請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100924完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張鈞棣 | zh_TW |
| dc.contributor.advisor | Chun-Ti Chang | en |
| dc.contributor.author | 蔡閔 | zh_TW |
| dc.contributor.author | Min Tsai | en |
| dc.date.accessioned | 2025-11-26T16:07:01Z | - |
| dc.date.available | 2025-11-27 | - |
| dc.date.copyright | 2025-11-26 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-11-14 | - |
| dc.identifier.citation | 1. Fan, F.-R., Z.-Q. Tian, and Z. Lin Wang, Flexible triboelectric generator. Nano Energy, 2012. 1(2): p. 328-334.
2. Gunawardhana, K.R.S.D., N.D. Wanasekara, and R.D.I.G. Dharmasena, Towards Truly Wearable Systems: Optimizing and Scaling Up Wearable Triboelectric Nanogenerators. iScience, 2020. 23(8). 3. Niu, S., S. Wang, L. Lin, Y. Liu, Y.S. Zhou, Y. Hu, and Z.L. Wang, Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy & Environmental Science, 2013. 6(12): p. 3576-3583. 4. Zhu, G., C. Pan, W. Guo, C.-Y. Chen, Y. Zhou, R. Yu, and Z.L. Wang, Triboelectric-Generator-Driven Pulse Electrodeposition for Micropatterning. Nano Letters, 2012. 12(9): p. 4960-4965. 5. Wang, S., L. Lin, and Z.L. Wang, Nanoscale Triboelectric-Effect-Enabled Energy Conversion for Sustainably Powering Portable Electronics. Nano Letters, 2012. 12(12): p. 6339-6346. 6. Wang, S., L. Lin, Y. Xie, Q. Jing, S. Niu, and Z.L. Wang, Sliding-Triboelectric Nanogenerators Based on In-Plane Charge-Separation Mechanism. Nano Letters, 2013. 13(5): p. 2226-2233. 7. Niu, S., Y. Liu, S. Wang, L. Lin, Y.S. Zhou, Y. Hu, and Z.L. Wang, Theory of Sliding-Mode Triboelectric Nanogenerators. Advanced Materials, 2013. 25(43): p. 6184-6193. 8. Zhou, Y.S., G. Zhu, S. Niu, Y. Liu, P. Bai, Q. Jing, and Z.L. Wang, Nanometer resolution self‐powered static and dynamic motion sensor based on micro‐grated triboelectrification. Advanced Materials, 2014. 26(11): p. 1719-1724. 9. Lin, L., S. Wang, Y. Xie, Q. Jing, S. Niu, Y. Hu, and Z.L. Wang, Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano letters, 2013. 13(6): p. 2916-2923. 10. Jing, Q., G. Zhu, P. Bai, Y. Xie, J. Chen, R.P.S. Han, and Z.L. Wang, Case-Encapsulated Triboelectric Nanogenerator for Harvesting Energy from Reciprocating Sliding Motion. ACS Nano, 2014. 8(4): p. 3836-3842. 11. Cheng, G., Z.-H. Lin, L. Lin, Z.-l. Du, and Z.L. Wang, Pulsed Nanogenerator with Huge Instantaneous Output Power Density. ACS Nano, 2013. 7(8): p. 7383-7391. 12. Yang, Y., Y.S. Zhou, H. Zhang, Y. Liu, S. Lee, and Z.L. Wang, A single‐electrode based triboelectric nanogenerator as self‐powered tracking system. Advanced Materials, 2013. 25(45): p. 6594-6601. 13. Lin, Z.-H., G. Cheng, L. Lin, S. Lee, and Z.L. Wang, Water-solid surface contact electrification and its use for harvesting liquid-wave energy. Angew. Chem. Int. Ed, 2013. 52(48): p. 12545-12549. 14. Yang, Y., Y.S. Zhou, H. Zhang, Y. Liu, S. Lee, and Z.L. Wang, A Single-Electrode Based Triboelectric Nanogenerator as Self-Powered Tracking System. Advanced Materials, 2013. 25(45): p. 6594-6601. 15. Yang, X., S. Chan, L. Wang, and W.A. Daoud, Water tank triboelectric nanogenerator for efficient harvesting of water wave energy over a broad frequency range. Nano Energy, 2018. 44: p. 388-398. 16. Lin, Z.-H., G. Cheng, S. Lee, K.C. Pradel, and Z.L. Wang, Harvesting water drop energy by a sequential contact-electrification and electrostatic-induction process. Adv. Mater, 2014. 