請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100839完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 邱雅萍 | zh_TW |
| dc.contributor.advisor | Ya-Ping Chiu | en |
| dc.contributor.author | 盧偉澤 | zh_TW |
| dc.contributor.author | Vitezslav Luzny | en |
| dc.date.accessioned | 2025-10-09T16:46:58Z | - |
| dc.date.available | 2025-10-10 | - |
| dc.date.copyright | 2025-10-09 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-09 | - |
| dc.identifier.citation | [1] K.He, X.Zhang, S.Ren,and J.Sun, “Deep residual learning for image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, p. 770–778.
[2] F.Joucken, J.L.Davenport, Z.Ge, E.A.Quezada-Lopez, T.Taniguchi, K.Watanabe, J. Velasco, J. Lagoute, and R. A. Kaindl, “Denoising scanning tunneling microscopy images of graphene with supervised machine learning,” Phys. Rev. Mater., vol. 6, no. 12, p. 123802, 2022. [3] Z. Zhu, S. Yuan, Q. Yang, H. Jiang, F. Zheng, J. Lu, and Q. Sung, “Autonomous scanning tunneling microscopy imaging via deep learning,” J. Am. Chem. Soc., vol. 146, no. 42, p. 9199–29206, 2024. [4] D. Smalley, S. D. Lough, L. Holtzman, K. Xu, M. Holbrook, M. R. Rosenberger, J. C. Hone, K. Barmak, and M. Ishigami, “Detecting atomic-scale surface defects in STM of TMDs with ensemble deep learning,” MRSAdv., vol. 9, no. 11, p. 890–896, 2024. [5] M. Rashidi and R. A. Wolkow, “Autonomous scanning probe microscopy in situ tip conditioning through machine learning,” ACS Nano, vol. 12, no. 6, p. 5185–5189, 2018. [6] S. Wang, J. Zhu, R. Blackwell, and F. R. Fischer, “Automated tip conditioning for scanning tunneling spectroscopy,” J. Phys. Chem. A, vol. 125, no. 6, p. 1384–1390, 2021. [7] J. B. Goetz, Y. Zhang, and M. Lawler, “Detecting nematic order in STM/STS data with artificial intelligence,” SciPost Phys., vol. 8, no. 6, p. 087, 2020. [8] A. G. Okunev, M. Y. Mashukov, A. V. Nartova, and A. V. Matveev, “Nanoparticle recognition on scanning probe microscopy images using computer vision and deep learning,” Nanomaterials, vol. 10, no. 7, p. 1285, 2020. [9] S. C. Cheung, J. Y. Shin, Y. Lau, Z. Chen, J. Sun, Y. Zhang, M. A. Müller, I. M. Eremin, J.N.Wright, and A.N.Pasupathy, “Dictionary learning in Fourier-transform scanning tunneling spectroscopy,” Nat. Commun., vol. 11, no. 1, p. 1081, 2020. [10] L.Kurki, N.Oinonen, and A.S.Foster, “Automated structure discovery for scanning tunneling microscopy,” ACS Nano, vol. 18, no. 17, p. 11130–11138, 2024. [11] O. Krejčí, P. Hapala, M. Ondráček, and P. Jelínek, “Principles and simulations of high-resolution STM imaging with a flexible tip apex,” Phys. Rev. B, vol. 95, no. 4, p. 045407, 2017. [12] C. J. Chen, Introduction to scanning tunneling microscopy. Oxford, United Kingdom: Oxford University Press, 2021, ISBN 978-0-191-88990-5. [13] J. Tersoff and D. R. Hamann, “Theory of the scanning tunneling microscope,” Phys. Rev. B, vol. 31, no. 2, p. 805–813, 1985. [14] J. Stirling, “Control theory for scanning probe microscopy revisited,” Beilstein J. Nanotechnol., vol. 5, p. 337–345, 2014. [15] R. P. Paganelli, A. Romani, A. Golfarelli, M. Magi, E. Sangiorgi, and M. Tartagni, “Modeling and characterization of piezoelectric transducers by means of scattering parameters. Part I: Theory,” Sens. Actuators A, Phys., vol. 160, no. 1–2, p. 9–18, 2010. [16] R. C. Smith and Z. Ounaies, “A domain wall model for hysteresis in piezoelectric materials,” J. Intell. Mater. Syst. Struct., vol. 11, no. 1, p. 62–79, 2000. [17] Y. K. Lin and G. Q. Cai, “Random vibration of hysteretic systems,” in Springer, 1990, p. 189–196. [18] Y. Zhang, M. Sun, Y. Song, C. Zhang, and M. Zhou, “Hybrid adaptive controller design with hysteresis compensator for a piezo-actuated stage,” Appl. Sci., vol. 13, no. 1, p. 402, 2022. [19] Y. Liu, J. Shan, and N. Qi, “Creep modeling and identification for piezoelectric ac tuators based on fractional-order system,” Mechatronics, vol. 23, no. 7, p. 840–847, 2013. [20] B. Mokaberi and A. A. G. Requicha, “Towards automatic nanomanipulation: Drift compensation in scanning probe microscopes,” in Proc. IEEE Int. Conf. Robot. Autom., 2004, p. 416–421. [21] C. Rusu, S. Besoiu, and M. O.Tatar, “Design and closed-loop control of a piezoelec tric actuator,” in IOP Conf. Ser.: Mater. Sci. Eng., vol. 1018, 2021, p. 