請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100930完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 唐牧群 | zh_TW |
| dc.contributor.advisor | Muh-Chyun Tang | en |
| dc.contributor.author | 張維庭 | zh_TW |
| dc.contributor.author | Wei-Ting Wayland Chang | en |
| dc.date.accessioned | 2025-11-26T16:08:28Z | - |
| dc.date.available | 2025-11-27 | - |
| dc.date.copyright | 2025-11-26 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-11-12 | - |
| dc.identifier.citation | Alryalat, S., Malkawi, L., & Momani, S. (2019). Comparing bibliometric analysis using PubMed, Scopus, and Web of Science databases. Journal of Visualized Experiments: JoVE, 152. https://doi.org/10.3791/58494
Baas, J., Schotten, M., Plume, A., Côté, G., & Karimi, R. (2020). Scopus is a curated, high-quality bibliometric data source for academic research in quantitative science studies. Quantitative Science Studies, 1(1), 377-386. https://doi.org/10.1162/qss_a_00019 Beauchamp, T. L. (2011). Informed Consent: its history, meaning, and present challenges. Cambridge Quarterly of Healthcare Ethics, 20(4), 515–523. https://doi.org/10.1017/s0963180111000259 Beskow, L. M., Friedman, J. Y., Hardy, N. C., Lin, L., & Weinfurt, K. P. (2010). Developing a simplified consent form for biobanking. PLoS ONE, 5(10), e13302. https://doi.org/10.1371/journal.pone.0013302 Blake, K. V., Antal, H., Bunnell, H. T., He, J., Henderson, R., Holbrook, J. T., McCahan, S. M., Pennington, C., Rogers, L., Shade, D., Sugar, E. A., Taylor, A., Wise, R. A., & Wysocki, T. (2023). Comprehension by caregivers and adolescents of clinical trial information delivered via multimedia video versus conventional practice: nonrandomized controlled trial. JMIR Pediatrics and Parenting, 6, e44252. https://doi.org/10.2196/44252 Cardoso, L., Chen, M. M., Araújo, A., de Almeida, G. G. F., Dias, F., & Moutinho, L. (2022). Accessing Neuromarketing Scientific Performance: Research Gaps and Emerging Topics. Behavioral Sciences, 12(2), 55. https://doi.org/10.3390/bs12020055 Davis, T. C., Berkel, H. J., Holcombe, R. F., Pramanik, S., & Divers, S. G. (1998). Informed Consent for Clinical Trials: a Comparative Study of Standard Versus Simplified Forms. JNCI Journal of the National Cancer Institute, 90(9), 668–674. https://doi.org/10.1093/jnci/90.9.668 Eardley, R., Tonkin, E. L., Soubutts, E., Ayobi, A., Tourte, G. J. L., Gooberman-Hill, R., Craddock, I., & O’Kane, A. A. (2023). Explanation before Adoption: Supporting Informed Consent for Complex Machine Learning and IoT Health Platforms. Proceedings of the ACM on Human-Computer Interaction, 7(CSCW1), 1–25. https://doi.org/10.1145/3579482 Esfahlani, F. Z., Jo, Y., Puxeddu, M. G., Merritt, H., Tanner, J. C., Greenwell, S., Patel, R., Faskowitz, J., & Betzel, R. F. (2021). Modularity maximization as a flexible and generic framework for brain network exploratory analysis. NeuroImage, 244, 118607. https://doi.org/10.1016/j.neuroimage.2021.118607 European Medicines Agency. (2007). Reflection paper on methodological issues in confirmatory clinical trials planned with an adaptive design. https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-methodological-issues-confirmatory-clinical-trials-planned-adaptive-design_en.pdf European Medicines Agency. (2022). Guidance on the management of clinical trials during the COVID-19 pandemic. https://health.ec.europa.eu/document/download/74386d75-e5fd-4d9c-9dfc-ec7d60758da9_en?filename=guidanceclinicaltrials_covid19_en_1.pdf European Medicines Agency. (2024). Reflection paper on the use of artificial intelligence (AI) in the medicinal product lifecycle. https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-use-artificial-intelligence-ai-medicinal-product-lifecycle_en.pdf European Parliament and Council of the European Union. (2001). Directive 2001/20/EC of the European Parliament and of the Council of 4 April 2001 on the approximation of the laws, regulations and administrative provisions of the Member States relating to the implementation of good clinical practice in the conduct of clinical trials on medicinal products for human use. Official Journal of the European Union, L 121, 34–44. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32001L0020 European Parliament and Council of the European Union. (2014). Regulation (EU) No 536/2014 of the European Parliament and of the Council of 16 April 2014 on clinical trials on medicinal products for human use, and repealing Directive 2001/20/EC. Official Journal of the European Union, L 158, 1–76. https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32014R0536 European Parliament and Council of the European Union. (2016). Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation). Official Journal of the European Union, L 119, 1–88. https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679 Falagas, M. E., Korbila, I. P., Giannopoulou, K. P., Kondilis, B. K., & Peppas, G. (2009). Informed consent: how much and what do patients understand?. American Journal of Surgery, 198(3), 420–435. https://doi.org/10.1016/j.amjsurg.2009.02.010 Fang, D., Yang, H., Gao, B., & Li, X. (2018). Discovering research topics from library electronic references using latent Dirichlet allocation. Library Hi Tech, 36(3), 400-410. https://doi.org/10.1108/lht-06-2017-0132 Faraji, O., Asiaei, K., Rezaee, Z., Bontis, N., & Dolatzarei, E. (2022). Mapping the conceptual structure of intellectual capital research: A co-word analysis. Journal of Innovation & Knowledge, 7(3), 100202. https://doi.org/10.1016/j.jik.2022.100202 Flory, J., & Emanuel, E. (2004). Interventions to improve research participants’ understanding in informed consent for research. JAMA, 292(13), 1593. https://doi.org/10.1001/jama.292.13.1593 Giannakos, M., Papamitsiou, Z., Markopoulos, P., Read, J., & Hourcade, J. P. (2020). Mapping child–computer interaction research through co-word analysis. International Journal of Child-Computer Interaction, 23–24, 100165. https://doi.org/10.1016/j.ijcci.2020.100165 Gillies, K., Huang, W., Skea, Z., Brehaut, J., & Cotton, S. (2014). Patient information leaflets (PILs) for UK randomised controlled trials: a feasibility study exploring whether they contain information to support decision making about trial participation. Trials, 15(1). https://doi.org/10.1186/1745-6215-15-62 Grady, C., Eckstein, L., Berkman, B., Brock, D., Cook-Deegan, R., Fullerton, S. M., Greely, H., Hansson, M. G., Hull, S., Kim, S., Lo, B., Pentz, R., Rodriguez, L., Weil, C., Wilfond, B. S., & Wendler, D. (2015). Broad Consent for Research with Biological Samples: Workshop Conclusions. The American Journal of Bioethics, 15(9), 34–42. https://doi.org/10.1080/15265161.2015.1062162 Haring, L. V., Hall, J. T., Janssen, A., Johannes, J. M., Verhoeff, A. P., & Ujcic-Voortman, J. K. (2023). Developing a digital informed consent app: opportunities and challenges of a new format to inform and obtain consent in public health research. BMC Medical Ethics, 24(1), 97. https://doi.org/10.1186/s12910-023-00974-1 Hosseini, S., Baziyad, H., Norouzi, R., Khiabani, S. J., Gidófalvi, G., Albadvi, A., Alimohammadi, A., & Seyedabrishami, S. (2021). Mapping the intellectual structure of GIS-T field (2008–2019): A dynamic co-word analysis. Scientometrics, 126(4), 