., 2011. Dimensionality based scale selection in 3D lidar point clouds, Laserscanning.
Dong, J., Tian, M., Yu, J., Li, G., Wang, Y., and Su, Y., 2025. DFPS: An efficient downsampling algorithm designed for the global feature preservation of large-scale point cloud data, Sensors, 25(14):4279.
El‐Sayed, E., Abdel‐Kader, R. F., Nashaat, H., and Marei, M., 2018. Plane detection in 3D point cloud using octree‐balanced density down‐sampling and iterative adaptive plane extraction, IET Image Processing, 12(9):1595–1605.
Fan, H., Su, H., and Guibas, L. J., 2017. A point set generation network for 3D object reconstruction from a single image. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR), pp.605–613.
Gao, Y., Ping, C., Wang, L., and Wang, B., 2021. A simplification method for point cloud of t-profile steel plate for shipbuilding, Algorithms, 14(7):202.
Gong, M., Zhang, Z., and Zeng, D., 2021. A new simplification algorithm for scattered point clouds with feature preservation, Symmetry, 13(3):399.
Goswami, P., Erol, F., Mukhi, R., Pajarola, R., and Gobbetti, E., 2013. An efficient multi-resolution framework for high quality interactive rendering of massive point clouds using multi-way kd-trees. The Visual Computer, 29(1), 69–83.
Günen, M. A., 2022. Adaptive neighborhood size and effective geometric features selection for 3D scattered point cloud classification, Applied Soft Computing, 115:108196.
He, E., Chen, Q., Wang, H., and Liu, X., 2017. A curvature based adaptive neighborhood for individual point cloud classification, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42:219–225.
Huang, H., 2023. Construction of Multi-resolution Spatial Data Organization for Ultralarge-scale 3D Laser Point Cloud. Sensors and Materials, 35(1), 87–102.
Huang, L.H., and Jaw, J.J., 2024. Self-adaptive point cloud simplification with feature preservation, Proceedings of the 45th Asian Conference on Remote Sensing, Colombo, Sri Lanka.
Huang, S., 2023. Point cloud simplification method based on two-fold neighboring feature preservation, 8th International Conference on Intelligent Computing and Signal Processing(ICSP), pp. 1712–1719.
Ji, C., Li, Y., Fan, J., and Lan, S., 2019. A novel simplification method for 3D geometric point cloud based on the importance of point, IEEE Access, 7:129029–129042.
Lang, D., Friedmann, S., and Paulus, D., 2016. Adaptivity of conditional random field based outdoor point cloud classification, Pattern Recognition and Image Analysis, 26(2):309–315.
Lee, K. H., Woo, H., and Suk, T., 2001. Point data reduction using 3D grids, The International Journal of Advanced Manufacturing Technology, 18:201–210.
Liu, K., Chen, J., Xing, S., and Han, H., 2013. Simplification of point cloud data based on Gaussian curvature, IET International Conference on Smart and Sustainable City 2013 (ICSSC 2013), pp. 84–87.
Liu, S., Liang, J., Ren, M., He, J., Gong, C., Lu, W., and Miao, Z., 2020. An edge-sensitive simplification method for scanned point clouds, Measurement Science and Technology, 31(4):045203.
Lv, C., Lin, W., and Zhao, B., 2022. Intrinsic and isotropic resampling for 3D point clouds, IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(3):3274–3291.
Mahdaoui, A., and Sbai, E. H., 2020. 3D point cloud simplification based on k-nearest neighbor and clustering, Advances in Multimedia, 2020(1):8825205.
Pathak, S., Baldwin-McDonald, T., Sels, S., and Penne, R., 2025. GP-PCS: One-shot feature-preserving point cloud simplification with Gaussian processes on Riemannian manifolds, Proceedings of the International Conference on Pattern Recognition (ICPR), pp. 436–452.
Potamias, R. A., Bouritsas, G., and Zafeiriou, S., 2022. Revisiting point cloud simplification: A learnable feature-preserving approach, Proceedings of the European Conference on Computer Vision (ECCV), pp. 586–603.