012002. [22] M.P.Yothers, A. E. Browder, and L. A. Bumm, “Real-space post-processing correc tion of thermal drift and piezoelectric actuator nonlinearities in scanning tunneling microscope images,” Rev. Sci. Instrum., vol. 88, no. 1, p. 013708, 2017. [23] N. W. Ashcroft and N. D. Mermin, Solid state physics. Fort Worth, TX, USA: Saunders College, 1988, ISBN 0-03-083993-1. [24] A. Altland and B. Simons, Condensed matter field theory. Cambridge, United Kingdom: Cambridge University Press, 2006, ISBN 978-0-511-80423-6. [25] J. C. Slater and G. F. Koster, “Simplified LCAO method for the periodic potential problem,” Phys. Rev., vol. 94, no. 6, p. 1498–1524, 1954. [26] R. Girshick, “Fast R-CNN,” 2015, Preprint at arXiv:1504.08083. [27] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. Cambridge, MA, USA: MIT Press, 2016, ISBN 978-0-262-03561-3. [28] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2014, Preprint at arXiv:1412.6980. [29] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomedical image segmentation,” in Proc. Med. Image Comput. Comput.-Assist. Interv. (MICCAI), vol. 9351. Springer, 2015, p. 234–241. [30] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” in Proc. 32nd Int. Conf. Mach. Learn. (ICML), vol. 37. JMLR.org, 2015, p. 448–456. [31] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the loss landscape of neural nets,” 2017, Preprint at arXiv:1712.09913. [32] J. D. Faires and R. L. Burden, Numerical methods. Brooks Cole, 1998, ISBN 978 0-538-73351-9. [33] D. Moldovan, M. Anđelković, and F. Peeters, “Pybinding v0.9.5: A Python package for tight-binding calculations,” 2020, version v0.9.5. [Online]. Available: https://docs.pybinding.site/ [34] S. Fang, S. Carr, M. A. Cazalilla, and E. Kaxiras, “Electronic structure theory of strained two-dimensional materials with hexagonal symmetry,” Phys. Rev. B, vol. 98, no. 7, p. 075106, 2018. [35] The Materials Project, “Materials data on WSe2,” 2020. [36] R. S. Barbosa, C. A. D. N. Júnior, A. S. Santos, M. J. Piotrowski, C. R. C. Rêgo, D. Guedes-Sobrinho, D. L. Azevedo, and A. C. Dias, “Unveiling the role of elec tronic, vibrational, and optical features of the 1T’ WSe2 monolayer,” ACS Omega, vol. 9, no. 44, p. 44689–44696, 2024. [37] N. Yang, T. H. Hsu, H. Y. Chen, J. Zhao, H. Zhang, H. Wang, and J. Guo, “Van der Waalsheterostructure engineering for ultralow-resistance contact in 2D semiconduc tor P-type transistors,” J. Electron. Mater., vol. 53, no. 4, p. 2150–2161, 2024. [38] D. A. Papaconstantopoulos, Handbook of the band structure of elemental solids. NewYork, NY, USA: Springer, 2014, ISBN 978-1-4419-8264-3. [39] S.K.Radha,“santoshkumarradha/pysktb: Tight-binding electronic structure codes,” 2020. [Online]. Available: https://pysktb.readthedocs.io/ [40] The Materials Project, “Materials data on W,” 2020. [41] T. Paschen, M. Förster, M. Krüger, C. Lemell, G. Wachter, F. Libisch, T. Madlener, J. Burgdörfer, and P. Hommelhoff, “High visibility in two-color above-threshold photoemission from tungsten nanotips in a coherent control scheme,” J. Mod. Opt., vol. 64, no. 10–11, p. 1054–1060, 2017. [42] H. Y. Chen, H. C. Hsu, J. Y. Liang, B. H. Wu, Y. F. Chen, C. C. Huang, M. Y. Li, I. P. Radu, and Y. P. Chiu, “Atomically resolved defect-engineering scattering potential in 2D semiconductors,” ACS Nano, vol. 18, no. 27, p. 17622–17629, 2024. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100839 | - |
| dc.description.abstract | 掃描式穿隧顯微鏡(STM)是一種極為有效的技術,可用於成像導電或半導體材料表面的影像,其解析度可達單一原子。然而,STM 仍受限於對人力密集的專家解讀的依賴,以及容易受到探針狀況、掃描參數與硬體相關失真所引入的人為誤差影響。這些因素限制了其速度與可擴展性。
在本研究中,我提出了一套以物理建模為基礎的模擬框架,用於生成合成的 STM 影像。該系統利用緊束縛方法計算電子結構,建構真實的探針幾何形狀,並模擬由 PID 控制迴路與壓電致動器行為所引起的失真。這使得能夠生成反映 STM 成像實際複雜性的龐大標註資料集,為訓練機器學習模型提供基礎。 利用這些合成資料集,我訓練了一個用於鎢二硒化物缺陷定位的深度學習模型,並將其表現與未考慮物理失真的模型進行比較。對真實 STM 測量結果的定性評估顯示,完整模擬所訓練出的模型具有更佳的泛化能力,證明高擬真模擬對於推進 STM 影像分析自動化的潛力。 | zh_TW |
| dc.description.abstract | Scanning Tunneling Microscopy (STM) is a highly effective technique for imaging the surfaces of conductive or semiconductive materials with a resolution down to single atoms, but it remains limited by its reliance on labor-intensive expert interpretation and susceptibility to artifacts introduced by tip condition, scanning parameters, and hardware-related distortions. These factors hinder its speed and scalability.
