請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100923完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃育熙 | zh_TW |
| dc.contributor.advisor | Yu-Hsi Huang | en |
| dc.contributor.author | 廖佑宸 | zh_TW |
| dc.contributor.author | You-Chen Liao | en |
| dc.date.accessioned | 2025-11-26T16:06:37Z | - |
| dc.date.available | 2025-11-27 | - |
| dc.date.copyright | 2025-11-26 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-11-11 | - |
| dc.identifier.citation | [1] K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, "Photosensitivity inoptical fiber waveguides: Application to reflection filter fabrication," Applied physics letters, vol. 32, no. 10, pp. 647-647, 1978.
[2] G. Meltz, W. W. Morey, and W. H. Glenn, "Formation of Bragg gratings in opticalfibers by a transverse holographic method," Optics letters, vol. 14, no. 15, pp. 823-825, 1989. [3] K. O. Hill, B. Malo, F. Bilodeau, D. Johnson, and J. Albert, "Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask," Applied Physics Letters, vol. 62, no. 10, pp. 1035-1037, 1993. [4] D. Anderson, V. Mizrahi, T. Erdogan, and A. White, "Production of in-fibre gratings using a diffractive optical element," Electronics Letters, vol. 29, no. 6, pp. 566-568, 1993. [5] I. Bennion, J. Williams, L. Zhang, K. Sugden, and N. Doran, "UV-written in-fibre Bragg gratings," Optical and Quantum Electronics, vol. 28, no. 2, pp. 93-135, 1996. [6] K. O. Hill and G. Meltz,. Fiber Bragg grating technology fundamentals and overview. Journal of Lightwave Technology, vol. 15, no. 8,pp. 1263-1276, 1997. [7] R. Kashyap, Fiber Bragg Gratings. Academic press, 1999. [8] T. Erdogan, "Fiber grating spectra," Journal of Lightwave Technology, vol. 15,no, 8 1277-1294,1997. [9] J. F. Nye, Physical properties of crystals: Their Representation by Tensors and Matrices. Oxford university press,1957. [10] A. Bertholds and R. Dandliker, "Determination of the individual strain-optic coefficients in single-mode optical fibres," Journal of Lightwave Technology, vol. 6, no. 1, pp. 17-20, 1988. [11] S. Takahashi and S. Shibata, "Thermal variation of attenuation for optical fibers," Journal of Non-Crystalline Solids, vol. 30, no. 3, pp. 359-370, 1979. [12] X. Tao, L. Tang, W. C. Du, and C. L. Choy, "Internal strain measurement by fiber Bragg grating sensors in textile composites," Composites Science and Technology, vol. 60, no. 5, pp. 657-669, 2000. [13] A. D. Kersey, T. Berkoff, and W. Morey, "Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry–Perot wavelength filter," Optics Letters, vol. 18, no. 16, pp. 1370-1372, 1993. [14] Q. Sun, D. Liu, L. Xia, J. Wang, H. Liu, and P. Shum, "Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating," IEEE Photonics Technology Letters,vol. 20, no. 11, pp. 933-935, 2008. [15] V. Murukeshan, P. Chan, L. Ong, and L. Seah, "Cure monitoring of smart composites using fiber Bragg grating based embedded sensors," Sensors and Actuators A: Physical, vol. 79, no. 2, pp. 153-161, 2000. [16] X. Zhao, G. Song, M. Fernandez, and J. Ou, "One kind of fiber Bragg grating