請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10068完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳嘉文(Kevin Chia-Wen Wu) | |
| dc.contributor.author | Wun-Huei Peng | en |
| dc.contributor.author | 彭文暉 | zh_TW |
| dc.date.accessioned | 2021-05-20T20:59:38Z | - |
| dc.date.available | 2016-07-27 | |
| dc.date.available | 2021-05-20T20:59:38Z | - |
| dc.date.copyright | 2011-07-27 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-22 | |
| dc.identifier.citation | 1. Sing, K.S.W., et al., Reporting Physisorption Data for Gas Solid Systems with Special Reference to The Determination of Surface-area and Porosity (Recommndations 1984). Pure and Applied Chemistry, 1985. 57(4): p. 603-619.
2. De Vos, D.E., et al., Ordered mesoporous and microporous molecular sieves functionalized with transition metal complexes as catalysts for selective organic transformations. Chemical Reviews, 2002. 102(10): p. 3615-3640. 3. Kresge, C.T., et al., Ordered Mesoporous Molecular-Sieves Synthesized by A Liquid-Crystal Template Mechanism. Nature, 1992. 359(6397): p. 710-712. 4. Yanagisawa, T., et al., The Preparation of Alkyltrimethylammonium-Kanemite Complexes and Their Conversion to Microporous Materials. Bulletin of the Chemical Society of Japan, 1990. 63(4): p. 988-992. 5. Soler-illia, G.J.D., et al., Chemical strategies to design textured materials: From microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chemical Reviews, 2002. 102(11): p. 4093-4138. 6. Landry, C.C., et al., Phase transformations in mesostructured silica/surfactant composites. Mechanisms for change and applications to materials synthesist. Chemistry of Materials, 2001. 13(5): p. 1600-1608. 7. Hoffmann, F., et al., Silica-based mesoporous organic-inorganic hybrid materials. Angewandte Chemie-International Edition, 2006. 45(20): p. 3216-3251. 8. Huo, Q.S., et al., Generalized Synthesis of Periodic Surfactant Inorganic Composite-Materials. Nature, 1994. 368(6469): p. 317-321. 9. Zhao, D.Y., et al., Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society, 1998. 120(24): p. 6024-6036. 10. Zhao, D.Y., et al., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998. 279(5350): p. 548-552. 11. Fan, J., et al., Low-temperature strategy to synthesize highly ordered mesoporous silicas with very large pores. Journal of the American Chemical Society, 2005. 127(31): p. 10794-10795. 12. Zhao, D.Y., et al., Ordered mesoporous silicas and carbons with large accessible pores templated from amphiphilic diblock copolymer poly(ethylene oxide)-b-polystyrene. Journal of the American Chemical Society, 2007. 129(6): p. 1690-1697. 13. Schmidt-Winkel, P., et al., Mesocellular siliceous foams with uniformly sized cells and windows. Journal of the American Chemical Society, 1999. 121(1): p. 254-255. 14. Schmidt-Winkel, P., et al., Microemulsion templating of siliceous mesostructured cellular foams with well-defined ultralarge mesopores. Chemistry of Materials, 2000. 12(3): p. 686-696. 15. Kim, S.S., T.R. Pauly, and T.J. Pinnavaia, Non-ionic surfactant assembly of ordered, very large pore molecular sieve silicas from water soluble silicates. Chemical Communications, 2000(17): p. 1661-1662. 