In this work, I present a simulation framework for generating synthetic STM images grounded in physical modelling. The system calculates electronic structure using the tight-binding method, models realistic tip geometries, and simulates distortions arising from PID control loop and piezoelectric actuator behaviour. This allows for the generation of large labelled datasets that reflect the real-world complexity of STM imaging, providing a foundation for training machine learning models. Using these synthetic datasets, I trained a deep learning model for defect localization in tungsten diselenide, comparing its performance against a model trained without physical distortions. Qualitative evaluation on real STM measurements reveals superior generalization when using the full simulation, demonstrating the potential of high-fidelity simulations to advance automated STM image analysis. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-10-09T16:46:58Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-10-09T16:46:58Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee ............. i
Acknowledgements .................................................... iii 摘要 .................................................................... v Abstract ................................................................. vii Contents ............................................................... ix List of Figures ...................................................... xiii Chapter 1 Background ............................................ 1 1.1 Related Work .................................................. 1 1.2 Scanning Tunneling Microscopy (STM) .................... 3 1.2.1 Feedback Control (PID) ..................................... 5 1.2.2 Piezoelectric Actuators ..................................... 6 1.3 Electronic Structure ............................................ 12 1.3.1 Tight-Binding Method ....................................... 12 1.3.2 Local Density of States (LDOS) ............................ 14 1.4 Deep Learning .................................................... 15 1.4.1 Loss Functions .................................................. 15 1.4.2 Model Assessment ........................................... 16 1.4.3 Training ............................................................ 17 1.4.4 Types of Layers ............................................... 19 1.5 Numerical Analysis ............................................ 25 1.5.1 Root Finding Problem – Newton’s Method .......... 25 1.5.2 Solving Ordinary Differential Equations (ODEs) .... 26 Chapter 2 Simulation ............................................ 29 2.1 Input ................................................................. 29 2.2 Tunneling Current Calculation .............................. 30 2.3 Constant Current Mode ....................................... 32 2.3.1 Numerical Solution ............................................ 32 2.3.2 Distortions ......................................................... 35 2.3.3 PID Control Loop ............................................... 40 2.4 Summary and Parameter Selection ......................... 41 Chapter 3 Application ........................................... 43 3.1 Tight-Binding Models .......................................... 44 3.1.1 Sample Model ................................................... 44 3.1.2 Tip Model .......................................................... 46 3.1.3 Single-Orbital Approximations ............................. 48 3.1.4 Tip Geometry .................................................... 49 3.2 Machine Learning Task ....................................... 53 3.2.1 Dataset Generation .......................................... 53 3.2.2 Model Architecture .......................................... 55 3.2.3 Training ............................................................. 57 3.2.4 Evaluation .......................................................... 60 Chapter 4 Conclusion ............................................ 63 4.1 Summary of Contributions .................................. 63 4.2 Limitations and Future Work ............................... 64 4.3 Code Availability ................................................ 64 References ............................................................. 65 | - |
| dc.language.iso | en | - |
| dc.title | 二維材料的合成掃描穿隧顯微影像:深度學習分析流程 | zh_TW |
| dc.title | Synthetic STM Imaging of 2D Materials: A Pipeline for Deep Learning-Based Analysis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 周至品;魏金明 | zh_TW |
| dc.contributor.oralexamcommittee | Jyh-Pin Chou;Ching-Ming Wei | en |
| dc.subject.keyword | 掃描式穿隧顯微鏡(STM),合成STM影像,深度學習,二維材料,鎢二硒化物,過渡金屬二硫族化合物, | zh_TW |
| dc.subject.keyword | Scanning Tunneling Microscopy (STM),Synthetic STM Imaging,Deep Learning,2D Materials,Tungsten Diselenide,Transition-metal dichalcogenides, | en |
| dc.relation.page | 70 | - |
| dc.identifier.doi | 10.6342/NTU202501885 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-13 | - |
| dc.contributor.author-college | 重點科技研究學院 | - |
| dc.contributor.author-dept | 奈米工程與科學學位學程 | - |
| dc.date.embargo-lift | 2025-10-10 | - |
| 顯示於系所單位: | 奈米工程與科學學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 10.53 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