26(27): p. 4690-4696. 17. Zhang, H., Y. Yang, X. Zhong, Y. Su, Y. Zhou, C. Hu, and Z.L. Wang, Single-electrode-based rotating triboelectric nanogenerator for harvesting energy from tires. ACS nano, 2014. 8(1): p. 680-689. 18. Niu, S., Y. Liu, S. Wang, L. Lin, Y.S. Zhou, Y. Hu, and Z.L. Wang, Theoretical investigation and structural optimization of single‐electrode triboelectric nanogenerators. Advanced Functional Materials, 2014. 24(22): p. 3332-3340. 19. Su, Y., X. Wen, G. Zhu, J. Yang, J. Chen, P. Bai, Z. Wu, Y. Jiang, and Z. Lin Wang, Hybrid triboelectric nanogenerator for harvesting water wave energy and as a self-powered distress signal emitter. Nano Energy, 2014. 9: p. 186-195. 20. Wang, S., Y. Xie, S. Niu, L. Lin, and Z.L. Wang, Freestanding triboelectric‐layer‐based nanogenerators for harvesting energy from a moving object or human motion in contact and non‐contact modes. Advanced materials, 2014. 26(18): p. 2818-2824. 21. Xie, Y., S. Wang, S. Niu, L. Lin, Q. Jing, J. Yang, Z. Wu, and Z.L. Wang, Grating-Structured Freestanding Triboelectric-Layer Nanogenerator for Harvesting Mechanical Energy at 85% Total Conversion Efficiency. Advanced Materials, 2014. 26(38): p. 6599-6607. 22. Lin, L., S. Wang, S. Niu, C. Liu, Y. Xie, and Z.L. Wang, Noncontact Free-Rotating Disk Triboelectric Nanogenerator as a Sustainable Energy Harvester and Self-Powered Mechanical Sensor. ACS Applied Materials & Interfaces, 2014. 6(4): p. 3031-3038. 23. Le, C.-D., C.-P. Vo, T.-H. Nguyen, D.-L. Vu, and K.K. Ahn, Liquid-solid contact electrification based on discontinuous-conduction triboelectric nanogenerator induced by radially symmetrical structure. Nano Energy, 2021. 80: p. 105571. 24. Zhao, J. and Y. Shi, Boosting the Durability of Triboelectric Nanogenerators: A Critical Review and Prospect. Advanced Functional Materials, 2023. 33(14): p. 2213407. 25. Dang, C., C. Shao, H. Liu, Y. Chen, and H. Qi, Cellulose melt processing assisted by small biomass molecule to fabricate recyclable ionogels for versatile stretchable triboelectric nanogenerators. Nano Energy, 2021. 90: p. 106619. 26. Jiang, P., L. Zhang, H. Guo, C. Chen, C. Wu, S. Zhang, and Z.L. Wang, Signal Output of Triboelectric Nanogenerator at Oil–Water–Solid Multiphase Interfaces and its Application for Dual-Signal Chemical Sensing. Advanced Materials, 2019. 31(39): p. 1902793. 27. Liu, S., W. Zheng, B. Yang, and X. Tao, Triboelectric charge density of porous and deformable fabrics made from polymer fibers. Nano Energy, 2018. 53: p. 383-390. 28. Zheng, L., Z.-H. Lin, G. Cheng, W. Wu, X. Wen, S. Lee, and Z.L. Wang, Silicon-based hybrid cell for harvesting solar energy and raindrop electrostatic energy. Nano Energy, 2014. 9: p. 291-300. 29. Zheng, L., G. Cheng, J. Chen, L. Lin, J. Wang, Y. Liu, H. Li, and Z.L. Wang, A Hybridized Power Panel to Simultaneously Generate Electricity from Sunlight, Raindrops, and Wind around the Clock. Advanced Energy Materials, 2015. 5(21): p. 1501152. 30. Jeon, S.-B., D. Kim, G.-W. Yoon, J.-B. Yoon, and Y.-K. Choi, Self-cleaning hybrid energy harvester to generate power from raindrop and sunlight. Nano Energy, 2015. 12: p. 636-645. 31. Jeon, S.-B., D. Kim, M.-L. Seol, S.-J. Park, and Y.