Qi, J., Hu, W., and Guo, Z., 2019. Feature preserving and uniformity-controllable point cloud simplification on graph, 2019 IEEE International Conference on Multimedia and Expo (ICME), pp. 284–289.
Rusu, R. B., and Cousins, S., 2011. 3d is here: Point cloud library (pcl). In 2011 IEEE international conference on robotics and automation , pp.1-4.
Shi, Z., Xu, W., and Meng, H., 2022. A point cloud simplification algorithm based on weighted feature indexes for 3D scanning sensors, Sensors, 22(19):7491.
Song, H., and Feng, H. Y., 2009. A progressive point cloud simplification algorithm with preserved sharp edge data, The International Journal of Advanced Manufacturing Technology, 45:583–592.
Song, S., Liu, J., and Yin, C., 2017. Data reduction for point cloud using octree coding, International Conference on Intelligent Computing, Springer International Publishing, Cham, pp. 376–383.
Stanford University Computer Graphics Laboratory, 2023. The Stanford 3D Scanning Repository, Stanford Graphics Lab Website, URL: https://graphics.stanford.edu/data/3Dscanrep/, Stanford University, Stanford, California (last date accessed: 20 August 2025).
Wang, G., Wu, L., Hu, Y., and Song, M., 2021. Point cloud simplification algorithm based on the feature of adaptive curvature entropy, Measurement Science and Technology, 32(6):065004.
Wang, S., Hu, Q., Xiao, D., He, L., Liu, R., Xiang, B., and Kong, Q., 2022. A new point cloud simplification method with feature and integrity preservation by partition strategy, Measurement, 197:111173.
Wang, S., Hu, Q., Xiao, D., He, L., Liu, R., Xiang, B., and Kong, Q., 2024. Corrigendum to "A new point cloud simplification method with feature and integrity preservation by partition strategy" [Measurement 197 (2022) 111173], Measurement, 237:115085.
Wang, Z., and Yang, H., 2024. Local entropy-based feature-preserving simplification and evaluation for large field point cloud. The Visual Computer, 40(9), 6705-6721.
Weinmann, M., Jutzi, B., Hinz, S., and Mallet, C., 2015. Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers, ISPRS Journal of Photogrammetry and Remote Sensing, 105:286–304.
Xuan, W., Hua, X., Chen, X., Zou, J., and He, X., 2018. A new progressive simplification method for point cloud using local entropy of normal angle, Journal of the Indian Society of Remote Sensing, 46:581–589.
Yang, X., Matsuyama, K., Konno, K., and Tokuyama, Y., 2015. Feature-preserving simplification of point cloud by using clustering approach based on mean curvature, The Journal of the Society for Art and Science, 14(4):117–128.
Yang, Y.C., and Jaw, J.J., 2023. A comparative analysis of photogrammetric point cloud and mesh models for 3D object representation, Proceedings of the 44th Asian Remote Sensing Conference (ACRS), October 30–November 3, 2023, Taipei, Taiwan.
Zhang, K., Qiao, S., Wang, X., Yang, Y., and Zhang, Y., 2019. Feature-preserved point cloud simplification based on natural quadric shape models, Applied Sciences, 9(10):2130.
Zhang, Y., Meng, F., and Nan, N., 2023. Research on adaptive grid method for point clouds reduction, Proceedings of the 9th Annual International Conference on Network and Information Systems for Computers (ICNISC), pp. 364–367.
Zhou, X., Yang, H., and Yang, H., 2021. Point cloud grid reduction method based on feature parameters, Proceedings of the 2021 IEEE International Conference on Artificial Intelligence and Industrial Design (AIID), pp. 323–326.
Zhou, Y., Zhang, W. B., Du, F. R., and Yao, X. J., 2010. Algorithm for reduction of scattered point cloud data based on curvature, Transactions of Beijing Institute of Technology, 30(7):785–789. [in Chinese]
Zhu, R., Ma, S., and Xu, D., 2020. Guided filter simplification method for noisy point cloud data, Proceedings of the 2020 Chinese Automation Congress (CAC), pp. 6951–6955.