16. Luechinger, M., et al., The effect of the hydrophobicity of aromatic swelling agents on pore size and shape of mesoporous silicas. Microporous and Mesoporous Materials, 2005. 79(1-3): p. 41-52. 17. Chen, L.H., et al., Novel mesoporous silica spheres with ultra-large pore sizes and their application in protein separation. Journal of Materials Chemistry, 2009. 19(14): p. 2013-2017. 18. Stocker, M., Biofuels and Biomass-To-Liquid Fuels in the Biorefinery: Catalytic Conversion of Lignocellulosic Biomass using Porous Materials. Angewandte Chemie-International Edition, 2008. 47(48): p. 9200-9211. 19. Chheda, J.N., Y. Roman-Leshkov, and J.A. Dumesic, Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green Chemistry, 2007. 9(4): p. 342-350. 20. Chidambaram, M. and A.T. Bell, A two-step approach for the catalytic conversion of glucose to 2,5-dimethylfuran in ionic liquids. Green Chemistry, 2010. 12(7): p. 1253-1262. 21. Hatanaka, K., et al., Syntheses of polyesters from 5-hydroxymethyl-2-furfural as a starting material. Kobunshi Ronbunshu, 2005. 62(7): p. 316-320. 22. Kroger, M., U. Prusse, and K.D. Vorlop, A new approach for the production of 2,5-furandicarboxylic acid by in situ oxidation of 5-hydroxymethylfurfural starting from fructose. Topics in Catalysis, 2000. 13(3): p. 237-242. 23. Hu, C.W., et al., A One-Pot Two-Step Approach for the Catalytic Conversion of Glucose into 2,5-Diformylfuran. Catalysis Letters, 2011. 141(5): p. 735-741. 24. Tong, X.L., Y. Ma, and Y.D. Li, Biomass into chemicals: Conversion of sugars to furan derivatives by catalytic processes. Applied Catalysis a-General, 2010. 385(1-2): p. 1-13. 25. Antal, M.J.J., W.S.L. Mok, and G.N. Richards, Mechanisms of Formation of 5-Hydroxymethyl-2-furaldehyde from D-fructose and Sucrose. Carbohydrate Research, 1990. 119(1): p. 91-110. 26. Roman-Leshkov, Y., J.N. Chheda, and J.A. Dumesic, Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science, 2006. 312(5782): p. 1933-1937. 27. Roman-Leshkov, Y. and J.A. Dumesic, Solvent Effects on Fructose Dehydration to 5-Hydroxymethylfurfural in Biphasic Systems Saturated with Inorganic Salts. Topics in Catalysis, 2009. 52(3): p. 297-303. 28. Moreau, C., et al., Dehydration of fructose to 5-hydroxymethylfurfural over H-mordenites. Applied Catalysis a-General, 1996. 145(1-2): p. 211-224. 29. Ilgen, F., et al., Conversion of carbohydrates into 5-hydroxymethylfurfural in highly concentrated low melting mixtures. Green Chemistry, 2009. 11(12): p. 1948-1954. 30. Lansalot-Matras, C. and C. Moreau, Dehydration of fructose into 5-hydroxymethylfurfural in the presence of ionic liquids. Catalysis Communications, 2003. 4(10): p. 517-520. 31. Qi, X.H., et al., Catalytic dehydration of fructose into 5-hydroxymethylfurfural by ion-exchange resin in mixed-aqueous system by microwave heating. Green Chemistry, 2008. 10(7): p. 799-805. 32. Moreau, C., A. Finiels, and L. Vanoye, Dehydration of fructose and sucrose into 5-hydroxymethylfurfural in the presence of 1-H-3-methyl imidazolium chloride acting both as solvent and catalyst. Journal of Molecular Catalysis a-Chemical, 2006. 253(1-2): p. 165-169. 33. Takagaki, A., et al., A one-pot reaction for biorefinery: combination of solid acid and base catalysts for direct production of 5-hydroxymethylfurfural from saccharides. Chemical Communications, 2009(41): p. 6276-6278. 34. Ohara, M., et al., Syntheses of 5-hydroxymethylfurfural and levoglucosan by selective dehydration of glucose using solid acid and base catalysts. Applied Catalysis a-General, 2010. 383(1-2): p. 149-155. 35. Huang, R.L., et al., Integrating enzymatic and acid catalysis to convert glucose into 5-hydroxymethylfurfural. Chemical Communications, 2010. 46(7): p. 1115-1117. 36. Zhao, H.B., et al., Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science, 2007. 316(5831): p. 1597-1600. 37. Hu, S.Q., et al., Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by a common Lewis acid SnCl4 in an ionic liquid. Green Chemistry, 2009. 11(11): p. 1746-1749. 38. Sun, Y. and J.Y. Cheng, Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 2002. 83(1): p. 1-11. 39. Graenacher, C., US Patent, 1946176. 1934. 40. El Seoud, O.A., et al., Applications of ionic liquids in carbohydrate chemistry: A window of opportunities. Biomacromolecules, 2007. 8(9): p. 2629-2647. 41. Remsing, R.C., et al., Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a C-13 and Cl-35/37 NMR relaxation study on model systems. Chemical Communications, 2006(12): p. 1271-1273. 42. Yu, S., et al., Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a versatile platform chemical. Applied Catalysis a-General, 2009. 361(1-2): p. 117-122. 43. Qi, X.H., et al., Fast Transformation of Glucose and Di-/Polysaccharides into 5-Hydroxymethylfurfural by Microwave Heating in an Ionic Liquid/Catalyst System. Chemsuschem, 2010. 3(9): p. 1071-1077. 44. Binder, J.B. and R.T. Raines, Simple Chemical Transformation of Lignocellulosic Biomass into Furans for Fuels and Chemicals. Journal of the American Chemical Society, 2009. 131(5): p. 1979-1985. 45. Takagaki, A., et al., One-pot Formation of Furfural from Xylose via Isomerization and Successive Dehydration Reactions over Heterogeneous Acid and Base Catalysts. Chemistry Letters, 2010. 39(8): p. 838-840. 46. Gill, C.S., B.A. Price, and C.W. Jones, Sulfonic acid-functionalized silica-coated magnetic nanoparticle catalysts. Journal of Catalysis, 2007. 251: p. 145-152. 47. Yurdakoc, M., et al., Acidity of silica-alumina catalysts by amine titration using Hammett indicators and FT-IR study of pyridine adsorption. Turkish Journal of Chemistry, 1999. 23(3): p. 319-327. 48. Kao, H.M., et al., One-pot synthesis of ordered and stable cubic mesoporous silica SBA-1 functionalized with amino functional groups. Microporous and Mesoporous Materials, 2008. 113(1-3): p. 212-223. 49. Rac, B., et al., A comparative study of solid sulfonic acid catalysts based on various ordered mesoporous silica materials. Journal of Molecular Catalysis a-Chemical, 2006. 244(1-2): p. 46-57. 50. Hsu, W.H., et al., Cellulosic Conversion in Ionic Liquids (ILs): Effects of H2O/Cellulose Molar Ratios, Temperatures, Times, and Different ILs on the Production of Monosaccharides and 5-Hydroxymethylfurfural (5-HMF). Catalysis Today, 2011. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10068 | - |
| dc.description.abstract | 本研究探討了具有大孔洞與不同酸、鹼官能基之中孔洞奈米催化劑 (LPMSN, LPMSN-NH2, LPMSN-SO3H and LPMSN-Both) 之合成及其於纖維素一步轉換至羥甲基糠醛 (5-Hydroxymethylfurfural, 5-HMF) 之應用。羥甲基糠醛是非常有價值的化合物可應用於合成高分子和燃料添加物。由於能源危機的議題,發展新的替代再生能源(如生質能)已變成一個很重要的課題。將木質纖維素轉換至羥甲基糠醛,主要牽涉了三個反應步驟。(1)利用酸催化劑使多醣類降解至葡萄糖;(2)利用鹼催化劑使葡萄糖進行異構化反應轉換至果糖;(3)利用酸催化劑使果糖進行脫水反應轉換至羥甲基糠醛。果糖轉換至羥甲基糠醛的結果顯示,酸催化劑 (LPMSN-SO3H) 可以有效促使果糖的脫水反應,進而產出70.53%的羥甲基糠醛。葡萄糖轉換至羥甲基糠醛的結果顯示,具有胺官能基的鹼、酸鹼催化劑 (LPMSN-NH2 and LPMSN-Both) 可以有效促使葡萄糖的異構化反應,進而生成了13.27和13.77%的羥甲基糠醛。纖維雙糖轉換至羥甲基糠醛的結果顯示,酸催化劑 (LPMSN-SO3H) 可以有效促使纖維雙糖的水解反應,進而產生18.93%的羥甲基糠醛。纖維素轉換至羥甲基糠醛的結果顯示,酸、酸鹼催化劑 (LPMSN-SO3H and LPMSN-Both) 整體上皆約有57%的總產率,其中酸催化劑 (LPMSN-SO3H) 又可催化纖維素產生19.23%的羥甲基糠醛。我們確信合成出中孔洞氧化矽奈米催化劑可以有效的應用在纖維素一步轉換至羥甲基糠醛。 | zh_TW |
| dc.description.abstract | This study reports a one-pot strategy to produce 5-hydroxymethylfurfural (5-HMF, a very useful chemical for many polymers and fuel additives) with the presence of acid (SO3H), alkaline (NH2) and acid-alkaline (SO3H and NH2) bi-functionalized mesoporous silica nanoparticles with large pores (namely, LPMSN-SO3H, LPMSN-NH2 and LPMSN-NH2-SO3H, respectively) as heterogeneous solid catalysts. Due to the crisis of energy, developing an alternative energy such as biomass energy has become an important issue. To convert lignocellulosic biomass (e.g. cellulose, cellobiose and glucose etc.) into 5-HMF, there are three major steps: (1) depolymerization of polysaccharide (cellulose) into glucose with the presence of an acid catalyst; (2) isomerization of glucose into fructose with the presence of an alkaline catalyst; (3) dehydration of fructose into 5-HMF with the presence of an acid catalyst. The results for fructose-to-HMF conversion showed that the LPMSN-SO3H catalysts could promote the dehydration of fructose to 5-HMF with a high yield of 70.53%. For glucose-to-HMF conversion, the result indicated that both the LPMSN-NH2 and LPMSN-NH2-SO3H catalysts could efficiently enhance isomerization of glucose to 5-HMF with a high yield of 13.27 and 13.77%, respectively. For cellobiose-to-HMF conversion, the results pointed out that the LPMSN-SO3H catalysts could promote the hydrolysis of cellobiose and yield the maximum amount of 5-HMF (i.e., approximately 18.93%). For the cellulose-to-HMF conversion, the results indicated that both of the LPMSN-SO3H and LPMSN-NH2-SO3H catalysts exhibit the highest yield of overall products (cellobiose, glucose and 5-HMF) approximately 57%, where the LPMSN-SO3H catalysts could produce the highest yield of 5-HMF (i.e., 19.23%). We believe that the synthesized mesoporous solid catalysts are useful for one-pot production of 5-HMF from cellulose. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T20:59:38Z (GMT). No. of bitstreams: 1 ntu-100-R98524077-1.pdf: 6199581 bytes, checksum: dac693e06d9e1653eb29af2f0e72b0e6 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | Table of Content
口試委員會審定書……………………………………….…...…….…..…i 誌謝………………………………………………….………….…….…...ii 摘要……….……………………………………………………………….iii Abstract...……………………………………………….……...……….…iv Table of Content…..…………………………………………...….……….vi List of Figure………………………………...………….…...…………...viii List of Table………………….………………………….………………….x Chapter 1 Introduction ……………………………………….…….…... …1 1.1 Introduction of mesoporous silica nanoparticles…….…………... …..1 1.1-1 Ultra-large pore sizes mesoporous silica materials………………..7 1.2 Introduction of biomass energy……………………………………….9 1.2-1 Evolution of biofuels…………...……………………..….