請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100932完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙鍵哲 | zh_TW |
| dc.contributor.advisor | Jen-Jer Jaw | en |
| dc.contributor.author | 關皓瑋 | zh_TW |
| dc.contributor.author | Hao-Wei Kuan | en |
| dc.date.accessioned | 2025-11-26T16:08:58Z | - |
| dc.date.available | 2025-11-27 | - |
| dc.date.copyright | 2025-11-26 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-11-06 | - |
| dc.identifier.citation | Akkaynak, D., & Treibitz, T. (2018). A revised underwater image formation model. Proceedings of the IEEE conference on computer vision and pattern recognition,
Akkaynak, D., & Treibitz, T. (2019). Sea-thru: A method for removing water from underwater images. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, Akkaynak, D., Treibitz, T., Shlesinger, T., Loya, Y., Tamir, R., & Iluz, D. (2017). What is the space of attenuation coefficients in underwater computer vision? Proceedings of the IEEE conference on computer vision and pattern recognition, Berman, D., Levy, D., Avidan, S., & Treibitz, T. (2020). Underwater single image color restoration using haze-lines and a new quantitative dataset. IEEE transactions on pattern analysis and machine intelligence, 43(8), 2822-2837. Bryson, M., Johnson‐Roberson, M., Pizarro, O., & Williams, S. B. (2016). True color correction of autonomous underwater vehicle imagery. Journal of Field Robotics, 33(6), 853-874. Buchsbaum, G. (1980). A spatial processor model for object colour perception. Journal of the Franklin institute, 310(1), 1-26. Cheng, D., Prasad, D. K., & Brown, M. S. (2014). Illuminant estimation for color constancy: why spatial-domain methods work and the role of the color distribution. Journal of the Optical Society of America A, 31(5), 1049-1058. Chiang, J. Y., & Chen, Y.-C. (2011). Underwater image enhancement by wavelength compensation and dehazing. IEEE Transactions on Image Processing, 21(4), 1756-1769. de Toledo, E. F., Vaz, E. S., & Drews, P. L. (2021). Water classification based on underwater monocular image. 2021 Latin American Robotics Symposium (LARS), 2021 Brazilian Symposium on Robotics (SBR), and 2021 Workshop on Robotics in Education (WRE), Drews, P., Nascimento, E., Moraes, F., Botelho, S., & Campos, M. (2013). Transmission estimation in underwater single images. Proceedings of the IEEE international conference on computer vision workshops, Dudhane, A., Hambarde, P., Patil, P., & Murala, S. (2020). Deep underwater image restoration and beyond. IEEE Signal Processing Letters, 27, 675-679. Ebner, M., & Hansen, J. (2013). Depth map color constancy. Bio-Algorithms and Med-Systems, 9(4), 167-177. Elnashef, B., & Filin, S. (2023). Theory and closed-form solutions for three-and n-layer flat refractive geometry. International Journal of Computer Vision, 131(4), 877-898. Fu, X., Zhuang, P., Huang, Y., Liao, Y., Zhang, X.-P., & Ding, X. (2014). A retinex-based enhancing approach for single underwater image. 2014 IEEE international conference on image processing (ICIP), Gibson, J. (2020). Sea-thru: Implementation of Sea-thru by Derya Akkaynak and Tali Treibitz. Retrieved October 14 from https://github.com/hainh/sea-thru# Gordon, H. R. (1989). Can the Lambert‐Beer law be applied to the diffuse attenuation coefficient of ocean water? Limnology and Oceanography, 34(8), 1389-1409. He, K., Sun, J., & Tang, X. (2010). Single image haze removal using dark channel prior. IEEE transactions on pattern analysis and machine intelligence, 33(12), 2341-2353. Jaffe, J. S. (2002). Computer modeling and the design of optimal underwater imaging systems. IEEE Journal of Oceanic Engineering, 15(2), 101-111. Jamieson, S., How, J. P., & Girdhar, Y. (2023). Deepseecolor: Realtime adaptive color correction for autonomous underwater vehicles via deep learning methods. arXiv preprint arXiv:2303.04025. Jerlov, N. G. (1968). Optical oceanography / by N. G. Jerlov. Elsevier Pub. Co. Li, C., Anwar, S., & Porikli, F. (2020). Underwater scene prior inspired deep underwater image and video enhancement. Pattern Recognition, 98, 107038. Li, R., Li, H., Zou, W., Smith, R. G., & Curran, T. A. (1997). Quantitative photogrammetric analysis of digital underwater video imagery. IEEE Journal of Oceanic Engineering, 22(2), 364-375. Lin, S., & Chi, K. (2020). Underwater image enhancement based on structure-texture reconstruction. arXiv preprint arXiv:2004.05430. Liu, H., & Chau, L.