Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10064
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor戴怡德
dc.contributor.authorMing-Hui Changen
dc.contributor.author張名惠zh_TW
dc.date.accessioned2021-05-20T20:59:21Z-
dc.date.available2014-07-27
dc.date.available2021-05-20T20:59:21Z-
dc.date.copyright2011-07-27
dc.date.issued2011
dc.date.submitted2011-07-25
dc.identifier.citationAkoh, H., Y. Tsukasaki, S. Yatsuya, and A. Tasaki, “Magnetic properties of ferromagnetic ultrafine particles prepared by vacuum vaporation on running oil substrate,” J. Cryst. Growth, 45, pp.495-500 (1978)
Athawale, A. A., P. P. Katre, M. Kumar, and M. B. Majumdar, “Synthesis of CTAB–IPA reduced copper nanoparticles,” Mater. Chem. Phys., 91, pp.507–512 (2005)
Boodhoo, K. V. K. and R. J. Jachuck, “Process intensification: spinning disk reactor for styrene polymerization,” Appl. Therm. Eng., 20, pp.1127-1146 (2000)
Brauer, G., Handbook of Preparative Inorganic Chemistry, Vol. 2, 2nd ed., New York: Academic Press, 1965.
Cafiero, L. M., G. Baffi, A. Chianese, and R. J. J. Jachuck, “Process intensification: precipitation of barium sulfate using a spinning disk reactor,” Ind. Eng. Chem. Res., 41, pp.5240-5246 (2002)
Chang, H., C. S. Jwo, C. H. Lo, T. T. Tsung, M. J. Kao, and H. M. Lin, “Rheology of CuO nanoparticle suspension prepared by SANSS,” Rev. Adv. Mater. Sci., 10, pp.128-132 (2005)
Challoner, A. R. and R. W. Powell, “Thermal conductivity of liquids: new determinations for seven liquids and appraisal of existing values,” P. R. Soc. Lond.-A, 238, pp.90-106 (1956)
Chen, G., “Size and interface effects on thermal conductivity of superlatties and periodic thin-film structures,” J. Heat Transf., 119, pp.220-229 (1997)
Chen, J. F., Y. H. Wang, F. Guo, X. M. Wang and C. Zheng, “Synthesis of nanoparticles with novel technology: high-gravity reactive precipitation,” Ind. Eng. Chem. Res., 39, pp.948-954 (2000)
Chen, J. F., M. Y. Zhou, L. Shao, Y. Y. Wang, J. Yun, N. Y. K. Chew, H. K. Chan, “Feasibility of preparing nanodrugs by high-gravity reactive precipitation,” Int. J. Pharm., 269, pp.267-274 (2004)
Chen, Y. S. and H. S. Liu, “Absorption of VOCs in a rotating packed bed,” Ind. Eng. Chem. Res., 41, pp.1583-1588 (2002)
Chen, Y. S., H. S. Liu, C. C. Lin, and W. T. Liu, “Micromixing in a rotating packed bed,” J. Chem. Eng. Japan, 37, pp.1122-1128 (2004)
Chen, Y. S., C. C. Lin, and H. S. Liu, “Mass transfer in a rotating packed bed with various radii of the bed,” Ind. Eng. Chem. Res., 44, pp.7868-7875 (2005)
Chen, Y. S., C. Y. Tai, M. H. Chang, and H. S. Liu, “Characteristics of micromixing in a rotating packed bed,” J. Chin. Inst. Chem. Engrs., 37, pp.63-69 (2006)
Chen, Y. S., Y. H. Wang, H. S. Liu, K. Y. Hsu, and C. Y. Tai, “Micronization of p-Aminosalicylic Acid Particles Using High-Gravity Technique,” Ind. Eng. Chem. Res., 49, pp.8832-8840 (2010)
Cheng, S. C. and R. I. Vachon, “The prediction of the thermal conductivity of two and three phase solid heterogeneous mixtures,” Int. J. Heat Mass Tran., 12, pp.249-264 (1969)
Choi, S. U. S., D. A. Siginer, and H. P. Wang, “Enhancing thermal conductivity of fluids with nanoparticles,” in Developments and Applications of Non-Newtonian Flows, pp.99-105, FED-231/MD-66, New York: ASME, 1995.