-K. Choi, 3-Dimensional broadband energy harvester based on internal hydrodynamic oscillation with a package structure. Nano Energy, 2015. 17: p. 82-90. 32. Zhu, G., Y. Su, P. Bai, J. Chen, Q. Jing, W. Yang, and Z.L. Wang, Harvesting Water Wave Energy by Asymmetric Screening of Electrostatic Charges on a Nanostructured Hydrophobic Thin-Film Surface. ACS Nano, 2014. 8(6): p. 6031-6037. 33. Cheng, G., Z.-H. Lin, Z.-l. Du, and Z.L. Wang, Simultaneously Harvesting Electrostatic and Mechanical Energies from Flowing Water by a Hybridized Triboelectric Nanogenerator. ACS Nano, 2014. 8(2): p. 1932-1939. 34. Xu, C., X. Fu, C. Li, G. Liu, Y. Gao, Y. Qi, T. Bu, Y. Chen, Z.L. Wang, and C. Zhang, Raindrop energy-powered autonomous wireless hyetometer based on liquid–solid contact electrification. Microsystems & Nanoengineering, 2022. 8(1): p. 30. 35. Kil Yun, B., H. Soo Kim, Y. Joon Ko, G. Murillo, and J. Hoon Jung, Interdigital electrode based triboelectric nanogenerator for effective energy harvesting from water. Nano Energy, 2017. 36: p. 233-240. 36. Zeng, Y., Y. Luo, Y. Lu, and X. Cao, Self-powered rain droplet sensor based on a liquid-solid triboelectric nanogenerator. Nano Energy, 2022. 98: p. 107316. 37. Zhao, Z., H. Li, A. Li, L. Liu, L. Xue, Z. Cai, R. Yuan, X. Yu, and Y. Song, Two-orders of magnitude enhanced droplet energy harvesting via asymmetrical droplet-electrodes coupling. Nano Energy, 2023. 108: p. 108213. 38. Hu, S., Z. Shi, R. Zheng, W. Ye, X. Gao, W. Zhao, and G. Yang, Superhydrophobic Liquid–Solid Contact Triboelectric Nanogenerator as a Droplet Sensor for Biomedical Applications. ACS Applied Materials & Interfaces, 2020. 12(36): p. 40021-40030. 39. Yu, A., X. Chen, H. Cui, L. Chen, J. Luo, W. Tang, M. Peng, Y. Zhang, J. Zhai, and Z.L. Wang, Self-Powered Random Number Generator Based on Coupled Triboelectric and Electrostatic Induction Effects at the Liquid–Dielectric Interface. ACS Nano, 2016. 10(12): p. 11434-11441. 40. Wang, W., L. Zhang, H. Wang, Y. Zhao, J. Cheng, J. Meng, D. Wang, and Y. Liu, High-Output Single-Electrode Droplet Triboelectric Nanogenerator Based on Asymmetrical Distribution Electrostatic Induction Enhancement. Small, 2023. 19(37): p. 2301568. 41. Zhang, M., C. Bao, C. Hu, Y. Huang, Y. Yang, and Y. Su, A droplet-based triboelectric-piezoelectric hybridized nanogenerator for scavenging mechanical energy. Nano Energy, 2022. 104: p. 107992. 42. Zhan, F., A.C. Wang, L. Xu, S. Lin, J. Shao, X. Chen, and Z.L. Wang, Electron Transfer as a Liquid Droplet Contacting a Polymer Surface. ACS Nano, 2020. 14(12): p. 17565-17573. 43. Wei, X., Z. Zhao, C. Zhang, W. Yuan, Z. Wu, J. Wang, and Z.L. Wang, All-Weather Droplet-Based Triboelectric Nanogenerator for Wave Energy Harvesting. ACS Nano, 2021. 15(8): p. 13200-13208. 44. Liu, X., A. Yu, A. Qin, and J. Zhai, Highly Integrated Triboelectric Nanogenerator for Efficiently Harvesting Raindrop Energy. Advanced Materials Technologies, 2019. 4(11): p. 1900608. 45. Xu, W., H. Zheng, Y. Liu, X. Zhou, C. Zhang, Y. Song, X. Deng, M. Leung, Z. Yang, and R.X. Xu, A droplet-based electricity generator with high instantaneous power density. Nature, 2020. 578(7795): p. 392-396. 46. Zhang, N., H. Zhang, W. Xu, H. Gu, S. Ye, H. Zheng, Y. Song, Z. Wang, and X. Zhou, A droplet-based electricity generator with ultrahigh instantaneous output and short charging time. Droplet, 2022. 1(1): p. 56-64. 47. Wang, K., W. Xu, J. Li, H. Zheng, S. Sun, W. Song, Y. Song, Z. Ding, R. Zhang, Y. Sun, H. Zhang, J. Li, and Z. Wang, Enhancing water droplet-based electricity generator by harnessing multiple-dielectric layers structure. Nano Energy, 2023. 111: p. 108388. 48. Shima, S., R. Uejima, E. Takamura, and H. Sakamoto, Relationship between output voltage of water droplet-based electricity nanogenerator and electrolyte concentration. Nano Energy, 2023. 112: p. 108503. 49. Wu, H., N. Mendel, S. van der Ham, L. Shui, G. Zhou, and F. Mugele, Charge Trapping-Based Electricity Generator (CTEG): An Ultrarobust and High Efficiency Nanogenerator for Energy Harvesting from Water Droplets. Advanced Materials, 2020. 32(33): p. 2001699. 50. Li, X., X. Ning, L. Li, X. Wang, B. Li, J. Li, J. Yin, and W. Guo, Performance and power management of droplets-based electricity generators. Nano Energy, 2022. 92: p. 106705. 51. Li, Z., D. Yang, Z. Zhang, S. Lin, B. Cao, L. Wang, Z.L. Wang, and F. Yin, A droplet-based electricity generator for large-scale raindrop energy harvesting. Nano Energy, 2022. 100: p. 107443. 52. Wang, L., Y. Song, W. Xu, W. Li, Y. Jin, S. Gao, S. Yang, C. Wu, S. Wang, and Z. Wang, Harvesting energy from high-frequency impinging water droplets by a droplet-based electricity generator. EcoMat, 2021. 3(4): p. e12116. 53. Zhang, Q., Y. Li, H. Cai, M. Yao, H. Zhang, L. Guo, Z. Lv, M. Li, X. Lu, C. Ren, P. Zhang, Y. Zhang, X. Shi, G. Ding, J. Yao, Z. Yang, and Z.L. Wang, A Single-Droplet Electricity Generator Achieves an Ultrahigh Output Over 100 V Without Pre-Charging. Advanced Materials, 2021. 33(51): p. 2105761. 54. Yang, L., J. Yu, Y. Guo, S. Chen, K. Tan, and S. Li, An Electrode-Grounded Droplet-Based Electricity Generator (EG-DEG) for Liquid Motion Monitoring. Advanced Functional Materials, 2023. 33(36): p. 2302147. 55. Zhang, N., H. Zhang, Z. Liu, W. Xu, H. Zheng, Y. Song, Z. Wang, and X. Zhou, Performance transition in droplet-based electricity generator with optimized top electrode arrangements. Nano Energy, 2023. 106: p. 108111. 56. Ho, C.-Y., C.-Y. Su, and W.-Z. Hu, Exploring the energy harvest of droplet flow over inducted film for the rainy-shiny solar panel application. Materials Today Communications, 2024. 38: p. 107609. 57. Meng, J., L. Zhang, H. Liu, W. Sun, W. Wang, H. Wang, D. Yang, M. Feng, Y. Feng, and D. Wang, A New Single-Electrode Generator for Water Droplet Energy Harvesting with A 3 mA Current Output. Advanced Energy Materials, 2024. 14(5): p. 2303298. 58. Hu, T., X. Li, X. Wang, H. Sheng, J. Yin, and W. Guo, Assessing the Mechanical-to-Electrical Energy Conversion Process of a Droplet Sliding on the Poly(tetrafluoroethylene) Surface. ACS Applied Materials & Interfaces, 2024. 16(1): p. 1892-1898. 59. Yang, Y., B. Cao, C. Yang, Z. Wang, H. Zhang, L. Fang, W. He, and P. Wang, A droplet-based multi-position and multi-layered triboelectric nanogenerator for large-scale raindrop energy harvesting. AIP Advances, 2023. 13(5). 60. Xu, W., X. Li, J. Brugger, and X. Liu, Study of the enhanced electricity output of a sliding droplet-based triboelectric nanogenerator for droplet sensor design. Nano Energy, 2022. 98: p. 107166. 61. Wang, X., S. Fang, J. Tan, T. Hu, W. Chu, J. Yin, J. Zhou, and W. Guo, Dynamics for droplet-based electricity generators. Nano Energy, 2021. 80: p. 105558. 62. Zhou, L., D. Zhang, X. Ji, H. Zhang, Y. Wu, C. Yang, Z. Xu, and R. Mao, A superhydrophobic droplet triboelectric nanogenerator inspired by water strider for self-powered smart greenhouse. Nano Energy, 2024. 129: p. 109985. 63. Wu, H., J. Li, R. Du, L. Liu, and W. Ou-Yang, Study of Electrode Design and Inclination Angle for Superior Droplet-Driven TENG Performance. Nano Letters, 2024. 24(49): p. 15676-15682. 64. Liu, D., P. Yang, Y. Gao, N. Liu, C. Ye, L. Zhou, J. Zhang, Z. Guo, J. Wang, and Z.L. Wang, A Dual-Mode Triboelectric Nanogenerator for Efficiently Harvesting Droplet Energy. Small, 2024. 20(31): p. 2400698. 65. Sriphan, S., U. Pharino, K. Chaithaweep, and N. Vittayakorn, Equivalent circuit model and simulation for dynamic sliding droplet-based triboelectric nanogenerators. Nano Energy, 2024. 130: p. 110100. 66. Naganuma, R., D. Tajima, and Y. Aoki, Relationship between water droplet motion and output characteristics in droplet-based electricity generator. Molecular Crystals and Liquid Crystals, 2023. 762(1): p. 71-80. 67. Zhang, N., H. Gu, K. Lu, S. Ye, W. Xu, H. Zheng, Y. Song, C. Liu, J. Jiao, Z. Wang, and X. Zhou, A universal single electrode droplet-based electricity generator (SE-DEG) for water kinetic energy harvesting. Nano Energy, 2021. 82: p. 105735. 68. Gwon, G., D. Kam, S. Jang, M. La, and D. Choi, Development of multi droplet-based electricity generator system for energy harvesting improvement from a single droplet. Functional Composites and Structures, 2024. 6(3): p. 035009. 69. Wang, L., W. Li, Y. Song, W. Xu, Y. Jin, C. Zhang, and Z. Wang, Monolithic Integrated Flexible Yet Robust Droplet-Based Electricity Generator. Advanced Functional Materials, 2022. 32(49): p. 2206705. 70. Wu, H., N. Mendel, D. van den Ende, G. Zhou, and F. Mugele, Energy Harvesting from Drops Impacting onto Charged Surfaces. Physical Review Letters, 2020. 125(7): p. 078301. 71. Li, L., X. Li, W. Deng, C. Shen, X. Chen, H. Sheng, X. Wang, J. Zhou, J. Li, Y. Zhu, Z. Zhang, J. Yin, and W. Guo, Sparking potential over 1200 V by a falling water droplet. Science Advances, 2023. 9(46): p. eadi2993. 72. Costanzo, L., A.L. Schiavo, and M. Vitelli, Circuital Modeling of a Droplet Electrical Generator. IEEE Sensors Journal, 2023. 23(12): p. 13028-13036. 73. Ye, C., D. Liu, P. Chen, L.N. Cao, X. Li, T. Jiang, and Z.L. Wang, An integrated solar panel with a triboelectric nanogenerator array for synergistic harvesting of raindrop and solar energy. Advanced Materials, 2023. 35(11): p. 2209713. 74. Zhu, L., L. Guo, Z. Ding, Z. Zhao, C. Liu, and L. Che, Self-Powered Intelligent Water Droplet Monitoring Sensor Based on Solid–Liquid Triboelectric Nanogenerator. Sensors, 2024. 24(6): p. 1761. 75. Hu, W., Z. Gao, X. Dong, J. Chen, and B. Qiu, Contact Electrification of Liquid Droplets Impacting Living Plant Leaves. Agronomy, 2024. 14(3): p. 573. 76. Sedra, A.S. and K.C. Smith, Microelectronic Circuits. 2016, United States of America: Oxford University Press. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100924 | - |
| dc.description.abstract | 為了解液滴發電器在不同條件下的發電效率,本研究比較了示波器在不同取樣頻率記錄到的電壓值、評估計算電功率的方法以及進行所有不同參數組合的實驗,並藉以建立液滴發電器的測量方式的標準流程。本研究製備多種不同介電層厚度的液滴發電器,透過不同濃度的液滴滑落液滴發電器以產生電力,且改變液滴墜落高度後,結果顯示液滴接觸面積與峰值電壓有正相關性。在固定液滴發電器傾斜角度的情況下,結果顯示當介電層厚度在100µm與液滴濃度為1mM的時,液滴發電器有最高的平均電功率,若是厚度與濃度持續上升,會導致功率下降。本研究亦串聯不同大小的電阻於示波器上作為負載,尋找液滴發電器的阻抗匹配結果。本研究基於液滴發電器的電壓訊號,代入不同實驗參數,建立一套簡易的發電模型,用以模擬液滴發電器的發電過程。 | zh_TW |