displacement sensor using micro-elastic spring," in Second International Conference on Smart Materials and Nanotechnology in Engineering, 2009, vol. 7493, p. 74932X. [17] P. Biswas et al., "Investigation on packages of fiber Bragg grating for use as embeddable strain sensor in concrete structure," Sensors and Actuators A: Physical, vol. 157, no. 1, pp. 77-83, 2010. [18] G. A. Ball and W. Morey, "Continuously tunable single-mode erbium fiber laser," Optics Letters, vol. 17, no. 6, pp. 420-422, 1992. [19] G. Ball and W. Morey, "Compression-tuned single-frequency Bragg grating fiber laser," Optics Letters, vol. 19, no. 23, pp. 1979-1981, 1994. [20] Kim, Lee, Kwon, Choi, and Jeong, "Channel-switching active add/drop multiplexer with tunable gratings," Electronics Letters, vol. 34, no. 1, pp. 104-105, 1998. [21] H. Mavoori, S. Jin, R. Espindola, and T. Strasser, "Enhanced thermal and magnetic actuations for broad-range tuning of fiber Bragg grating–based reconfigurable add–drop devices," Optics Letters, vol. 24, no. 11, pp. 714-716, 1999. [22] T. Inui, T. Komukai, and M. Nakazawa, "Highly efficient tunable fiber Bragg grating filters using multilayer piezoelectric transducers," Optics Communications, vol. 190, no. 1-6, pp. 1-4, 2001. [23] G. Yoffe, P. A. Krug, F. Ouellette, and D. Thorncraft, "Passive temperature-compensating package for optical fiber gratings," Applied Optics, vol. 34, no. 30, pp. 6859-6861, 1995. [24] S. M. Melle and K. Liu, "A passive wavelength demodulation system for guided-wave Bragg grating sensors," IEEE Photonics Technology Letters, vol. 4, no. 5, pp. 516-518, 1992. [25] Kersey, A. D., Berkoff, T. A., & Morey, W. W. "Two-channel fiber Bragg grating strain sensor with high-resolution interferometric wavelength-shift detection," Fibers', vol. 92, 48-55,1993. [26] 葉耀文,馬劍清,"短週期光纖光柵在動態系統的量測與應用",碩士論文,機械工程研究所,台灣大學,2004。 [27] 龔瑞清,馬劍清,"開發布拉格光纖光柵感測器於多點與即時量測系統並應用在高速內藏式主軸與銑削工件之溫升、變形及轉速之精密量測",碩士論文,機械工程學研究所,臺灣大學,2017。 [28] 廖尉翔,馬劍清,"布拉格光纖光柵於固體結構多點動態應變及熱學量測之技術開發及資料解析",碩士論文,機械工程學研究所,臺灣大學,2022。 [29] 陳祈維,馬劍清,"應用光纖光柵感測器於積層製造之材料性質量測及風力發電機基座之多點動態特性量測",碩士論文,機械工程學研究所,臺灣大學,2022。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100923 | - |
| dc.description.abstract | 本文利用布拉格光纖光柵感測器有高靈敏度、質量輕盈體積小、不受電磁波干擾、防水、抗腐蝕等優點,且可長時間監測多個觀測點的多點動態特性之特點,將多段光柵分別貼附於風力發電機基座主結構上,包含中央柱子與上方橫樑兩區域,並根據有限元素模擬軟體的3D振型結果,對結構的多個位置分別施予敲擊訊號,激發出整體結構的動態反應,再利用快速傅立葉轉換,獲得結構振動時產生的頻率反應,作為後續探討螺栓是否鬆脫的參考依據。在完成風機基座的自然頻率辨識後,於後續將用於結構鎖固的螺栓完全鬆脫,使用與前述相同的實驗方法測得各螺栓鬆脫組合對應的頻率反應,利用共振頻率、快速傅立葉頻譜強度與特徵等等多種條件,比較未鬆脫時的頻率與反應,建構可準確判斷各種組合下螺栓鬆脫的判斷方法,做為未來建立可程式化的結構健康監控系統之參考依據。 | zh_TW |
| dc.description.abstract | This study employs Fiber Bragg Grating (FBG) sensors, which offer advantages such as high sensitivity, lightweight and compact size, immunity to electromagnetic interference, water resistance, and corrosion resistance. Furthermore, FBG sensors are capable of long-term, multi-point dynamic monitoring. In this study, multiple FBG sensors were strategically affixed to the main structural components of a wind turbine foundation, specifically on the central column and upper beam.