王建強、樊彥國、李國勝、禹定峰,2021。基於多參數 k-means 聚類的自我調整點雲精簡,Laser and Optoelectronics Progress,58(6):610008-1。
傅思勇、吳祿慎、陳華偉,2017。空間柵格動態劃分的點雲精簡方法,Acta Optica Sinica,37(11):1115007。
楊詠晴、邱依屏、趙鍵哲,2023。光學點雲產製完整度評估,第41屆測量及空間資訊研討會,新竹,臺灣。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100935-
dc.description.abstract隨著攝影測量技術的普及與應用領域擴展,三維點雲資料量快速增加,如何在有效簡化點數的同時保留關鍵幾何特徵,成為點雲處理中的重要課題。現有多數簡化方法倚賴固定參數或經驗法則,對不同區域特性之適應性不足,容易導致幾何細節流失或過度簡化。
本研究提出一種改良式點雲簡化策略,依據邊緣點、特徵點與非特徵點的分類進行分層處理,並透過自適應鄰域進行特徵保留。首先,對原始點雲進行雜訊排除,並結合主成分分析計算曲率與熵,以建構點雲拓樸特徵並劃分為散亂與規則區域。接續進行邊緣點萃取與特徵點重要性分析,再依據該資訊於非特徵區域中進行簡化,最終達成兼顧特徵保留與點雲減點的目的。
本研究於五組模擬資料集(Bunny、Dragon、Armadillo、Happy Buddha、Asian Dragon)並與三種既有方法(On Graph、Feature Fusion、MIWSA)比較。結果顯示,在不同簡化率下,本方法於特徵保留能力、幾何誤差控制與體積穩定性方面皆具優勢。另外也對四組光學點雲(兩組建築、雕像、浮雕等)進行簡化測試,結果顯示在細節豐富或結構複雜之點雲中,仍能保留清晰輪廓與幾何完整性。
實驗結果顯示,本方法在多樣化場景下皆具備良好的幾何特徵保留能力,即便在高簡化率條件下,仍能維持整體形體完整性。然而,由於非特徵區域在簡化過程中點數相對較少,可能導致局部誤差略高。除此之外,為進一步提升方法效能與穩定性,未來可考慮納入更多參數自動化調整機制,以增強不同場景下的適應性。
zh_TW
dc.description.abstractWith the increasing popularity of photogrammetry and the expanding scope of its applications, the volume of 3D point cloud data has grown rapidly. Effectively reducing point count while preserving key geometric features has become a critical challenge in point cloud processing. Most existing simplification methods rely on fixed parameters or empirical rules, which often lack adaptability to varying regional characteristics, leading to the loss of geometric details or excessive simplification.
This study proposes an improved point cloud simplification strategy based on the classification of edge points, feature points, and non-feature points, with a hierarchical processing approach and adaptive neighborhood for feature preservation. The process begins with noise removal from the original point cloud, followed by curvature and entropy estimation via principal component analysis to construct topological features and segment the data into scatter and regular regions. Subsequently, edge points are extracted, and feature point importance is analyzed. Simplification is then performed in non-feature regions based on this information, ultimately achieving a balance between feature preservation and point cloud simplification.
The proposed method is evaluated on five simulated datasets(Bunny, Dragon, Armadillo, Happy Buddha, and Asian Dragon)and compared with three existing methods (On Graph, Feature Fusion, and MIWSA). Results demonstrate that across different simplification ratios, the proposed method exhibits superior performance in preserving features, controlling geometric error, and maintaining volume stability. Additionally, tests conducted on four photogrammetric point clouds (including two sets of buildings, statue, and bas-relief)show that even for detail-rich or structurally complex data, the method effectively retains clear contours and geometric integrity.