| dc.description.abstract | To understand the power generation efficiency of a droplet-based electricity generator (DEG) under various conditions, this study compared the voltage recorded by the oscilloscope at different sampling frequencies, evaluated different methods for calculating power, and conducted experiments across all parameters to establish a standardized measurement procedure for the DEG. Several droplet-based electricity generators with different dielectric layer thicknesses were fabricated. Electricity was generated by droplets of various concentrations sliding down the DEGs, and the results showed a positive correlation between the droplet’s contact area and the peak voltage when the droplet impacted the surface at different falling heights. Under a fixed tilt angle of the DEG, the results showed that we got the highest average power when the dielectric layer thickness was 100µm and the droplet concentration was 1mM. Further increases in dielectric layer thickness and droplet concentration led to a decrease in power. By connecting resistors of different sizes in series to the oscilloscope as a load, the impedance matching result of the DEG could be determined. Furthermore, based on the voltage signal of the DEG, a simple power generation model was established by substituting different experimental parameters to simulate the power generation process of the DEG. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:07:01Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-11-26T16:07:01Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv 目錄 v 圖目錄 vii 表目錄 ix 參數表 x 第一章 緒論 1 第二章 實驗方法 10 2.1 研究問題與參數定義 10 2.2 取樣頻率校正實驗 11 2.3 液滴發電器測試平台 12 2.4 液滴發電實驗 15 2.5 電功率計算方法 15 2.6 液滴接觸面積測量實驗 18 2.7 液滴發電器的等效電容 20 2.8 液滴發電器的頻率響應 21 2.9 液滴導電度 22 第三章 液滴發電器電路模型 23 3.1 線性電路模型 23 3.2 電路模型自我驗證 25 第四章 結果與討論 29 4.1 取樣頻率的影響 29 4.2 液滴發電器之電功率比較 32 4.3 不同實驗參數的電功率 34 4.3.1 液滴墜落高度的影響 34 4.3.2 負載阻抗、介電層厚度、液滴濃度 35 4.3.3 最佳參數組合的搜尋方法 37 4.4 液滴接觸面積 38 4.5 液滴發電器波德圖 39 4.6 實驗與理論的液滴發電器電容 40 4.7 發電模型驗證 41 4.8 量化液滴濃度 44 第五章 結論 46 附錄 A 47 A.1 取樣頻率實驗表 47 A.2 電功率等高線圖 48 A.3 口試紀錄表 49 參考文獻 52 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 液滴發電器 | - |
| dc.subject | 摩擦起電 | - |
| dc.subject | 接觸起電 | - |
| dc.subject | 等效電路模型 | - |
| dc.subject | Droplet-based Electricity Generator (DEG) | - |
| dc.subject | Triboelectric Effect | - |
| dc.subject | Contact Electrification | - |
| dc.subject | Equivalent Circuit Model | - |
| dc.title | 液滴發電器的發電參數分析與模型建置 | zh_TW |
| dc.title | Parameter Analysis and Modeling of Droplet-based Electricity Generators | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王安邦;林宗宏;林孟芳 | zh_TW |
| dc.contributor.oralexamcommittee | An-Bang Wang;Zong-Hong Lin;Meng-Fang Lin | en |
| dc.subject.keyword | 液滴發電器,摩擦起電接觸起電等效電路模型 | zh_TW |
| dc.subject.keyword | Droplet-based Electricity Generator (DEG),Triboelectric EffectContact ElectrificationEquivalent Circuit Model | en |
| dc.relation.page | 56 | - |
| dc.identifier.doi | 10.6342/NTU202504668 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-11-17 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2025-11-27 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf | 9.68 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