2667–2688. https://doi.org/10.1007/s11192-020-03840-8 Hung, L., Tang, M., & Lin, S. (2023). Using Co-Word network community detection and LDA topic modeling to extract topics in TED talks. In Lecture Notes in Computer Science (pp. 140–154). https://doi.org/10.1007/978-3-031-36049-7_11 Joffe, S., Cook, E. F., Cleary, P. D., Clark, J. W., & Weeks, J. C. (2001). Quality of informed consent in cancer clinical trials: a cross-sectional survey. The Lancet, 358(9295), 1772–1777. https://doi.org/10.1016/s0140-6736(01)06805-2 Kass, N. E., Chaisson, L., Taylor, H. A., & Lohse, J. (2011). Length and Complexity of US and International HIV Consent Forms from Federal HIV Network Trials. Journal of General Internal Medicine, 26(11), 1324–1328. https://doi.org/10.1007/s11606-011-1778-6 Kaye, J., Whitley, E. A., Lund, D., Morrison, M., Teare, H., & Melham, K. (2014). Dynamic consent: a patient interface for twenty-first century research networks. European Journal of Human Genetics, 23(2), 141–146. https://doi.org/10.1038/ejhg.2014.71 Kimmelman, J. (2007). The Therapeutic Misconception at 25: Treatment, research, and confusion. The Hastings Center Report, 37(6), 36–42. https://doi.org/10.1353/hcr.2007.0092 Lidz, C. W., Appelbaum, P. S., Grisso, T., & Renaud, M. (2004). Therapeutic misconception and the appreciation of risks in clinical trials. Social Science & Medicine (1982), 58(9), 1689–1697. https://doi.org/10.1016/S0277-9536(03)00338-1 Lindsey, W. T., & Olin, B. R. (2013). PubMed searches. Nutrition in Clinical Practice, 28(2), 165–176. https://doi.org/10.1177/0884533613475821 Liu, H. K., Tang, M., & Collard, A. S. J. (2025). Hybrid intelligence for the public sector: A bibliometric analysis of artificial intelligence and crowd intelligence. Government Information Quarterly, 42(1), 102006. https://doi.org/10.1016/j.giq.2024.102006 Maier, D., Waldherr, A., Miltner, P., Wiedemann, G., Niekler, A., Keinert, A., Pfetsch, B., Heyer, G., Reber, U., Häussler, T., Schmid-Petri, H., & Adam, S. (2018). Applying LDA topic modeling in communication research: Toward a valid and reliable methodology. Communication Methods and Measures, 12(2-3), 93–118. https://doi.org/10.1080/19312458.2018.1430754 Mandava, A., Pace, C., Campbell, B., Emanuel, E., & Grady, C. (2012). The quality of informed consent: mapping the landscape. A review of empirical data from developing and developed countries. Journal of Medical Ethics, 38(6), 356–365. https://doi.org/10.1136/medethics-2011-100178 Mazzochi, A. T., Dennis, M., & Chun, H. Y. (2023). Electronic informed consent: effects on enrolment, practical and economic benefits, challenges, and drawbacks-a systematic review of studies within randomized controlled trials. Trials, 24(1), 127. https://doi.org/10.1186/s13063-022-06959-6 Miller, F. G., & Rosenstein, D. L. (2003). The therapeutic orientation to clinical trials. New England Journal of Medicine, 348(14), 1383–1386. https://doi.org/10.1056/nejmsb030228 Mokhtarpour, R., & Khasseh, A. A. (2020). Twenty-six years of LIS research focus and hot spots, 1990–2016: A co-word analysis. Journal of Information Science, 47(6), 794–808. https://doi.org/10.1177/0165551520932119 National Institutes of Health. (2016). Policy on dissemination of NIH-funded clinical trial information. https://grants.nih.gov/grants/guide/notice-files/NOT-OD-16-149.html Newman, M. E. J. (2016). Equivalence between modularity optimization and maximum likelihood methods for community detection. Physical Review. E, 94(5). https://doi.org/10.1103/physreve.94.052315 Nishimura, A., Carey, J., Erwin, P. J., Tilburt, J. C., Murad, M. H., & McCormick, J. B. (2013). Improving understanding in the