-P. (2015). Underwater image color correction based on surface reflectance statistics. 2015 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), Loisel, H., & Stramski, D. (2000). Estimation of the inherent optical properties of natural waters from the irradiance attenuation coefficient and reflectance in the presence of Raman scattering. Applied optics, 39(18), 3001-3011. Maas, H.-G. (2015). On the accuracy potential in underwater/multimedia photogrammetry. Sensors, 15(8), 18140-18152. Mary, N. A. B., & Dharma, D. (2017). Coral reef image classification employing improved LDP for feature extraction. Journal of Visual Communication and Image Representation, 49, 225-242. Munsell, A. E., Sloan, L. L., & Godlove, I. H. (1933). Neutral value scales. I. Munsell neutral value scale. Journal of the Optical Society of America, 23(11), 394-411. Nomura, K., Sugimura, D., & Hamamoto, T. (2017). Color correction of underwater images based on multi-illuminant estimation with exposure bracketing imaging. 2017 IEEE International Conference on Image Processing (ICIP), Schechner, Y. Y., & Karpel, N. (2006). Recovery of underwater visibility and structure by polarization analysis. IEEE Journal of Oceanic Engineering, 30(3), 570-587. Solonenko, M. G., & Mobley, C. D. (2015). Inherent optical properties of Jerlov water types. Applied optics, 54(17), 5392-5401. Tsai, Y.-S., Chang, K.-W., & Lan, Y. (2025). Advancing underwater image clarity: a GAN-based approach with residual blocks and linear blending. Machine Vision and Applications, 36(4), 79. Vlachos, M., & Skarlatos, D. (2021). An extensive literature review on underwater image colour correction. Sensors, 21(17), 5690. Wang, Z., Shen, L., Xu, M., Yu, M., Wang, K., & Lin, Y. (2023). Domain adaptation for underwater image enhancement. IEEE Transactions on Image Processing, 32, 1442-1457. 王俊凱, & 趙鍵哲. (2025). 具平板玻璃介面成像系統水下物像對應及物點定位品質分析. 航遙及遙測學刊, 30(1), 1-21. 王思涵. (2024). 水下具平玻璃介面立體像對之類核線影像產製 [碩士論文, 國立臺灣大學土木工程學系]. 臺北. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100932 | - |
| dc.description.abstract | 透過物理模式進行水下影像色彩還原的方式,可以藉由估計水下影像成像原理中的環境參數,反向推算出場景在空氣中應呈現的色彩。然而,此方法必須建立在環境參數具有足夠精度的前提下。其中,物距作為影響水下影像成像效果的重要因素,其精度對色彩還原成效的影響分析尚付之闕如。因此,本研究分別於模擬實驗與實際實驗中對場景進行控制以獲取高精度物距資料,並在引入不同等級的隨機誤差後進行影像色彩還原,分析物距精度對還原成效的影響,進一步找出達到設定之還原品質閾值所需的物距精度。在實際實驗中,因缺乏控制點及可作尺度參考的人工物體,因此於場景中放置已事先量測點位坐標的塑膠框,作為控制基準以獲取物距資料。
為比較不同水域環境對精度需求的差異,本研究在模擬實驗中建立了從「混濁至清澈」及「淺水至深水」等不同環境條件下的模擬影像,並於實際實驗中將實驗水域分類,找出與其相應在模擬實驗中最相近之水域,再比較兩者之實驗結論,以作為針對多樣水域狀況的抽樣驗證。除此之外,本研究亦針對不同水域環境,分析使色彩還原成效最佳化所需的參數配置,提供後續研究參考。最後,本研究亦探討了相同等級物距誤差對同一影像中不同物距位置的場景所造成的差異影響,以及比較以原始影像與還原影像產製的點雲網格模型,驗證色彩還原程序有助於提取場景資訊並提升水下攝影場景重建的幾何完整度。 | zh_TW |
| dc.description.abstract | Physical-model-based underwater image color restoration can reconstruct the original colors of underwater scenes in air by estimating the environmental parameters involved in underwater imaging formation. However, the quality of the obtained environmental parameters must be sufficiently high. Among them, object distance plays a crucial role in affecting underwater imaging but has not yet been analyzed in terms of its accuracy impact on restoration performance. Therefore, this study establishes experimental settings in both simulation and real-world environments. By controlling the scene, high-accuracy object distance maps are acquired, and random errors of varying levels are introduced into the object distance maps before applying the color restoration process, in order to analyze the effect of object distance accuracy on restoration performance and determine the required accuracy for achieving restoration threshold. In the real-world experiments, due to the lack of control points and artificial objects that could serve as scale references, plastic frames with pre-measured coordinates were placed in the scene to enable control and obtain object distance maps. To investigate the differences in accuracy requirements across different underwater environments, simulated underwater images under various conditions, ranging from “turbid to clear water” and from “shallow to deep water,” were generated for analysis. In the real-world experiments, the aquatic environment was classified and compared with its closest underwater environments from the simulation experiments, serving as a sampling validation of the diverse water types analyzed in the simulations. Furthermore, this study also analyzes the optimal parameter configurations required to achieve the best restoration results across different environments, providing references for future research. In addition, the impact of identical levels of object distance errors on scene restoration performance at different distances within the same image is examined. Finally, by comparing mesh models reconstructed from original and restored images, the study demonstrates that color restoration facilitates the extraction of scene information and improves the geometric completeness of underwater scene. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:08:58Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-11-26T16:08:58Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii ABSTRACT iii 目次 iv 圖次 viii 表次 xii 第1章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法與流程 2 1.3 論文架構 5 第2章 文獻回顧 6 2.1 水下影像成像原理 6 2.2 以物理模式進行水下攝影色彩還原之方法 8 2.3 折射效應成因 11 2.4 小結 12 第3章 研究方法 13 3.1 消除折射效應策略 13 3.1.1 具平玻璃介面成像系統之物像對應模式 13 3.1.2 以近似物距來改正折射畸變之方法 16 3.2 色彩還原流程 17 3.2.1 Sea-thru原始方法 17 3.2.2 流程修改 20 3.2.2.1 轉換色彩空間 20 3.2.2.2 決定鄰近像素區域 21 3.2.2.3 色彩還原中手動調整的參數 21 3.2.2.4 白平衡 21 3.2.3 色彩還原成效評估指標 22 3.3 色彩還原參數分析 23 3.3.1 各參數大小之影響 23 3.3.2 白平衡之影響 24 3.3.3 最佳參數組合分析 25 3.4 物距精度分析 25 3.4.1 物距精度之影響 25 3.4.2 物距精度定量分析 27 3.4.3 物距精度於不同物距場景之影響分析 27 3.5 網格模型幾何完整度比較 28 3.6 資料處理平差方法 28 3.6.1 實驗場控制點及檢核點坐標平差 28 3.6.2 玻璃介面相關參數光束法平差 30 3.7 密點雲倒投影產製物距圖方法 31 第4章 模擬實驗成果分析與討論 33 4.1 資料獲取與前處理 34 4.1.1 點位坐標解算 34 4.1.2 地真影像獲取 39 4.1.3 物距圖產製 41 4.1.4 水下模擬影像產製 43 4.2 最佳參數組合分析 47 4.3 物距對色彩還原影像影響分析 52 4.3.1 物距精度定量分析 52 4.3.2 物距精度於不同物距場景之影響分析 57 4.4 網格模型幾何完整度比較 59 第5章 實際實驗成果分析與討論 65 5.1 塑膠框點位坐標及點位間距離解算 66 5.1.1 步驟一 66 5.1.2 步驟二 69 5.2 實驗水域位置 76 5.3 實驗水域一:水深8m處 77 5.3.1 水域環境分類 77 5.3.2 資料獲取與前處理 78 5.3.2.1 實驗設備及內方位參數率定 78 5.3.2.2 玻璃介面相關參數解算 79 5.3.2.3 影像獲取及折射畸變改正 80 5.3.2.4 物距圖產製 82 5.3.3 最佳參數組合分析 84 5.3.4 物距對色彩還原影像影響分析 90 5.3.4.1 物距精度定量分析 90 5.3.4.2 物距精度於不同物距場景之影響分析 94 5.3.5 網格模型幾何完整度比較 96 5.4 實驗水域二:水深17m處 98 5.4.1 水域環境分類 98 5.4.2 資料獲取與前處理 99 5.4.2.1 實驗設備及內方位參數率定 99 5.4.2.2 玻璃介面相關參數解算 100 5.4.2.3 影像獲取及折射畸變改正 101 5.4.2.4 物距圖產製 103 5.4.3 最佳參數組合分析 105 5.4.4 物距對色彩還原影像影響分析 110 5.4.4.1 物距精度定量分析 110 5.4.4.2 物距精度於不同物距場景之影響分析 114 5.4.5 網格模型幾何完整度比較 116 第6章 結論與建議 119 6.1 結論 119 6.2 建議 121 參考文獻 122 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 水下影像色彩還原 | - |
| dc.subject | 物理模式 | - |
| dc.subject | 物距精度 | - |
| dc.subject | 最佳參數配置 | - |
| dc.subject | 多樣水域分析 | - |
| dc.subject | underwater image color restoration | - |
| dc.subject | Physical model | - |
| dc.subject | object distance accuracy | - |
| dc.subject | optimal parameter configuration | - |
| dc.subject | diverse water types analysis | - |
| dc.title | 水下影像色彩還原之物距精度影響及最佳參數配置分析 | zh_TW |
| dc.title | Analysis of the Impact of Object Distance Accuracy and Optimal Parameter Configuration for Underwater Image Color Restoration | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡展榮;邱式鴻;莊子毅 | zh_TW |
| dc.contributor.oralexamcommittee | Jaan-Rong Tsay;Shih-Hong Chio;Tzu-Yi Chuang | en |
| dc.subject.keyword | 水下影像色彩還原,物理模式物距精度最佳參數配置多樣水域分析 | zh_TW |
| dc.subject.keyword | underwater image color restoration,Physical modelobject distance accuracyoptimal parameter configurationdiverse water types analysis | en |
| dc.relation.page | 124 | - |
| dc.identifier.doi | 10.6342/NTU202504640 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-11-07 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2025-11-27 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 11.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