Based on the 3D mode shapes obtained from finite element simulations, impact excitation was applied at various locations of the structure to induce its dynamic response. The resulting vibration signals were analyzed using Fast Fourier Transform (FFT) to extract the corresponding frequency responses, which serve as a reference for subsequent investigation into the presence of bolt loosening. After identifying the natural frequencies of the wind turbine foundation, bolts used to secure the structure were deliberately loosened in controlled combinations. The same experimental procedures were repeated to obtain the frequency responses corresponding to each bolt-loosening condition. By comparing the resonance frequencies, FFT spectral magnitudes, and characteristic features between the intact and loosened cases, a set of diagnostic criteria was established to accurately identify the loosening condition for various bolt combinations. The findings of this research aim to support the future development of a programmable structural health monitoring system for wind turbine foundations. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:06:37Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-11-26T16:06:37Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i
致謝 ii 摘要 iii Abstract iv 目次 v 圖次 viii 表次 xv 1 第一章 緒論 1 1.1研究動機 1 1.2文獻回顧 2 1.3論文內容簡介 5 2 第二章 光纖光柵量測原理 7 2.1光纖的光學原理 7 2.2光纖光柵基本原理 10 2.3光彈效應與熱光效應 11 2.4共振波長飄移理論 14 2.4.1共振波長飄移原理 14 2.4.2承受平面應力 16 2.4.3承受單軸向應力 17 2.5本文使用的光纖光柵 18 3 第三章 實驗量測技術與儀器設備 25 3.1布拉格光纖光柵量測系統 25 3.1.1 光纖光柵感測器的事前準備工作 25 3.1.2 波長解調器(I-MON)量測系統 25 3.1.3 多段光柵量測系統 26 3.2光纖光柵量測系統所需之相關儀器 26 3.2.1可調式光源 26 3.2.2光隔離器與光循環器 27 3.2.3光耦合器 27 3.2.4波長解調器 27 4 第四章 風力發電機基座之動態訊號量測 35 4.1風力發電機基座之規格、材料參數與光纖光柵感測器資訊 35 4.1.1 風力發電機基座規格尺寸與材料參數 35 4.1.2 光纖光柵感測器資訊 36 4.2風力發電機基座之動態訊號量測 37 4.2.1實驗架設 37 4.2.2實驗結果分析 38 4.2.3有限元素法模擬結果 40 4.3風力發電機基座之動態訊號量測:於不同位置敲擊實驗 41 4.3.1實驗架設 41 4.3.2實驗結果分析 42 4.3.3實驗與模擬結果之比較 45 4.4本章小結 47 5 第五章 螺栓鬆脫實驗 87 5.1實驗架設與螺栓鬆脫定義 87 5.2實驗結果 88 5.2.1鬆脫一根螺栓結果 88 5.2.2鬆脫兩根螺栓結果 89 5.2.3鬆脫三根螺栓結果 92 5.2.4十四組螺栓鬆脫結果之共同特徵 93 5.3頻率飄移結果 95 5.4本章小結 97 6 第六章 螺栓鬆脫檢測流程建立 138 6.1螺栓鬆脫與否判斷 138 6.2螺栓鬆脫之判斷標準 139 6.3初步分類(Group定義) 140 6.4 Group之細分 141 6.4.1Group1細分 141 6.4.2Group2細分 142 6.4.3Group3細分 142 6.5總結 144 7 第七章 結論與未來展望 163 7.1結論 163 7.2未來展望 165 8 參考文獻 166 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 布拉格光纖光柵 | - |
| dc.subject | 風機基座 | - |
| dc.subject | 螺栓鬆脫檢測 | - |
| dc.subject | 應變 | - |
| dc.subject | 頻率反應 | - |
| dc.subject | 結構健康檢測 | - |
| dc.subject | Fiber Bragg Grating | - |
| dc.subject | Wind Turbine Foundation | - |
| dc.subject | Bolt Loosening Detection | - |
| dc.subject | Strain | - |
| dc.subject | Frequency Response | - |
| dc.subject | Structural Health Monitoring | - |
| dc.title | 應用布拉格光纖光柵感測器於風機基座螺栓鬆脫檢測評估 | zh_TW |
| dc.title | Health Evaluation on Wind Turbine Foundation Determined by Fiber Bragg Grating Sensor | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 廖展誼;吳亦莊 | zh_TW |
| dc.contributor.oralexamcommittee | Chan-Yi Liao;Yi-Zhuang Wu | en |
| dc.subject.keyword | 布拉格光纖光柵,風機基座螺栓鬆脫檢測應變頻率反應結構健康檢測 | zh_TW |
| dc.subject.keyword | Fiber Bragg Grating,Wind Turbine FoundationBolt Loosening DetectionStrainFrequency ResponseStructural Health Monitoring | en |
| dc.relation.page | 169 | - |
| dc.identifier.doi | 10.6342/NTU202504601 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-11-11 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2025-11-27 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf | 23.64 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