research informed consent process: a systematic review of 54 interventions tested in randomized control trials. BMC Medical Ethics, 14(1). https://doi.org/10.1186/1472-6939-14-28 O’Leary, C., Casey, C., Webb, D., Collyar, D., & Pleasant, A. (2020). How Health Literacy Can Enhance the Design and Conduct of Clinical Trials from Consent to Conclusion. Studies in Health Technology and Informatics. https://doi.org/10.3233/shti200042 Park, H., Park, T., & Lee, Y. (2019). Partially collapsed Gibbs sampling for latent Dirichlet allocation. Expert Systems with Applications, 131, 208–218. https://doi.org/10.1016/j.eswa.2019.04.028 Pentz, R. D., White, M., Harvey, R. D., Farmer, Z. L., Liu, Y., Lewis, C., Dashevskaya, O., Owonikoko, T., & Khuri, F. R. (2012). Therapeutic misconception, misestimation, and optimism in participants enrolled in phase 1 trials. Cancer, 118(18), 4571–4578. https://doi.org/10.1002/cncr.27397 Pietrzykowski, T., & Smilowska, K. (2021). The reality of informed consent: empirical studies on patient comprehension—systematic review. Trials, 22(1). https://doi.org/10.1186/s13063-020-04969-w Sayers, E. W., Bolton, E. E., Brister, J. R., Canese, K., Chan, J., Comeau, D. C., Connor, R., Funk, K., Kelly, C., Kim, S., Madej, T., Marchler-Bauer, A., Lanczycki, C., Lathrop, S., Lu, Z., Thibaud-Nissen, F., Murphy, T., Phan, L., Skripchenko, Y., . . . Sherry, S. T. (2021). Database resources of the national center for biotechnology information. Nucleic Acids Research, 50(D1), D20–D26. https://doi.org/10.1093/nar/gkab1112 Sayers, E. W., Bolton, E. E., Brister, J. R., Canese, K., Chan, J., Comeau, D. C., Farrell, C. M., Feldgarden, M., Fine, A. M., Funk, K., Hatcher, E., Kannan, S., Kelly, C., Kim, S., Klimke, W., Landrum, M. J., Lathrop, S., Lu, Z., Madden, T. L., . . . Sherry, S. T. (2022). Database resources of the National Center for Biotechnology Information in 2023. Nucleic Acids Research, 51(D1), D29–D38. https://doi.org/10.1093/nar/gkac1032 Tait, A. R., Voepel-Lewis, T., Zikmund-Fisher, B. J., & Fagerlin, A. (2010). The effect of format on parents’ understanding of the risks and benefits of clinical research: A comparison between text, tables, and graphics. Journal of Health Communication, 15(5), 487–501. https://doi.org/10.1080/10810730.2010.492560 Tam, N. T., Huy, N. T., Thoa, L. T. B., Long, N. P., Trang, N. T. H., Hirayama, K., & Karbwang, J. (2015). Participants’ understanding of informed consent in clinical trials over three decades: systematic review and meta-analysis. Bulletin of the World Health Organization, 93(3), 186-198H. https://doi.org/10.2471/blt.14.141390 U.S. Department of Health and Human Services. (2017). Federal policy for the protection of human subjects (the "Common Rule") (45 C.F.R. Part 46). https://www.govinfo.gov/content/pkg/FR-2017-01-19/pdf/2017-01058.pdf U.S. Food and Drug Administration. (1995). Protection of human subjects; Informed consent (21 C.F.R. Part 50). https://www.ecfr.gov/current/title-21/chapter-I/subchapter-A/part-50/subpart-B U.S. Food and Drug Administration. (1996). Exception from informed consent requirements for emergency research (21 C.F.R. § 50.24). https://www.ecfr.gov/current/title-21/chapter-I/subchapter-A/part-50/subpart-B/section-50.24 U.S. Food and Drug Administration. (2013). Guidance for institutional review boards, clinical investigators, and sponsors: Exception from informed consent requirements for emergency research. https://www.fda.gov/media/80554/download U.S. Food and Drug Administration. (2020). FDA guidance on conduct of clinical trials of medical products during COVID-19 public health emergency. https://www.hhs.gov/ohrp/sites/default/files/fda-covid-guidance-2apr2020.pdf U.S. Food and Drug Administration. (2023). Using artificial intelligence and machine learning in the development of drug and biological products [Discussion paper]. https://www.fda.gov/media/167973/download U.S. Food and Drug Administration. (2024). Key information and facilitating understanding in informed consent: Guidance for sponsors, investigators, and institutional review boards. https://www.fda.gov/media/176663/download Vardell, E., Feddern-Bekcan, T., & Moore, M. (2011). SciVal Experts: A collaborative tool. Medical Reference Services Quarterly, 30(3), 283–294. https://doi.org/10.1080/02763869.2011.603592 Visser, M., Van Eck, N. J., & Waltman, L. (2021). Large-scale comparison of bibliographic data sources: Scopus, Web of Science, Dimensions, Crossref, and Microsoft Academic. Quantitative Science Studies, 2(1), 20–41. https://doi.org/10.1162/qss_a_00112 Wendler, D., & Grady, C. (2008). What should research participants understand to understand they are participants in research? Bioethics, 22(4), 203–208. https://doi.org/10.1111/j.1467-8519.2008.00632.x Williamson, P. O., & Minter, C. I. J. (2019). Exploring PubMed as a reliable resource for scholarly communications services. Journal of the Medical Library Association JMLA, 107(1). https://doi.org/10.5195/jmla.2019.433 Yan, B., Lee, T., & Lee, T. (2015). Mapping the intellectual structure of the Internet of Things (IoT) field (2000–2014): a co-word analysis. Scientometrics, 105(2), 1285–1300. https://doi.org/10.1007/s11192-015-1740-1 Yau, C., Porter, A., Newman, N., & Suominen, A. (2014). Clustering scientific documents with topic modeling. Scientometrics, 100(3), 767–786. https://doi.org/10.1007/s11192-014-1321-8 Yu, D., & Xiang, B. (2023). Discovering topics and trends in the field of Artificial Intelligence: Using LDA topic modeling. Expert Systems with Applications, 225, 120114. https://doi.org/10.1016/j.eswa.2023.120114 Yu, D., Fang, A., & Xu, Z. (2023). Topic research in fuzzy domain: Based on LDA topic modelling. Information Sciences, 648, 119600. https://doi.org/10.1016/j.ins.2023.119600 Zhao, X., Jiang, H., Yin, J., Liu, H., Zhu, R., Mei, S., & Zhu, C. (2022). Changing trends in clinical research literature on PubMed database from 1991 to 2020. European Journal of Medical Research, 27(1). https://doi.org/10.1186/s40001-022-00717-9 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100930 | - |
| dc.description.abstract | 本論文從資訊行為與資訊設計的視角,檢視1995年至2024年間臨床試驗「知情同意」的演變。儘管法規長期要求充分揭露,受試者對隨機分配、安慰劑對照,以及研究與臨床照護之區別等核心概念的理解仍普遍不足。這一持續存在的落差顯示,知情同意並非單純的合規問題,而是根植於資訊設計與人類行為的結構性挑戰。
研究採系統性的多元方法,整合三個層面:(一)文獻回顧以梳理三十年的理論演進;(二)比較分析美國與歐盟之法規架構;(三)實證的領域分析,結合潛在狄利克雷分配主題模型與共詞網絡,檢視5,978篇學術出版品。結果顯示此領域正處於「複雜且分散的適應」:出版量自2004年的95篇增至2024年的480篇,成長約五倍;研究社群由13個獨立群組擴增為26個。以科技為核心的子領域,如機器人、人工智慧與數位健康,在2015年後才作為獨立主題浮現,實證支持理論與監管正朝向以設計為基礎的解方轉型。 本論文提出一套整合倫理理論、法規科學與資訊設計的概念框架,將知情同意定位為一個動態系統:它需要以參與者為中心的設計、科技創新與持續調適,而非僅止於靜態揭露。分析亦顯示,美國與歐盟的做法正收斂於強調透明度、風險比例性與設計品質,超越單一的合規導向。 本研究為研究者、監管機關與實務工作者提供可操作的建議,以因應日益複雜的試驗設計、擴張中的大數據資料庫,以及人工智慧在臨床研究中的應用。 | zh_TW |
| dc.description.abstract | This dissertation focuses on informed consent in clinical trials as a dimension of information behavior and design and its altogether development from 1995 to 2024. Even when consent procedures follow regulations, participants still struggle to understand randomization, placebos, and the difference between clinical care and research care. This lack of understanding about informed consent points toward several pervasive issues of structural information design and the human behavior intertwined with it, instead of being just a legal matter.
This dissertation follows an integrated approach that applies multiple methods: conducting a literature review on three decades of evolution of the field, a comparative analysis of the U.S. and European Union regulatory systems, and an empirical domain analysis that combines Latent Dirichlet Allocation (LDA) topic modeling and co-word network analysis of 5,978 research papers. The results outline a domain that is in a stage of “complex and fragmented adaptation.” The output of publications increased fivefold (from 95 in 2004 to 480 in 2024) and the number of unique research communities doubled from 13 to 26. Domains focused on technology and including robotics, artificial intelligence, and advanced digital health altogether began to emerge as distinct research domains only after 2015, providing empirical evidence to the theoretical and regulatory changes emphasizing design-centered solutions. This dissertation’s main impact is a refined conceptual framework that integrates ethical theory, information design, and regulatory dimensions into a unified model. Such a refined framework positions informed consent not as a static disclosure, but as a dynamic system that needs continuous adaptation, participant-centered design, and technological innovation. This dissertation’s analyses also show a convergence of the U.S. and E.U. approaches as both are shifting towards a greater focus on transparency, risk-proportionate related regulations, and design quality over mere compliance. With these in mind, such regulatory, research, and practitioner-based insights are potentially altogether effective in clinical research that involves complex trials, expansive data sets, and artificial intelligence applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:08:28Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-11-26T16:08:28Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
中文摘要 iii Abstract v Contents vii Figures xi Tables xiii Chapter 1 The Necessity of Informed Consent in Clinical Trials 1 1.1 Introduction: A Challenge of Information and Design 1 1.2 Research Questions and Scope 5 1.3 Methodological Overview and Key Terms 7 1.3.1 Informed Consent 8 1.3.2 Participant Comprehension 8 1.3.3 Therapeutic Misconception 9 1.3.4 Information Behavior Design 10 1.3.5 Health Literacy 11 1.3.6 Dynamic Consent 11 1.3.7 Broad Consent 12 1.4 Dissertation Outline 14 Chapter 2 Literature Review: Theoretical Foundations and Key Debates in Informed Consent 17 2.1 1995-2004: Problem Identification and Theoretical Foundations 17 2.1.1 Identifying Key Challenges 17 2.1.2 Establishing Theoretical Foundations 18 2.2 2005-2014: Conceptual Refinement and Design Innovation 20 2.2.1 Refining Conceptual Understanding 21 2.2.2 Advancing Design Practices 22 2.3 2015-2024: Interdisciplinary Integration and Technological Solutions 24 2.3.1 Integrating Interdisciplinary Insights 24 2.3.2 Applying Technological Solutions 25 2.4 Discussion 28 Chapter 3 Regulatory Frameworks for Informed Consent: A Comparative Analysis of the U.S. and E.U. (1995-2024) 33 3.1 Foundational Era (1995-2004): Establishing Key Principles 34 3.1.1 U.S. Approach: Codifying Consent Elements 34 3.1.2 E.U. Approach: Harmonizing Standards 35 3.1.3 Shared Challenges: Emergency and Vulnerable Populations 36 3.2 Adaptation Era (2005-2014): Adapting to Complexities 37 3.2.1 U.S. Approach: Community Engagement in Emergency Research 37 3.2.2 E.U. Approach: Risk-Proportional Transparency Requirements 38 3.3 Modern Era (2015-2024): Technological Integration and Harmonization 40 3.3.1 U.S. Approach: Enhancing Comprehension and Access 40 3.3.2 E.U. Approach: Data Protection and Crisis Response 42 3.3.3 Shared Challenges: Artificial Intelligence and Machine Learning 43 3.4 Discussion 43 Chapter 4 Research Domain Analysis of Informed Consent in Clinical Trials (1995-2024) 55 4.1 Co-word Network Analysis for Domain Analysis 55 4.2 Latent Dirichlet Allocation (LDA) Topic Modeling for Domain Analysis 57 4.3 Primary Data Sources and Rationale 59 4.3.1 Scopus Database 59 4.3.2 SciVal 60 4.3.3 PubMed Database 60 Chapter 5 Research Domain Analysis of Informed Consent in Clinical Trials (1995-2024): Empirical Results 63 5.1 Data Collection 64 5.2 LDA Topic Modeling 74 5.2.1 Domain Stopwords Filtering 74 5.3 LDA Results 82 5.4 Co-word Network Analysis 115 5.5 Co-word Network Results 120 5.6 Discussion 172 Chapter 6 Reassessing Informed Consent: An Interdisciplinary Analysis 181 6.1 Discussion 181 6.1.1 Contributions 183 6.2 Limitations 189 6.3 Future Research 191 6.3.1 Enhancing Research Methods 191 6.3.2 Building Theoretical Foundations 192 6.3.3 Bridging Theory to Practice 192 6.4 Conclusion 193 References 197 Appendix 1: LDA Overall Coherence Score Analyses (1995-2024) 207 Appendix 2: Co-word Network Communities (1995-2024): Version 1 Visualizations 215 Appendix 3: Overall Co-word Network V1 Communities Topic Clusters (1995-2024) Visualizations 219 Appendix 4: Co-word Network Communities (1995-2024): Version 2 Visualizations 245 Appendix 5: Overall Co-word Network V2 Communities Topic Clusters (1995-2024) Visualizations 249 | - |
| dc.language.iso | en | - |
| dc.subject | 知情同意 | - |
| dc.subject | 臨床試驗 | - |
| dc.subject | 資訊行為 | - |
| dc.subject | 研究倫理 | - |
| dc.subject | 領域分析 | - |
| dc.subject | 法規架構 | - |
| dc.subject | 受試者理解 | - |
| dc.subject | informed consent | - |
| dc.subject | clinical trials | - |
| dc.subject | information behavior | - |
| dc.subject | research ethics | - |
| dc.subject | domain analysis | - |
| dc.subject | regulatory frameworks | - |
| dc.subject | participant comprehension | - |
| dc.title | 臨床試驗中的知情同意: 理論、政策與研究 | zh_TW |
| dc.title | Informed Consent in Clinical Trials: Theories, Policy, and Research | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 林維真;蔡天怡;林樹基;李崇菱 | zh_TW |
| dc.contributor.oralexamcommittee | Wei-Jane Lin;Tien-I Tsai;Shu-Kei Carlos Lam;Tsung-Ling Lee | en |
| dc.subject.keyword | 知情同意,臨床試驗資訊行為研究倫理領域分析法規架構受試者理解 | zh_TW |
| dc.subject.keyword | informed consent,clinical trialsinformation behaviorresearch ethicsdomain analysisregulatory frameworksparticipant comprehension | en |
| dc.relation.page | 274 | - |
| dc.identifier.doi | 10.6342/NTU202504664 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-11-12 | - |
| dc.contributor.author-college | 文學院 | - |
| dc.contributor.author-dept | 圖書資訊學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 圖書資訊學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf 未授權公開取用 | 8.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