Experimental results confirm that the proposed approach consistently maintains geometric features across diverse scenarios, even under high simplification ratios. However, due to the reduced point count in non-feature regions during simplification, some localized errors may occur. In addition, to further enhance the method’s efficiency and robustness, incorporating automated parameter tuning mechanisms is suggested to improve adaptability across various applications.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:09:42Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-11-26T16:09:42Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
目次 v
圖次 viii
表次 xi
第1章 緒論 1
1.1 研究動機與目的 1
1.2 研究方法 2
1.3 論文架構 2
第2章 文獻回顧 3
2.1 點雲簡化方法的演進背景 3
2.1.1 傳統基於空間劃分的簡化方法 3
2.1.2 幾何特徵導向的簡化方法 4
2.1.2.1 基於單一幾何特徵指標 4
2.1.2.2 基於多幾何特徵指標 5
2.1.3 學習式的簡化方法 7
2.2 幾何特徵與空間劃分融合的簡化方法 7
2.3 邊緣識別與保持的方法 8
2.4 方法比較與觀察 9
2.5 本研究之定位與貢獻 10
第3章 研究方法 12
3.1 雜訊濾除 13
3.2 利用主成分分析法計算幾何特徵因子 14
3.2.1 主成分分析法 14
3.2.2 K鄰近點法 16
3.2.3 KD樹搜尋結構 17
3.3 自適應最佳鄰域 18
3.3.1 曲率計算與區域分類(散亂區域與規則區域) 18
3.4 邊緣點 20
3.5 區域成長分割 21
3.5.1 區域成長條件與流程 21
3.5.2 特徵區域與非特徵區域的分類 22
3.6 計算點雲點位重要性 23
3.6.1 法向量差 23
3.6.2 投影距離 24
3.6.3 空間距離 25
3.6.4 曲率差 26
3.6.5 多因子加權與門檻篩選機制 27
3.6.6 三因子的確立:排除投影距離的理由 27
3.6.7 ε控制參數設計 28
3.6.8 選點方式之改進:加權法改為聯集法 29
3.7 點雲簡化 30
3.8 點雲簡化效果的量化標準 33
第4章 實驗成果分析與討論 35
4.1 實驗項目表 35
4.2 作業平台環境及參數表 36
4.3 史丹福模擬點雲資料集 37
4.4 邊緣點萃取結果 39
4.5 區域成長分割參數對特徵點分布之影響分析與各組合比較結果 42
4.6 幾何特徵因子之互補性分析 46
4.6.1 利用皮爾森相關係數分析特徵因子之互補性 46
4.6.2 單一特徵因子保留分析 50
4.7 特徵點選取策略之比較:加權法與聯集法 54
4.8 三因子聯集法(剔除投影距離)與四因子聯集法 61
4.9 自適應重要性閾值控制參數ε設計 64
4.10 非特徵點簡化 73
4.11 與其他方法簡化效果比較 74
4.12 光學點雲測試 90
第5章 結論與建議 115
5.1 結論 115
5.2 建議 116
參考文獻 118
-
dc.language.isozh_TW-
dc.subject光學點雲-
dc.subject點雲簡化-
dc.subject特徵保留-
dc.subject自適應鄰域-
dc.subject主成分分析法-
dc.subjectPhotogrammetric point cloud-
dc.subjectPoint cloud simplification-
dc.subjectFeature preservation-
dc.subjectSelf-adaptive neighborhood-
dc.subjectPrincipal component analysis-
dc.title基於幾何特徵保留的自適應光學點雲簡化zh_TW
dc.titleSelf-adaptive Photogrammetric Point Cloud Simplification Based on Geometric Feature Preservationen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蔡展榮;邱式鴻;莊子毅zh_TW
dc.contributor.oralexamcommitteeJaan-Rong Tsay;Shih-Hong Chio;Tzu-Yi Chuangen
dc.subject.keyword光學點雲,點雲簡化特徵保留自適應鄰域主成分分析法zh_TW
dc.subject.keywordPhotogrammetric point cloud,Point cloud simplificationFeature preservationSelf-adaptive neighborhoodPrincipal component analysisen
dc.relation.page122-
dc.identifier.doi10.6342/NTU202504650-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-11-07-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2025-11-27-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf14.51 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved