請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100905完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王昱 | zh_TW |
| dc.contributor.advisor | Yu Wang | en |
| dc.contributor.author | 梁乃文 | zh_TW |
| dc.contributor.author | Nai-Wun Liang | en |
| dc.date.accessioned | 2025-10-17T16:04:42Z | - |
| dc.date.available | 2025-10-18 | - |
| dc.date.copyright | 2025-10-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-05 | - |
| dc.identifier.citation | 英文文獻
Biq, C. C. (1965). The eastern Taiwan rift. Petroleum Geology of Taiwan, 4, 93–106. Champenois, J., Fruneau, B., Pathier, E., Deffontaines, B., Lin, K. C., & Hu, J. C. (2012). Monitoring of active tectonic deformations in the Longitudinal Valley (Eastern Taiwan) using Persistent Scatterer InSAR method with ALOS PALSAR data. Earth and Planetary Science Letters, 337, 144–155. doi:10.1016/j.epsl.2012.05.025 Chang, W. L., Ching, K. E., Lee, C. H., Lee, Y. R., & Lee, C. F. (2016). Earthquake potential of active faults in Taiwan from GPS observations and block modeling. Seismological Research Letters, 87(6), 1274-1286. doi:10.1785/0220160094 Chen, H. Y., Lee, J. C., Tung, H., Chen, C. L., & Lee, H. K. (2021). Variable vertical movements and their deformation behaviors at convergent plate suture: 14-year-long (2004-2018) repeated measurements of precise leveling around middle Longitudinal Valley in eastern Taiwan. Journal of Asian Earth Sciences, 218, 104865. doi:10.1016/j.jseaes.2021.104865 Chen, H. Y., Rizos, C., & Han, S. (2001). From simulation to implementation: low-cost densification of permanent GPS networks in support of geodetic applications. Journal of Geodesy, 75(9-10), 515–526. doi:10.1007/s001900100203 Chen, W. S., Wu, Y. M., Yeh, P. Y., Lai, Y. X., Ke, S. S., Ke, M. C., & Yang, C. Y. (2024). Insights into the seismogenic structures of the arc-continent convergent plate boundary in eastern Taiwan. Terrestrial Atmospheric and Oceanic Sciences, 35(1), 13. doi:10.1007/s44195-024-00065-7 Ching, K. E., Rau, R. J., Johnson, K. M., Lee, J. C., & Hu, J. C. (2011). Present-day kinematics of active mountain building in Taiwan from GPS observations during 1995-2005. Journal of Geophysical Research-Solid Earth, 116(B9). doi:10.1029/2010jb008058 Efron, B. (1979). 1977 Rietz Lecture - Bootstrap Methods - Another Look at the Jackknife. Annals of Statistics, 7(1), 1–26. doi:10.1214/aos/1176344552 Franklin, K. R., & Huang, M. H. (2022). Revealing Crustal Deformation and Strain Rate in Taiwan Using InSAR and GNSS. Geophysical research letters, 49(21), e2022GL101306. doi:10.1029/2022GL101306 Huang, W. J., Johnson, K. M., Fukuda, J., & Yu, S. B. (2010). Insights into active tectonics of eastern Taiwan from analyses of geodetic and geologic data. Journal of Geophysical Research: Solid Earth, 115(B3), Article B03413. doi:10.1029/2008JB006208 Hsu, L., & Bürgmann, R. (2006). Surface creep along the Longitudinal Valley fault, Taiwan from InSAR measurements. Geophysical research letters, 33(6). doi:10.1029/2005gl024624 Hsu, Y. J., Simons, M., Yu, S. B., Kuo, L. C., & Chen, H. Y. (2003). A two-dimensional dislocation model for interseismic deformation of the Taiwan mountain belt. Earth and Planetary Science Letters, 211(3-4), 287–294. doi:10.1016/S0012-821x(03)00203-6 Hsu, Y. J., Chen, R. F., Lin, C. W., Chen, H. Y., & Yu, S. B. (2014). Seasonal, long-term, and short-term