Choi, L. and J. A. Eastman, “Enhanced heat transfer using nanofluids,” U. S. Patent 6,221,275 B1 (2001)
Chou, K. S., Y. C. Lu, and H. H. Lee, “Effect of alkaline ion on the mechanism and kinetics of chemical reduction of silver,” Mater. Chem. Phys., 94, pp.429-433 (2005)
D’Aquino, R., “Heat transfer fluids–pioneering new applications,” Chem. Eng. Prog., 102, pp.12-13 (2006)
Davis, L. C. and B. E. Artz, “Thermal conductivity of metal matrix composites,” J. Appl. Phys., 77(10), pp.4954-4960 (1995)
Donnay, J. D. H. and H. M. Ondik, Crystal Data: Determinative Tables, Vol. 2, 3rd ed., USA: National Bureau of Standards and Joint Committee on Powder Diffraction Standards, 1972.
Douglas A. Skoog, Donald M. West, F. James Holler, Fundamentals of Analytical Chemistry, 6th ed., Fort Worth, Tex.: Saunders College Pub., 1992
Duffy J., L. Pearson, and M. Paunovic, “The effect of pH on electroless copper deposition,” J. Electrochem. Soc., 130(4), pp.876-880 (1983)
Figlarz, M., F. Fievet, and J. P. Lagier, “Process for the reduction of metallic compounds by polyols, and metallic powders obtained by this process,” U. S. Patent, 4,539,041 (1985)
Fournier, M. C., L. Falk, and J. Villermaux, “A new parallel competing reaction system for assessing micromixing efficiency-experimental approach,” Chem. Eng. Sci., 51(12), pp.5053-5064 (1996)
Gleiter, H., “Nanocrystalline materials,” Prog. Mater. Sci., 33, pp.223-315 (1989)
Hamilton, R. L. and O. K. Crosser, “Thermal conductivity of heterogeneous two-component system,” Ind. Eng. Chem. Fundam., 1, pp.182-191 (1962)
Hayashi, C., “Ultrafine particles,” Phys. Today, 12, p.44-51 (1987)
Hiemenz, P. C., Principles of Colloid and Surface Chemistry, pp.690-697, 2nd ed., New York: Marcel Dekker, Inc., 1986.
Honma H. and T. Kobayashi, “Electroless copper deposition process using glyoxylic acid as a reducing agent,” J. Electrochem. Soc., 141(3), pp.730-733 (1994)
Huang, H. H., F. Q. Yan, Y. M. Kek, C. H. Chew, G. Q. Xu, W. Ji, P. S. Oh, and S. H. Tang, “Synthesis, characterization, and nonlinear optical properties of copper nanoparticles,” Langmuir, 13, pp.172-175 (1997)
Jang, S. P. and S. U. S. Choi, “Role of Brownian motion in the enhanced thermal conductivity of nanofluids,” Appl. Phys. Lett., 84, pp.4316-4318 (2004)
Jeffrey, D. J., “Conduction through a random suspension of spheres,” Proc. R. Soc. London, Ser. A, 335, pp.355-367 (1973)
Jwo, C. S., T. P. Teng, and H. Chang, “A simiple model to estimate thermal conductivity of fluid with acicular nanoparticles,” J. Alloy. Compd., 434-435, pp.569-571 (2007)
Kapoor, S., R. Joshi, and T. Mukherjee, “Influence of I- anions on the formation and stabilization of copper nanoparticles,” Chem. Phys. Lett., 354, pp.443-448 (2002a)
Kapoor, S., D. K. Palit, and T. Mukherjee, “Preparation, characterization and surface modification of Cu metal nanoparticles,” Chem. Phys. Lett., 355, pp.383-387 (2002b)
Keblinski, P., S. R. Phillpot, S.U.S. Choi, and J. A. Eastman, “Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids),” Int. J. Heat Mass Tran., 45, pp.855-863 (2002)
Kelleher, T. and J. R. Fair, “Distillation studies in a high-gravity contactor,” Ind. Eng. Chem. Res., 35, pp.4646-4655 (1996)
Keyvani, M. and N. C. Gardner, “Operating characteristics of rotating beds,” Chem. Eng. Prog., 85, pp.48-51 (1989)
Kim, Y. K., D. H. Riu, S. R. Kim, B. I. Kim, “Preparation of shape-controlled copper oxide powders from copper-containing solution,” Mater. Lett., 54, pp.229-237 (2002)
Klug, H. P. and L.E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, New York: John Wiley & Sons, Inc., 1974.
Kreysa, G. and M. S. Weinheim, Corrosion Handbook: Corrosive Agents and Their Interaction with Materials, Vol. 2, 2nd ed., Wiley-VCH, 2004.
Law, C. G., Jr. P. Pierini, and J. Newman, “Mass transfer to rotating disks and rotating rings in laminar, transition and fully-developed turbulent flow,” Int. J. Heat Mass Tran., 24, pp.909-918 (1981)
Lee, D., J. W. Kim, and B. G. Kim, “A new parameter to control heat transport in nanofluids: surface charge state of the particle in suspension,” J. Phys. Chem. B, 110, pp.4323-4328 (2006)
Lee, S., S. U. S. Choi, S. Li, and J. A. Eastman, “Measuring thermal conductivity of fluids containing oxide nanoparticles,” Trans. Am. Soc. Mech. Eng., 121, pp.280-289 (1999)
Li, X., D. Zhu, and X. Wang, “Evaluation on dispersion behavior of the aqueous copper nano-suspensions,” J. Colloid Interf. Sci., 310, pp.456-463 (2007)
Lide, D. R., CRC Handbook of Chemistry and Physics, p.6-5, 88th ed., Cleveland: CRC Press, 2007-2008.
Lin, C. C., W. T. Liu, and C. S. Tan, “Removal of Carbon Dioxide by Absorption in a Rotating Packed Bed,” Ind. Eng. Chem. Res., 42, pp.2381-2386 (2003)
Lisiecki, I. and M. P. Pileni, “Synthesis of copper metallic clusters using reverse micelles as microreactors,” J. Am. Chem. Soc., 115, pp.3887-3896 (1993)
Lisiecki, I. and M. P. Pileni, “Copper metallic particles synthesized “in situ” in reverse micelles: influence of various parameters on the size of the particles,” J. Phys. Chem., 99, pp.5077-5082 (1995)
Lisiecki, I., F. Billoudet, and M. P. Pileni, “Syntheses of copper nanoparticles in gelified microemulsion and in reverse micelles,” J. Mol. Liq., 72, pp.251-261 (1997)
Liu, C. M., L. Guo, H. B. Xu, Z. Y. Wu, and J. Weber, “Seed-mediated growth and properties of copper nanoparticles, nanoparticle 1D arrays and nanorods,” Microelectro. Eng., 66, pp.107–114 (2003)
Liu, H. S., C. C. Lin, S. C. Wu, and H. W. Hsu, “Characteristics of a rotating packed bed,” Ind. Eng. Chem. Res., 35, pp.3590-3596 (1996)
Lo, C. H., T. T. Tsung, L. C. Chen, C. H. Su, and H. M. Lin, “Fabrication of copper oxide nanofluid using submerged arc nanoparticle synthesis system (SANSS),” J. Nanopart. Res., 7, pp.313-320 (2005)
Mark, H. F., D. F. Othmer, C. G. Overberger, and G. T. Seaborg, Kirk-Othmer Encyclopedia of Chemical Technology, pp.97-106, Vol.7, 3rd ed., New York: John Wiley & Sons, Inc., 1978.
Maxwell, J. C., A Treatise on Electricity and Magnetism, p.435, 2nd ed., Cambridge: Oxford University Press, 1904.
Mohanty, R., S. Bhandarkar, B. Zuromski, R. Brown, and J. Estrin, “Characterizing the product crystals from a mixing Tee process,” AIChE J., 34(12), pp.2063-2068 (1988)
Mohr, C. M. and J. Newman, “Mass transfer to a rotating disk in transition flow,” J. Electrochem. Soc., 123, pp.1687-1691 (1976)
Myerson, A. S., Handbook of Industrial Crystallization, p.279, 2nd ed., Woburn: Butterworth-Heinemann, 2002.
Nagasaka Y. and A. Nagashima, “Absolute measurement of the thermal conductivity of electrically conducting liquids by the transient hot-wire method,” J. Phys. E Sci. Instrum., 14, pp.1435-1439 (1981)
Nielsen, A. E. and J. M. Toft, “Electrolyte crystal growth kinetics,” J. Cryst. Growth, 67, pp.278-288 (1984)
Nyquist, R. A. and R. O. Kagel, Infrared Spectra of Inorganic Compounds, p.85, New York and London: Academic Press, 1971.
Ochara, T. and D. Suzuki, “Intermolecular energy at a solid-liquid interface,” Microscale Therm. Eng., 4, pp.189-196 (2000)
O’Neil, M. J., The Merck Index: an Encyclopedia of Chemicals, Drugs, and Biologicals, pp.2552, 2649, 2668, 14th ed, New Jersey: Merck & Co., 2006.
Oral, A. Y., E. Mensur, M. H. Aslan, and E. Basaran, “The preparation of copper(II) oxide thin films and the study of their microstructures and optical properties,” Mater. Chem. Phys., 83, pp.140-144 (2004)
Ponce, A. A. and K. J. Klabunde, “Chemical and catalytic activity of copper nanoparticles prepared via metal vapor synthesis,” J. Mol. Catal. A-Chem., 225, pp.1-6 (2005)
Qiu, S., J. Dong, and G. Chen, “Preparation of Cu nanoparticles from water-in-oil microemulsions,” J. Colloid Interf. Sci., 216, pp.230-234 (1999)
Ramshaw, C. and R. H. Mallinson, “Mass transfer process,” U. S. Patent 4,383,255 (1981)
Sawistowski, H., “Flooding velocities in packed columns operating at reduced pressure,” Chem. Eng. Sci., 6, pp.138-140 (1957)
Sherwood, T. K., G. H. Shipley, and F. A. L. Holloway, “Flooding velocities in packed columns,” Ind. Eng. Chem. Res., 30, pp.765-768 (1938)
Singh, S. P., J. H. Wilson, R. M. Counce, J. F. Villiersfisher, H. L. Jennings, A. J. Lucero, G. D. Reed, R. A. Ashworth and M. G. Elliot, “Removal of volatile organic-compounds from groundwater using a rotary air stripper,” Ind. Eng. Chem. Res., 31, pp.574-580(1992)
Singh, A. K. and V. S. Raykar, “Microwave synthesis of silver manofluids with polyvinylpyrrolidone (PVP) and their transport properties,” Colloid Polym. Sci., 286, pp.1667-1673 (2008)
Song, X., S. Sun, W. Zhang, and Z. Yin, “A method for the synthesis of spherical copper nanoparticles in the organic phase,” J. Colloid Interf. Sci., 273, pp.463-469 (2004)
Stankiewicz, A. I. and J. A. Moulijn, “Process intensification: transforming chemical engineering,” Chem. Eng. Process, 96, pp.22-33 (2000)
Stankiewicz, A. I. and J. A. Moulijn, Re-Engineering the Chemical Processing Plant: Process Intensification, New York: Marcel Dekker, Inc., 2004.
Tai, C. Y., W. C. Chien, and P. C. Chen, “Particle nucleation and growth,” in Encyclopedia of Surface and Colloid Science, pp.3909-3918, New York: Marcel Dekker, Inc., 2002.
Tai, C. Y. and C. T. Tai, “Synthesis of nanosized calcium carbonate particles using Higee reactive precipitation technique,” 16th International Symposium on Industrial Crystallization, Dresden, Germany (2005)
Tai, C. Y., C. T. Tai, and H. S. Liu, “Synthesis of submicron barium carbonate using a high-gravity technique,” Chem. Eng. Sci., 61, pp.7479-7486 (2006)
Tai, C. Y., C. T. Tai, M. H. Chang, and H. S. Liu, “Synthesis of magnesium hydroxide and oxide nanoparticles using a spinning disk reactor,” Ind. Eng. Chem. Res., 46, pp.5536-5541 (2007)
Tai C. Y., Y. H. Wang, and H. S. Liu, “A green process for preparing silver nanoparticles using spinning disk reactor,” AIChE J., 54, pp.445-452 (2008)
Tai, C. Y., Y. H. Wang, and M. H. Chang, “Method for manufacturing metal nanoparticle,” U. S. Patent 7,615,096 B1 (2009a)
Tai, C. Y., Y. H. Wang, Y. W. Kuo, M. H. Chang, and H. S. Liu, “Synthesis of silver particles below 10nm using spinning disk reactor,” Chem. Eng. Sci., 64, pp.3112-3119 (2009b)
Tai C. Y., Y. H. Wang, C. T. Tai, and H. S. Liu, “Preparation of silver nanoparticles using a spinning disk reactor in a continuous mode,” Ind. Eng. Chem. Res., 48, pp.10104-10109 (2009c)
Tang, F. Q., X. X. Huang, Y. F. Zhang, and J. K. Guo, “Effect of dispersants on surface chemical properties of nano-zirconia suspensions,” Ceram. Int., 26, pp.93-97 (2000)
Tsung, T. T., C. H. Lo, C. S. Jwo, H. Chang, and K. C. Wang, “A novel nanofluid manufacturing process using a cylindrical flow cooling method in an induction heating system,” Int. J. Adv. Manuf. Technol., 29, pp.99-104 (2006)
Vijayakumar, R., R. Elgamiel, Y. Diamant, and A. Gedanken, “Sonochemical preparation and characterization of nanocrystalline copper oxide embedded in poly(vinyl alcohol) and its effect on crystal growth of copper oxide,” Langmuir, 17, pp.1406-1410 (2001)
Wang, J., J., Yang, J. Sun, and Y. Bao, “Synthesis of copper oxide nanomaterials and the growth mechanism of copper oxide nanorods,” Mater. Des., 25, pp.625-629 (2004)
Wang, M., H. K. Zou, L. Shao, and J. F. Chen, “Controlling factors and mechanism of preparing needlelike CaCO3 under high-gravity environment,” Powder Technol., 142, pp.166-174 (2004)
Wang, X., X. Xu, and S. Choi, “Thermal conductivity of nanoparticle-fluid mixture,” J. Thermophys. Heat Tr., 13, pp.474-480 (1999)
Xu, J. F., W. Ji, Z. X. Shen, S. H. Tang, X. R. Ye, D. Z. Jia, and X. Q. Xin, “Preparation and characterization of CuO nanocrystals,” J. Solid State Chem., 147, pp.516-519 (1999)
Xue, Q. Z., “Model for effective thermal conductivity of nanofluid,” Phys. Lett. A, 307, pp.313-317 (2003)
Yao, W. T., S. H. Yu, Y. Zhou, J. Jiang, Q. S. Wu, L. Zhang, and J. Jiang, “Formation of uniform CuO nanorods by spontaneous aggregation: selective synthesis of CuO, Cu2O, and Cu nanoparticles by a solid-liquid phase arc discharge process” J. Phys. Chem. B, 109, pp.14011-14016 (2005)
Yu, W. and S. U. S. Choi, “The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model,” J. Nanopart. Res., 5, pp.167-171 (2003)
Zhang, W., S. Ding, Z. Yang, A. Liu, Y. Qian, S. Tang, and S. Yang, “Growth of novel nanostructured copper oxide (CuO) films on copper foil,” J. Cryst. Growth, 291, pp.479-484 (2006)
Zhang, Y., S. Wang, X. Li, L. Chen, Y. Qian, and Z. Zhang, “CuO shuttle-like nanocrystals synthesized by oriented attachment,” J. Cryst. Growth, 291, pp.196-201 (2006)
Zhong, J., Z. Shen, Y. Yang, J. Chen, “Preparation and characterization of uniform nanosized cephradine by combination of reactive precipitation and liquid anti-solvent precipitation under high gravity environment,” Int. J. Pharm., 301, pp.286-293 (2005)
Zhu, D., X. Li, N. Wang, X. Wang, J. Gao, and H. Li, “Dispersion behavior and thermal conductivity characteristics of Al2O3-H2O nanofluids,” Curr. Appl. Phys., 9, pp.131-139 (2009)
Zhu, H. T., C. Y. Zhang, and Y. S. Yin, “Rapid synthesis of copper nanoparticles by sodium hypophosphite reduction in ethylene glycol under microwave irradiation,” J. Cryst. Growth, 270, pp.722-728 (2004)
王耀萱,「利用超重力系統開發奈米銀的綠色製程」,碩士學位論文,台大化工所 (2006)
王耀萱,「連續式旋轉盤反應器製備微粉之規模放大研究」,博士學位論文,台大化工所 (2010)
李文智,「以沸石擔持金屬氧化物製備吸附劑以進行磷化氫氣體吸附之研究」,碩士學位論文,國立交通大學環境工程所 (2006)
李佳鴻,「以超重力沉澱法進行SMZ藥品微粒化之研究」,碩士學位論文,台大化工所 (2007)
李誌展,「在超重力系統中製備碘化銀奈米粉體」,碩士學位論文,台大化工所 (2010)
李新芳,朱冬生,王先菊,汪南,李华,杨硕,「Cu-水纳米流体的分散行为及导热性能研究」,第162-169頁,第1期第39卷,功能材料 (2008)
李嘉甄、楊慕震、施瑞虎、溫明璋、張美惠,「使用旋轉填充床反應器的奈米流體製備法」,台灣專利 I263675 (2006)
柯清水,「化學化工大辭典」,第233-234頁,正文書局 (1998)
施瑞虎,楊慕震,楊勝,溫明璋,「奈米粉體反應器及其製備方法」,中華民國專利 I263540 (2006)
洪忠仁,「氧化銅奈米流體熱性質分析與應用研究」,碩士學位論文,台北科技大學冷凍空調工程系 (2005)
徐健力,「奈米流體之熱傳效能分析」,碩士學位論文,中原大學機械所 (2002)
陳昱劭,「旋轉填充床中黏度對質傳影響之研究」,博士學位論文,台大化工所(2004)
陳寶祺,「反應結晶技術與應用」,第212- 229頁,第10卷第9期,化工技術 (2002)
張名惠,「在超重力系統中製備氫氧化鎂與氧化鎂粉體」,碩士學位論文,台大化工所 (2005)
郭昱緯,「製備奈米銀之保護劑及操作模式之效應」,碩士學位論文,台大化工所 (2008)
黃勖維,「奈米流體熱流性質研究」,碩士學位論文,清華大學動力機械所 (2004)
曾丽、陈纪东、徐君、李生初,「纳米铜粉制备技术的研究进展」,第31-33頁,第5卷第3期,材料导报网刊 (2010)
經濟部工業局,「印刷電路板業環保工安整合性技術手冊」(2000)
鄭瑞慶,「利用微乳化法由氯化銅蝕刻廢液中回收奈米銅微粒及其在提升奈米熱流之研究」,碩士學位論文,元智大學化學工程與材料科學系 (2004)
戴怡德、王耀萱、張名惠,「奈米金屬粒子製備方法」,中華民國專利 I334854 (2010)
戴嘉德,「以超重力反應技術製備碳酸鹽微粒」,博士學位論文,台大化工所 (2007)
簡欣堂,「奈米微粒流體應用於光電散熱元件之實驗分析」,博士學位論文,台大機械所 (2004)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10064-
dc.description.abstract氧化銅為重要的陶瓷材料,其用途廣泛,可用於人造雨之成核劑、塗佈於太陽能板、或作為P型半導體與高溫超導體之材料。將氧化銅奈米粒子分散在流體中,可製成奈米流體,以提升流體之熱傳導係數。銅則為最重要的金屬之一,由於其導電度與導熱度佳,且價格上比銀、金等貴金屬更為經濟,故被廣泛用於電工業、電鍍業與半導體業,亦可作為觸媒。
文獻中製備奈米氧化銅之方法甚多,物理法最常見者為氣相凝結法,是利用電弧使銅塊材氣化成蒸氣,再使此蒸氣與較冷的液體接觸而凝固出均勻的奈米顆粒;而化學法則包括聲波化學法、溶膠凝膠法、水熱法及固相反應法等,係使用不同之化學反應製備出奈米氧化銅顆粒。銅微粒之製備方法除了電鍍法之外,以使用聯胺(N2H4)與硼氫化鈉(NaBH4)作為還原劑之化學還原法為主,而無電鍍法則多使用甲醛作為還原劑。由以上可知,能成功製備奈米氧化銅與銅之方法甚多,但這些方法多為實驗室規模,不但常需使用對環境有害之有機化合物,而耗時、耗能且生產速率有限等缺點皆使其不利於工業化。
近年來發展出之超重力技術則可克服以上缺點。其可分為旋轉填充床與旋轉盤反應器,由於其旋轉時強大的離心力能提供高度的混合效率,因此能使反應器內各位置之過飽和度高且均勻,有助於產生粒徑小且均勻的粉體,且其有產量大、操作時間短等優點,故相當有利於放大至工業化生產。而本實驗室在以超重力系統製備微粉方面,已探討了鹽類、難溶藥物以及金屬等物系,配合結晶理論並選擇適當的操作條件後,均可得到優異的微粒化成果。
本研究以超重力旋轉盤反應器製備氧化銅與銅微粒。氧化銅方面,以硫酸銅與碳酸鈉之液-液相反應製備出氧化銅前驅物,再將之煅燒至500°C生成氧化銅。在操作變數方面,發現硫酸銅濃度小於0.10 M、轉盤轉速大於1000 rpm、兩液體流量小於3.0 L/min、反應pH值於6左右可得到較小的氧化銅奈米粒子。硫酸銅濃度與碳酸鈉濃度為0.10 M、轉速4000 rpm、兩液體流量為3.0 L/min時產能可達34.6 kg/day,且體積平均粒徑在65 nm以下,而以場發射槍電子顯微鏡觀察為20-30 nm之球狀氧化銅粒子。以六偏磷酸鈉作為分散劑,將氧化銅製成CuO-水奈米流體,其熱傳導係數較文獻與理論計算值為高,於0.4 vol.%時可使熱傳導係數提升10.8 %。
銅微粒方面,利用較弱之還原劑葡萄糖或稀硝酸製備銅粒子。以葡萄糖作為還原劑時,於反應溫度約80°C、循環時間為15 min、NaOH與glucose濃度分別為1.0 M與0.1 M、Cu(OH)2濃度為0.02 M時,添加兩倍銅重量之PVP(poly vinylpyrrolidone)可得到最小的粒子,約100-300 nm,晶貌為多面體。另外,於旋轉盤反應器製備出的粒子小於以攪拌槽製備者。硝酸還原法方面,反應可於常溫下進行且可以連續式操作。其中添加六偏磷酸鈉作為反應物Cu2O之分散劑,而以1.1 g/L之PVP作為副添加劑時可得到類球狀、大小約100-300 nm的銅粒子,產率為79.2 %。硝酸濃度小於0.32 M時,反應速率會變慢使產率下降;超過0.64 M時,則因氧化力增強會產生部分的氧化銅(CuO)。將硝酸還原法產生之含銅廢液回收後,可於旋轉盤反應器中與氫氧化鈉或碳酸鈉反應,將之再製成氧化銅。
zh_TW
dc.description.abstractCopper(II) oxide is an important ceramic material that has many applications, such as ice nucleating agent for artificial rain, coating on solar panel, p-type semiconductor, and high-temperature superconductor. Copper oxide nanoparticles can be dispersed into fluids to become nanofluids, which can enhance the thermal conductivity of fluids. Copper is one of the most important metals, which is wildly used in electric industry, electroplating, and semiconductor because of it is cheaper than other noble metals such as silver and gold. It can be also used as a catalyst.