………..9 1.3 Literature review of biomass energy…………………….….……….11 1.3-1 Reaction pathways of synthesis of 5-HMF………………………12 1.3-2 Application of 5-HMF……………………………..……………..13 1.3-3 Synthesis of 5-HMF from different starting materials……..….....14 1.3-3a Fructose……………………………………………..................14 1.3-3b Glucose…………………………………………..…………….16 1.3-3c Cellulose………………………….……………………………19 1.3-3d The other di- and polysaccharide...…………….……………...20 Chapter 2 Motivation……………………………………………………...21 Chapter 3 Materials and experimental methods….……………………….22 3.1 Chemicals………..……………….………………….………………22 3.2 Experimental apparatuses………………………………...………….24 3.3 Experimental methods…......………………………………….……..25 3.3-1 Synthesis of ultra-large pore mesoporous silica nanoparticles…..25 3.3-2 Functionalization of LPMSN into different kinds of catalyst....…26 3.3-3 Oxidization of LPMSN-SH into LPMSN-SO3H…….…………..27 3.3-4 Synthesis of the bi-functionalized catalyst…….………………....28 3.3-5 Characterization of acid strength of the different catalysts………29 3.3-6 Preparation of ionic liquid………………………………………..30 3.3-7 Lignocellulosic conversion………………………………………31 3.3-7a Cellulose conversion………...…………….…….…………….31 3.3-7b Cellobiose conversion………………………..……...………...32 3.3-7c Glucose and fructose conversion……………..………….…….32 Chapter 4 Results and discussion…...…………………….…………..…..33 4.1 Characterization of as-synthesized LPMSNs………………...……...33 4.1-1 Morphology of as-synthesized LPMSNs…………...……...…….33 4.1-2 Porous properties of as-synthesized LPMSNs…………………...36 4.1-3 Functionalization of as-synthesized LPMSNs…..........………….40 4.1-4 Acid strength of as-synthesized LPMSNs………………………..45 4.2 Lignocellulosic conversion………..…..…………………….…….....46 4.2-1 Definition of yield…………………..……………………………47 4.2-2 Optimal condition of cellulosic conversion..…………………….47 4.2-3 Destruction of crystalline structure of cellulose in IL……............48 4.2-4 Effect of amount of catalysts in cellulosic conversion………..….49 4.2-5 Fructose-to-HMF conversion………….………………………....50 4.2-6 Glucose-to-HMF conversion…………………….....................….51 4.2-7 Cellobiose-to-HMF conversion………………………….……….52 4.2-8 Cellulose-to-HMF conversion……………………………………53 Chapter 5 Conclusion………………………..……………………............54 Chapter 6 Reference…………………………………...………..……..….55 List of Figure Figure 1.1a Different shapes of micelle……………….…………….…......2 Figure 1.1b Different types of surfactant………………………...………...3 Figure 1.1c Two pathways of formation of mesoporous materials…...……4 Figure 1.1d Different interaction between silica and surfactant interfaces...6 Figure 1.1-1 Possible mechanism for the formation of mesoporous silica materials with ultra-large pores in a neutral pH system……………………8 Figure 1.3 Composition of lignocelluloses…….…..……….……………..11 Figure 1.3-1 Reaction pathways of hexose converted into 5-HMF……....12 Figure 1.3-3a Synthesis of 5-HMF from fructose using biphasic system...15 Figure 1.3-3b Proposed mechanism of glucose-to-HMF with the presence of acid catalyst……………………………………………………….....…17 Figure 1.3-3c Mechanism of mutarotation and isomerization with the presence of CrCl2 and [EMIM]Cl…..………………………………..…...18 Figure 3.3-1 Flow chart of synthesis of LPMSN……………….………...25 Figure 3.3-2 Flow chart of synthesis of functionalized LPMSN…………26 Figure 3.3-3 Flow chart of oxidation of LPMSN-SH…………………….27 Figure 3.3-4 Flow chart of synthesis of LPMSN-Both…………………...28 Figure 3.3-5 Flow chart of SOP of acid strength…………………………29 Figure 3.3-7a Flow chart of SOP of cellulosic conversion…..…..……….31 Figure 3.3-7b Flow chart of SOP of cellobiose, glucose and fructose conversion……………………………………………………….…….….32 Figure 4.1-1 Morphology of LPMSN, LPMSN-NH2, LPMSN-SO3H and LPMSN-Both……………………………………………………………...35 Figure 4.1-2a Nitrogen adsorption/desorption isotherm of LPMSN……...37 Figure 4.1-2b Nitrogen adsorption/desorption isotherm of LPMSN-NH2..37 Figure 4.1-2c Nitrogen adsorption/desorption isotherm of LPMSN-SO3H38 Figure 4.1-2d Nitrogen adsorption/desorption isotherm of LPMSN-Both 38 Figure 4.1-3a Solid state NMR 13C spectrum of LPMSN-NH2…...…..…..41 Figure 4.1-3b Solid state NMR 13C spectrum of LPMSN-SO3H..………..41 Figure 4.1-3c Solid state NMR 29Si spectrum of LPMSN……..................42 Figure 4.1-3d Solid state NMR 29Si spectrum of LPMSN-NH2…..…..…..42 Figure 4.1-3e Solid state NMR 29Si spectrum of LPMSN-SO3H………....43 Figure 4.1-3f Solid state NMR 29Si spectrum of LPMSN-Both……….….43 Figure 4.2 Mechanism of lignocellulosic conversion………….…..……..46 Figure 4.2-3 Crystalline structure of cellulose before and after IL pretreatment…………………………………………………………..…...48Figure 4.2-4 Optimal amount of catalysts in cellulosic conversion………49 Figure 4.2-5a Reaction route of fructose to 5-HMF………………………50 Figure 4.2-5b Fructose-to-HMF conversion…………………..……….....50 Figure 4.2-6a Reaction route of glucose to 5-HMF………………………51 Figure 4.2-6b Glucose-to-HMF conversion………………..……………..51 Figure 4.2-7a Reaction route of cellobiose to 5-HMF………..…....……..52 Figure 4.2-7b Cellobiose-to-HMF conversion……………………………52 Figure 4.2-8a Reaction route of cellulose to 5-HMF……………………..53 Figure 4.2-8b Cellulose-to-HMF conversion……………………………..53 List of Table Table 1.1 Definition of porous materials……………...…………......…......1 Table 3.3-5 Different kinds of indicator..…………………………………29 Table 4.1-2 Summary of specific surface area and pore size distribution of LPMSN, LPMSN-NH2, LPMSN-SO3H and LPMSN-Both……………....39 Table 4.1-3a Functional and silanol group on the LPMSN, LPMSN-NH2, LPMSN-SO3H and LPMSN-Both………..………………….……………44 Table 4.1-3b Percentage of each characteristic peak of 29Si solid state NMR of LPMSN, LPMSN-NH2, LPMSN-SO3H and LPMSN-Both……….......44 Table 4.1-4 Acid strength of LPMSN, LPMSN-NH2, LPMSN-SO3H and LPMSN-Both……………………………………………………………..45 | |
| dc.language.iso | en | |
| dc.title | 具有酸鹼官能基之中孔洞氧化矽奈米催化劑之合成及其於纖維素轉換至羥甲基糠醛之應用 | zh_TW |
| dc.title | Acid-Alkaline Bi-functionalized Mesoporous Silica Nanocatalysts for Direct Cellulose-to-HMF Conversion | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊家銘(Chia-Min Yang),徐振哲(Jerry Cheng-Che Hsu),陳林祈(Lin-Chi Chen),林峰輝(Feng-Huei Lin) | |
| dc.subject.keyword | 中孔洞奈米材料,酸鹼催化劑,離子液體,纖維素,羥甲基糠醛, | zh_TW |
| dc.subject.keyword | mesoporous silica nanoparticles,acid-alkaline catalyst,ionic liquids,cellulose,5-hydroxymethylfurfural, | en |
| dc.relation.page | 59 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2011-07-25 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf | 6.05 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