deformation in the Central Range of Taiwan induced by landslides. Geology, 42(11), 991–994. doi:10.1130/G35991.1 Huang, C. C., Xie, C. D., Zhang, G. H., Wang, W., Tsai, M. C., & Hu, J. C. (2023). Revealing the Kinematic Characteristics and Tectonic Implications of a Buried Fault through the Joint Inversion of GPS and Strong-Motion Data: The Case of the 2022 Mw7.0 Taiwan Earthquake. Remote Sensing, 15(19), 4868. doi:10.3390/rs15194868 Huang, H. H., & Wang, Y. (2022). Seismogenic structure beneath the northern Longitudinal Valley revealed by the 2018-2021 Hualien earthquake sequences and 3-D velocity model. Terrestrial Atmospheric and Oceanic Sciences, 33(1), 17. doi:10.1007/s44195-022-00017-z Johnson, K. M., Segall, P., & Yu, S. B. (2005). A viscoelastic earthquake cycle model for Taiwan. Journal of Geophysical Research-Solid Earth, 110(B10). doi:10.1029/2004jb003516 Kobayashi, T., Morishita, Y., & Yarai, H. (2018). SAR-revealed slip partitioning on a bending fault plane for the 2014 Northern Nagano earthquake at the northern Itoigawa-Shizuoka tectonic line. Tectonophysics, 733, 85–99. doi:10.1016/j.tecto.2017.12.001 Kuochen, H., Wu, Y. M., Chang, C. H., Hu, J. C., & Chen, W. S. (2004). Relocation of eastern Taiwan earthquakes and tectonic implications. Terrestrial Atmospheric and Oceanic Sciences, 15(4), 647–666. Lee, J. C., Angelier, J., Chu, H. T., Hu, J. C., & Jeng, F. S. (2001). Continuous monitoring of an active fault in a plate suture zone: a creepmeter study of the Chihshang Fault, eastern Taiwan. Tectonophysics, 333(1-2), 219–240. doi:10.1016/S0040-1951(00)00276-6 Lee, J. C., Angelier, J., Chu, H. T., Hu, J. C., Jeng, F. S., & Rau, R. J. (2003). Active fault creep variations at Chihshang, Taiwan, revealed by creep meter monitoring, 1998-2001. Journal of Geophysical Research-Solid Earth, 108(B11). doi:10.1029/2003jb002394 Lee, S. J., Huang, H. H., Shyu, J. B. H., Yeh, T. Y., & Lin, T. C. (2014). Numerical earthquake model of the 31 October 2013 Ruisui, Taiwan, earthquake: Source rupture process and seismic wave propagation. Journal of Asian Earth Sciences, 96, 374–385. doi:10.1016/j.jseaes.2014.09.020 Lee, S. J., Liu, T. Y., & Lin, T. C. (2023). The role of the west-dipping collision boundary fault in the Taiwan 2022 Chihshang earthquake sequence. Scientific Reports, 13(1), 3552. doi:10.1038/s41598-023-30361-0 Okada, Y. (1985). Surface Deformation Due to Shear and Tensile Faults in a Half-Space. Bulletin of the seismological society of America, 75(4), 1135–1154. doi:10.1785/BSSA0750041135 Peyret, M., Dominguez, S., Cattin, R., Champenois, J., Leroy, M., & Zajac, A. (2011). Present-day interseismic surface deformation along the Longitudinal Valley, eastern Taiwan, from a PS-InSAR analysis of the ERS satellite archives. Journal of Geophysical Research-Solid Earth, 116(B3). doi:10.1029/2010jb007898 Seno, T. (1977). The instantaneous rotation vector of the Philippine Sea plate relative to the Eurasian plate. Tectonophysics, 42(2-4), 209–226. doi:10.1016/0040-1951(77)90168-8 Shyu, J. B. H., Sieh, K., Chen, Y. G., & Liu, C. S. (2005). Neotectonic architecture of Taiwan and its implications for future large earthquakes. Journal of Geophysical Research-Solid Earth, 110(B8). doi:10.1029/2004jb003251 Shyu, J. B. H., Sieh, K., Avouac, J. P., Chen, W. S., & Chen, Y. G. (2006a). Millennial slip rate of the Longitudinal Valley fault