There are many methods for preparing copper oxide nanoparticles, and the most common physical one is the gas-condensation method, in which copper raw material is evaporated by a high-temperature arc and then the vapor is condensed by contacting with cold liquid to become uniform nanoparticles. The chemical synthetic methods including sonochemical, sol-gel, hydrothermal, and solid-state method, are to synthesize copper oxide via various chemical reactions. For preparing fine particles of copper, besides the electroplating method, most chemical reduction methods using hydrazine and sodium borohydride as reducing agents, and formaldehyde is also used as reducing agent for the electroless copper deposition. Although these methods are available for producing copper oxide and copper particles, most of the synthesizing methods stay in the laboratory, and toxic organic compounds are usually used. Moreover, the problems associated with energy-consumption, time-consumption, and slow production rate make them difficult to apply in industry.
The high-gravity technique (HiGee) has been developing in recent years, and it can overcome the problems illustrated above. Two types of equipment, i.e., the rotating packed-bed reactor (RPBR) and spinning disk reactor (SDR), have been applied in this regard. As the packed-bed or disk is rotating, the high centrifugal force can be generated and thus a uniform and high supersaturation through micromixing is achieved. As a result, small and uniform particles can be obtained. Moreover, the short operating time and mass production rate are also advantageous to scale-up for industrial production. In our laboratory, powders of several chemicals including salts, drugs, and metals have been investigated, and they were all successfully micronized using high-gravity technique by applying crystallization theories and choosing optimal operating variables.
The aim of this research is to synthesize fine powder of copper oxide and copper using a spinning disk reactor. For synthesizing copper oxide, the precursors of copper oxide were first prepared in a continuous mode through a liquid-liquid reaction using copper(II) sulfate and sodium carbonate as reactant. Then, the precursor particles were calcined up to 500°C to obtain copper oxide nanoparticles. Among the effects of operating variables, smaller copper oxide particles were obtained under reactant concentrations lower than 0.1 M, rotation speed higher than 1000 rpm, flow rates of reactant solutions lower than 3.0 L/min, and pH of slurry around 6. As the reactant concentrations were both 0.1 M, rotation speed was 4000 rpm, and flow rates were both 3.0 L/min, a production rate of 34.6 kg CuO/day can be achieved. The volume mean size of the product particles was smaller than 65 nm and the primary particle size was 20-30 nm observed under a field emission gun scanning electron microscope. Finally, a CuO-water nanofluid was prepared using sodium hexametaphosphate as the dispersant. The effective thermal conductivity of the nanofluid prepared in this study was higher than that reported in literature and that by theoretical calculation. The best result in the improvement of thermal conductivity was 10.8% when the solid content was 0.4 vol.%.