from river terraces: Implications for convergence across the active suture of eastern Taiwan. Journal of Geophysical Research-Solid Earth, 111(B8). doi:10.1029/2005jb003971 Shyu, J. B. H., Sieh, K., Chen, Y. G., & Chung, L. H. (2006b). Geomorphic analysis of the Central Range fault, the second major active structure of the Longitudinal Valley suture, eastern Taiwan. Geological Society of America Bulletin, 118(11-12), 1447–1462. doi:10.1130/B25905.1 Shyu, J. B. H., Chung, L. H., Chen, Y. G., Lee, J. C., & Sieh, K. (2007). Re-evaluation of the surface ruptures of the November 1951 earthquake series in eastern Taiwan, and its neotectonic implications. Journal of Asian Earth Sciences, 31(3), 317–331. doi:10.1016/j.jseaes.2006.07.018 Shyu, J. B. H., Wu, Y. M., Chang, C. H., & Huang, H. H. (2011). Tectonic erosion and the removal of forearc lithosphere during arc-continent collision: Evidence from recent earthquake sequences and tomography results in eastern Taiwan. Journal of Asian Earth Sciences, 42(3), 415–422. doi:10.1016/j.jseaes.2011.05.015 Shyu, J. B. H., Yin, Y. H., Chen, C. H., Chuang, Y. R., & Liu, S. C. (2020). Updates to the on-land seismogenic structure source database by the Taiwan Earthquake Model (TEM) project for seismic hazard analysis of Taiwan. Terrestrial Atmospheric and Oceanic Sciences, 31(4), 469–478. doi:10.3319/Tao.2020.06.08.01 Suppe, J. (1981). Mechanics of mountain building and metamorphism in Taiwan. Memoir of the Geological Society of China, 4, 67–89. Tang, C. H., Lin, Y. N., Tung, H., Wang, Y., Lee, S. J., Hsu, Y. J., Shyu, J. B. H., Kuo, Y. T., & Chen, H. Y. (2023). Nearby fault interaction within the double-vergence suture in eastern Taiwan during the 2022 Chihshang earthquake sequence. Communications Earth & Environment, 4(1), 333. doi:10.1038/s43247-023-00994-0 Thomas, M. Y., Avouac, J. P., Champenois, J., Lee, J. C., & Kuo, L. C. (2014). Spatiotemporal evolution of seismic and aseismic slip on the Longitudinal Valley Fault, Taiwan. Journal of Geophysical Research-Solid Earth, 119(6), 5114–5139. doi:10.1002/2013jb010603 Tung, H., Chen, H.-Y., Hsu, Y.-J., Tang, C.-H., Lee, J.-C., Wang, Y., & Lee, H. K. (2025). Geodetic constraints on the September 2022 Guanshan and Chihshang earthquakes, eastern Taiwan. Tectonophysics, 895, 230600. doi:10.1016/j.tecto.2024.230600 Wang, Y., Wu, S. H., Chou, H. L. B., Li, Y. Y., Cheng, W. S., Ho, A., Chen, J. M., Liu, S. C., Hsieh, C. Y., Duan, S., Tsai, Y. L., Liang, N. W., Liao, J. H., Lam, T. Y. A., Chang, E. W., & Shyu, J. B. H. (2024). Surface ruptures of the 2022 Guanshan-Chihshang earthquakes in central Longitudinal Valley area, eastern Taiwan. Terrestrial Atmospheric and Oceanic Sciences, 35(1), 16. doi:10.1007/s44195-024-00077-3 Wu, Y. M., Chen, Y. G., Shin, T. C., Kuochen, H., Hou, C. S., Hu, J. C., Chang, C. H., Wu, C. F., & Teng, T. L. (2006). Coseismic versus interseismic ground deformations, fault rupture inversion and segmentation revealed by 2003 Mw 6.8 Chengkung earthquake in eastern Taiwan -: art. no. L02312. Geophysical research letters, 33(2). doi:10.1029/2005gl024711 Yagi, Y., Okuwaki, R., Enescu, B., & Lu, J. (2023). Irregular rupture process of the 2022 Taitung, Taiwan, earthquake sequence. Scientific Reports, 13(1), 1107. doi:10.1038/s41598-023-27384-y Yang, Y. H., Li, L., Hu, J. C., Tung, H., Xu, Q., Li, X. Y., Fan, X. M., Yao, Z. B., Xu, Q., Chen, Q., & Tsai, M. C. (2024). Double-Vergent Plate Boundary Faults and Triggered Coseismic Rupture of the 2022 Chihshang Doublet Earthquake Occurred in Eastern Taiwan. Seismological Research Letters, 95(4), 2081–2091. doi:10.1785/0220230026 Yu, S. B., & Kuo, L. C. (2001). Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan. Tectonophysics, 333(1-2), 199–217. doi:10.1016/S0040-1951(00)00275-4 Yu, S. B., Jackson, D. D., Yu, G. K., & Liu, C. C. (1990). Dislocation model for crustal deformation in the Longitudinal Valley area, Eastern Taiwan. Tectonophysics, 183(1–4), 97–109. doi:10.1016/0040-1951(90)90190-J Yu, S. B., Chen, H. Y., & Kuo, L. C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1-3), 41–59. doi:10.1016/S0040-1951(96)00297-1 Yu, S. B., Kuo, L. C., Punongbayan, R. S., & Ramos, E. G. (1999). GPS observation of crustal deformation in the Taiwan‐Luzon region. Geophysical Research Letters, 26(7), 923-926. doi:10.1029/1999GL900148 中文文獻 余水倍(1989)。台東縱谷地區之地殼變形研究。國立中央大學地球物理研究所博士論文,共130頁。 徐鐵良(1956)。臺灣東部海岸山脈地質。臺灣省地質調查所彙刊,第8號,第15-41頁。 徐澔德、王昱、周海寧(2023)。中央山脈斷層系統:由2022年9月關山-池上地震之地表破裂特性得到的啟示。地工技術,第176號,第7-14頁。 秦念祺(2014)。台灣花東縱谷中段之震間變形。國立臺灣大學地質科學研究所碩士論文,共112頁。 陳文山、顏一勤、楊志成、楊小青、陳勇全、蔡坤志、黃能偉、朱耀國、張徽正、林啟文、林偉雄、劉彥求(2004)。1951年花蓮地震斷層的古地震研究─瑞穗鄉鶴岡村安定橋槽溝。經濟部中央地質調查所刊,第15號,第137-145頁。 陳文山(2006)。地震地質調查及活動斷層資料庫建置計畫─槽溝開挖與古地震研究計畫(總報告):一、「新期構造、古地震與槽溝開挖研究」。經濟部中央地質調查所報告第95-08總號,共133頁。 陳文山(2010)。地震地質與地變動潛勢分析計畫─斷層長期滑移速率與再現週期研究(總報告)。經濟部中央地質調查所報告第99-09總號,共141頁。 劉彥求、林燕慧、梁勝雄、周稟珊、陳盈璇、李忠勳、陳建良、石同生、王怡方(2022)。20220917關山地震、0918池上地震地質調查報告。經濟部中央地質調查所,共78頁。 鍾令和(2003)。1951年池上-玉里地震地表破裂與其所指示之新構造意義。國立臺灣大學地質科學研究所碩士論文,共138頁。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100905 | - |
| dc.description.abstract | 菲律賓海板塊每年以約8公分速度向西北方的歐亞板塊移動,並造成臺灣東部的花東縱谷地區極為活躍的構造活動。透過地質與地球物理等研究方式,我們對位於縱谷東側的縱谷斷層之活動特性已有相當程度的了解,但對於位在縱谷西側的中央山脈斷層系統來說,我們對於其運動速率、斷層鎖定深度等特性仍所知有限。為瞭解中央山脈斷層系統於間震期的活動特性,本研究利用中央研究院佈設於縱谷中段區域GPS連續與移動站的觀測結果,求得各站點於間震期的移動速率,分析縱谷中段區域於2022年關山—池上地震前的間震期速度場,並結合震後地表破裂調查成果與孕震斷層模型後,利用彈性半空間模型推算中央山脈斷層系統於縱谷中段於2022年以前的間震期活動特性,以瞭解該斷層在間震期時斷層鎖定區域的分布,以及中央山脈斷層系統與鄰近斷層活動的關聯特性。
本研究結果顯示,相對於縱谷中央,縱谷斷層上盤海岸山脈側的運動速度可達20-30 mm/yr,方向為320-340°;而中央山脈斷層系統上盤相對縱谷中央的速度則為7-12 mm/yr,方向為160-190°,速度越靠近下盤有越慢的趨勢。在二維模型的模擬中,中央山脈斷層系統在走滑方向上的速度為15 mm/yr,沿傾角方向則為25 mm/yr,鎖定深度約為10公里。三維模型結果同樣顯示斷層鎖定深度約在10-15公里之間,且靠近瑞穗似有鎖定深度變深的趨勢。此結果證實中央山脈斷層中段淺部在2022年關山—池上地震前30年間處於震間閉鎖狀態,且閉鎖區間與2022年地震的破裂區間約略相符,與其東側的縱谷斷層活動特性有明顯的差異。雖其閉鎖深度因GPS測站分布限制而難以精確控制,但與2022地震破裂帶深度應可相互映證。此一結果顯示中央山脈斷層系統為縱谷中極為重要的活動與孕震構造,建議須對其上盤中央山脈東麓區域進行長期的大地變形監測。 | zh_TW |
| dc.description.abstract | The Philippine Sea Plate moves towards Taiwan at a rate of about 8 cm/yr. Most of these deformations were accommodated by active faults in western Taiwan, and the active Longitudinal Valley Suture (LVS), eastern Taiwan. Through geomorphic, geodetic, and paleoseismological studies, we have gained a considerable understanding of the east-dipping Longitudinal Valley Fault (LVF), which is one of the most important seismogenic sources within the LVS in the eastern side of the valley. However, our knowledge of the west-dipping Central Range Fault system (CRFs), the other major active fault in the LVS in the western side of the valley, remains limited, even though the fault ruptured in Spet-2022 producing Mw 7.0 earthquake. To understand the CRFs’ active behavior, including its slip rate and the locking depth over the past few decades, we analyze campaign GPS and continuous GNSS data in the central segment of the valley. We calculate the horizontal and the vertical velocity of each station before the Mw 7.0 Chihshang earthquake in 2022, and use the coseismic surface rupture of the Chihshang earthquake to constrain the fault location. We use both the 2D and 3D half-space elastic dislocation models to obtain the CRF’s fault slip rate and its locking depth prior to the 2022 earthquake. Our results from a series of velocity profiles across the central valley suggest the shallow portion of the CRFs is locked from the surface down to 10 km at depth during the interseismic period. The CRFs’ geodetic fault slip rate may reach to 32 mm/yr, with a dip-slip rate of 25 mm/yr and a left-lateral slip rate of 15-20 mm/yr. Our 3D back-slip model also suggests the slip rate of CRFs is approximately 25 mm/yr, with the fault locking depth plausibly down to ~20 km at depth. Both results coincide to the coseismic rupture zone of the 2022 earthquake, even though our model resolution is severely limited by the spatial distribution of GPS stations. Our result indicates that the activity of CRFs is comparable to the LVF in the past few decades. Hence, it is recommended to establish additional GNSS stations in the Central Range area, to assess the slip behaviors of the CRFs for the future seismic hazard assessment. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-10-17T16:04:42Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-10-17T16:04:42Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i
致謝 ii 中文摘要 iii Abstract iv 目次 vi 圖次 viii 表次 ix 一、前言 1 1.1 研究動機與目的 1 1.2 區域構造 5 1.2.1 縱谷斷層 5 1.2.2 中央山脈斷層 6 1.2.3 玉里斷層 7 二、前人研究 10 2.1 GPS測量 10 2.2 水準測量 10 2.3 合成孔徑雷達干涉測量(D-InSAR) 12 三、研究方法 14 3.1 IES及NLSC所屬之移動站觀測資料與解算 14 3.1.1 資料處理 18 3.1.2 速度計算 19 3.1.3 擬合誤差及結果 20 3.2 GNSS連續站觀測資料 22 3.3 彈性半無限空間錯位模型 22 3.4 二維模型 23 3.5 三維模型 26 四、結果 28 4.1震間期速度場 28 4.1.1 池上區域相對速度場及速度剖面(A-A’) 30 4.1.2 玉里區域相對速度場及速度剖面(B-B’) 32 4.1.3 瑞穗區域相對速度場及速度剖面(C-C’) 34 4.2二維模型模擬結果 36 4.2.1 池上剖面模擬結果 36 4.2.2 玉里剖面模擬結果 36 4.2.3 瑞穗剖面模擬結果 37 4.3三維模型模擬結果 41 五、討論 44 5.1 模型與地質尺度滑移速度比較 44 5.2 二維多斷層面模型 44 5.3 中央山脈斷層系統間震及同震區域比較 47 5.4 中央山脈斷層系統地震再現週期 49 5.5 未來增設控制點位置建議 50 六、結論 51 參考文獻 53 附錄 61 附錄一、移動站相對S01R(澎湖白沙站)之速度列表 61 附錄二、雙頻連續站相對S01R(澎湖白沙站)之速度列表 64 附錄三、單頻連續站相對S01R(澎湖白沙站)之速度列表 66 附錄四、國土測繪中心控制點相對S01R(澎湖白沙站)之速度列表 67 附錄五、區域相對速度列表 68 附錄六、時間序列分布圖 74 | - |
| dc.language.iso | zh_TW | - |
| dc.title | 利用GPS資料分析縱谷中段中央山脈斷層的震間變形 | zh_TW |
| dc.title | Investigating the Interseismic Deformation of the Central Range Fault in the Central Longitudinal Valley using GPS Measurements | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 陳宏宇 | zh_TW |
| dc.contributor.coadvisor | Horng-Yue Chen | en |
| dc.contributor.oralexamcommittee | 莊昀叡;童忻;顏君毅 | zh_TW |
| dc.contributor.oralexamcommittee | Ray Y. Chuang;Hsin Tung;Jiun-Yee Yen | en |
| dc.subject.keyword | 衛星大地測量,震間變形,中央山脈斷層,玉里斷層,縱谷斷層, | zh_TW |
| dc.subject.keyword | GPS,Interseismic velocity,Central Range Fault,Yuli Fault,Longitudinal Valley Fault, | en |
| dc.relation.page | 107 | - |
| dc.identifier.doi | 10.6342/NTU202503924 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-10 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 地質科學系 | - |
| dc.date.embargo-lift | 2030-08-05 | - |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2030-08-05 | 8.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