For preparing copper fine powders, weak-reductant glucose or dilute nitric acid was used as the reducing agent. As glucose was used, the smallest copper particles were obtained under the temperature of 80°C, recycle time of 15 min, weight ratio of PVP/Cu=2. The concentrations of Cu(OH)2, NaOH, and glucose were 0.02 M, 1.0 M, and 0.1 M, respectively. The morphology of copper particles were polyhydral and the size was around 100-300 nm. Furthermore, the size of copper particle synthesized using an SDR was smaller than that using a stirred tank. As nitric acid was used as the reducing agent, continuous operating mode can be used, and the reaction can proceed at room temperature. Sodium hexametaphosphate was added for dispersing the reactant, Cu2O. Spherical copper particles with size around 100-300 nm can be obtained with PVP(polyvinylpyrrolidone) as the co-additive in a concentration of 1.1 g/L PVP, and the yield was 79.2 %. When the concentration of nitric acid was lower than 0.32 M, the yield of copper particles decreased because of the slower reaction rate. However, as the concentration of nitric acid was higher than 0.64 M, the copper oxide was obtained because of a higher oxidation ability. Finally, the waste solution containing copper(II) ions, which was produced from nitric reduction process, can be recycled to react with NaOH or Na2CO3 to produce copper oxide particles using the SDR.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:59:21Z (GMT). No. of bitstreams: 1
ntu-100-D94524015-1.pdf: 10048593 bytes, checksum: 974acb5272e13c42a60abc2d9d9de96a (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents中文摘要I
英文摘要III
目錄VI
圖索引VIII
表索引XVII
第一章 緒論1
第二章 文獻回顧5
2.1 氧化銅之性質、應用與製備方法5
2.2 銅之性質、應用與製備方法13
2.3 奈米流體20
2.3.1 奈米流體的製備與應用20
2.3.2 奈米流體的熱傳增進機制24
2.3.3 奈米流體熱傳導係數相關理論27
2.3.4 奈米流體熱傳導係數之量測原理28
2.4 結晶動力學30
2.4.1 溶解度積與過飽和度30
2.4.2 結晶方式32
2.4.3 混合效率對結晶成核的影響34
2.5 超重力系統37
2.5.1 超重力系統的起源37
2.5.2 超重力系統簡介39
2.5.3 超重力系統應用於粉體微粒化41
第三章 實驗原理與方法49
3.1 實驗藥品49
3.2 實驗設備與實驗方法51
3.2.1 氧化銅粒子及其前驅物之製備51
3.2.2 以葡萄糖還原法製備銅粒子54
3.2.3 以硝酸還原法製備銅粒子60
3.3 產物分析64
3.3.1 分析儀器64
3.3.2 以X光繞射圖譜分析銅之混合物各成份比例65
3.3.3 分散方法與粒徑量測68
3.4 奈米流體的製備與分析…69
3.4.1 氧化銅奈米流體之製備69
3.4.2 奈米流體之熱傳導係數量測與預測69
第四章 以旋轉盤反應器製備氧化銅奈米粒子71
4.1反應物濃度效應71
4.2 流量效應77
4.3 轉盤轉速效應80
4.4 反應pH值效應82
4.5 氧化銅及其前驅物性質分析84
4.6 氧化銅奈米流體性質分析90
4.6.1 氧化銅懸浮液之界面電位90
4.6.2 氧化銅奈米流體之熱傳導係數分析92
第五章 以旋轉盤反應器製備銅微粒96
5.1 葡萄糖還原法96
5.1.1常溫下葡萄糖還原法之可行性96
5.1.2 以燒杯實驗尋找反應條件98
5.1.3旋轉盤反應器中循環式操作之保護劑效應101
5.1.4 操作模式效應105
5.1.5 旋轉盤反應器中兩階段式操作之保護劑效應110
5.2 硝酸還原法112
5.2.1 添加劑效應112
5.2.2 添加NaHMP時,副添加劑效應116
5.2.3 硝酸濃度效應119
5.2.4 反應副生成物銅(II)離子之回收122
5.3 葡萄糖還原法與硝酸還原法之結果比較124
第六章 結論126
參考文獻128
dc.language.isozh-TW
dc.title以超重力旋轉盤反應器製備銅及氧化銅微粒zh_TW
dc.titleSynthesis of Copper and Copper Oxide Fine Powders Using a High-Gravity Spinning Disk Reactoren
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree博士
dc.contributor.oralexamcommittee吳乃立,劉懷勝,史宗淮,陳昱劭
dc.subject.keyword銅,氧化銅,超重力技術,旋轉盤反應器,奈米粒子,zh_TW
dc.subject.keywordcopper,copper oxide,high-gravity technique,spinning disk reactor,nanoparticles,en
dc.relation.page138
dc.rights.note同意授權(全球公開)
dc.date.accepted2011-07-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf9.81 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved