Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 腦與心智科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100625
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃憲松zh_TW
dc.contributor.advisorHsien-Sung Huangen
dc.contributor.author陳品伃zh_TW
dc.contributor.authorPin-Yu Chenen
dc.date.accessioned2025-10-08T16:09:42Z-
dc.date.available2025-08-07-
dc.date.copyright2025-10-08-
dc.date.issued2025-
dc.date.submitted2025-08-08-
dc.identifier.citation1 Abramowitz, L. K. & Bartolomei, M. S. Genomic imprinting: recognition and marking of imprinted loci. Curr Opin Genet Dev 22, 72–78 (2012). https://doi.org/10.1016/j.gde.2011.12.001
2 SanMiguel, J. M. & Bartolomei, M. S. DNA methylation dynamics of genomic imprinting in mouse development. Biol Reprod 99, 252–262 (2018). https://doi.org/10.1093/biolre/ioy036
3 Wutz, A. RNA-mediated silencing mechanisms in mammalian cells. Prog Mol Biol Transl Sci 101, 351–376 (2011). https://doi.org/10.1016/B978-0-12-387685-0.00011-1
4 Elhamamsy, A. R. Role of DNA methylation in imprinting disorders: an updated review. J Assist Reprod Genet 34, 549–562 (2017). https://doi.org/10.1007/s10815-017-0895-5
5 Frost, J. M. & Moore, G. E. The importance of imprinting in the human placenta. PLoS Genet 6, e1001015 (2010). https://doi.org/10.1371/journal.pgen.1001015
6 Thamban, T., Agarwaal, V. & Khosla, S. Role of genomic imprinting in mammalian development. J Biosci 45 (2020).
7 O'Brien, E. K. & Wolf, J. B. The coadaptation theory for genomic imprinting. Evol Lett 1, 49–59 (2017). https://doi.org/10.1002/evl3.5
8 Badcock, C. & Crespi, B. Battle of the sexes may set the brain. Nature 454, 1054–1055 (2008). https://doi.org/10.1038/4541054a
9 da Rocha, S. T., Edwards, C. A., Ito, M., Ogata, T. & Ferguson-Smith, A. C. Genomic imprinting at the mammalian Dlk1-Dio3 domain. Trends Genet 24, 306–316 (2008). https://doi.org/10.1016/j.tig.2008.03.011
10 Gardiner, E. et al. Imprinted DLK1-DIO3 region of 14q32 defines a schizophrenia-associated miRNA signature in peripheral blood mononuclear cells. Mol Psychiatry 17, 827–840 (2012). https://doi.org/10.1038/mp.2011.78
11 Benetatos, L. et al. The microRNAs within the DLK1-DIO3 genomic region: involvement in disease pathogenesis. Cell Mol Life Sci 70, 795–814 (2013). https://doi.org/10.1007/s00018-012-1080-8
12 Shiura, H., Kitazawa, M., Ishino, F. & Kaneko-Ishino, T. Roles of retrovirus-derived PEG10 and PEG11/RTL1 in mammalian development and evolution and their involvement in human disease. Front Cell Dev Biol 11, 1273638 (2023). https://doi.org/10.3389/fcell.2023.1273638
13 Seitz, H. et al. Imprinted microRNA genes transcribed antisense to a reciprocally imprinted retrotransposon-like gene. Nat Genet 34, 261–262 (2003). https://doi.org/10.1038/ng1171
14 Davis, E. et al. RNAi-mediated allelic trans-interaction at the imprinted Rtl1/Peg11 locus. Curr Biol 15, 743–749 (2005). https://doi.org/10.1016/j.cub.2005.02.060
15 Kitazawa, M. et al. Deficiency and overexpression of Rtl1 in the mouse cause distinct muscle abnormalities related to Temple and Kagami-Ogata syndromes. Development 147 (2020). https://doi.org/10.1242/dev.185918
16 Edwards, C. A. et al. The evolution of the DLK1-DIO3 imprinted domain in mammals. PLoS Biol 6, e135 (2008). https://doi.org/10.1371/journal.pbio.0060135
17 Kitazawa, M., Sutani, A., Kaneko-Ishino, T. & Ishino, F. The role of eutherian-specific RTL1 in the nervous system and its implications for the Kagami-Ogata and Temple syndromes. Genes Cells 26, 165–179 (2021). https://doi.org/10.1111/gtc.12830
18 Chou, M.-Y. et al. RTL1/PEG11 imprinted in human and mouse brain mediates anxiety-like and social behaviors and regulates neuronal excitability in the locus coeruleus. Human Molecular Genetics 31, 3161–3180 (2022). https://doi.org/10.1093/hmg/ddac110
19 Giustino, T. F., Fitzgerald, P. J., Ressler, R. L. & Maren, S. Locus coeruleus toggles reciprocal prefrontal firing to reinstate fear. Proc Natl Acad Sci U S A 116, 8570–8575 (2019). https://doi.org/10.1073/pnas.1814278116
20 Levinson, S. et al. A structural connectivity atlas of limbic brainstem nuclei. Front Neuroimaging 1, 1009399 (2022). https://doi.org/10.3389/fnimg.2022.1009399
21 Qi, G. et al. NAc-VTA circuit underlies emotional stress-induced anxiety-like behavior in the three-chamber vicarious social defeat stress mouse model. Nat Commun 13, 577 (2022). https://doi.org/10.1038/s41467-022-28190-2
22 Ferran, J. L. et al. Multi-neuromeric origin of tyrosine hydroxylase-positive neurons within the substantia nigra and ventral tegmental area. Front Neuroanat 19, 1612529 (2025). https://doi.org/10.3389/fnana.2025.1612529
23 Namipashaki, A. et al. Investigating Transcriptomic Profile and Neurite Outgrowth in Adhd Using Induced Pluripotent Stem Cells Differentiated into Dopamine Neurons. Eur Neuropsychopharm 87, 184–185 (2024).
24 Wang, Y. et al. Delivery of CRISPR/Cas9 system by AAV as vectors for gene therapy. Gene 927, 148733 (2024). https://doi.org/10.1016/j.gene.2024.148733
25 Hana, S. et al. Highly efficient neuronal gene knockout in vivo by CRISPR-Cas9 via neonatal intracerebroventricular injection of AAV in mice. Gene Ther 28, 646–658 (2021). https://doi.org/10.1038/s41434-021-00224-2
26 Platt, R. J. et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455 (2014). https://doi.org/10.1016/j.cell.2014.09.014
27 Labun, K. et al. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res 47, W171–W174 (2019). https://doi.org/10.1093/nar/gkz365
28 Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34, 184–191 (2016). https://doi.org/10.1038/nbt.3437
29 Chiou, S. H. et al. Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing. Genes Dev 29, 1576–1585 (2015). https://doi.org/10.1101/gad.264861.115
30 Walantus, W., Castaneda, D., Elias, L. & Kriegstein, A. In utero intraventricular injection and electroporation of E15 mouse embryos. J Vis Exp, 239 (2007). https://doi.org/10.3791/239
31 Huang, D. F. et al. Neuronal splicing regulator RBFOX3 mediates seizures via regulating Vamp1 expression preferentially in NPY-expressing GABAergic neurons. Proc Natl Acad Sci U S A 119, e2203632119 (2022). https://doi.org/10.1073/pnas.2203632119
32 Kraeuter, A. K., Guest, P. C. & Sarnyai, Z. The Open Field Test for Measuring Locomotor Activity and Anxiety-Like Behavior. Methods Mol Biol 1916, 99–103 (2019). https://doi.org/10.1007/978-1-4939-8994-2_9
33 Bourin, M. & Hascoet, M. The mouse light/dark box test. Eur J Pharmacol 463, 55–65 (2003). https://doi.org/10.1016/s0014-2999(03)01274-3
34 Kraeuter, A. K., Guest, P. C. & Sarnyai, Z. The Elevated Plus Maze Test for Measuring Anxiety-Like Behavior in Rodents. Methods Mol Biol 1916, 69–74 (2019). https://doi.org/10.1007/978-1-4939-8994-2_4
35 Blasco-Serra, A., Gonzalez-Soler, E. M., Cervera-Ferri, A., Teruel-Marti, V. & Valverde-Navarro, A. A. A standardization of the Novelty-Suppressed Feeding Test protocol in rats. Neurosci Lett 658, 73–78 (2017). https://doi.org/10.1016/j.neulet.2017.08.019
36 McPherson, J. & Mohr, P. The role of item extremity in the emergence of keying-related factors: an exploration with the life orientation test. Psychol Methods 10, 120–131 (2005). https://doi.org/10.1037/1082-989X.10.1.120
37 Lazic, S. E. Analytical strategies for the marble burying test: avoiding impossible predictions and invalid p-values. BMC Res Notes 8, 141 (2015). https://doi.org/10.1186/s13104-015-1062-7
38 Yamashita, M. et al. Impaired cliff avoidance reaction in dopamine transporter knockout mice. Psychopharmacology (Berl) 227, 741–749 (2013). https://doi.org/10.1007/s00213-013-3009-9
39 Kalueff, A. V. et al. Neurobiology of rodent self-grooming and its value for translational neuroscience. Nat Rev Neurosci 17, 45–59 (2016). https://doi.org/10.1038/nrn.2015.8
40 Kaidanovich-Beilin, O., Lipina, T., Vukobradovic, I., Roder, J. & Woodgett, J. R. Assessment of social interaction behaviors. J Vis Exp (2011). https://doi.org/10.3791/2473
41 Chakrabarty, P. et al. Capsid serotype and timing of injection determines AAV transduction in the neonatal mice brain. PLoS One 8, e67680 (2013). https://doi.org/10.1371/journal.pone.0067680
42 Yu, X. et al. Dysfunction of ventral tegmental area GABA neurons causes mania-like behavior. Mol Psychiatry 26, 5213–5228 (2021). https://doi.org/10.1038/s41380-020-0810-9
43 Tomasi, D. & Volkow, N. D. Functional connectivity of substantia nigra and ventral tegmental area: maturation during adolescence and effects of ADHD. Cereb Cortex 24, 935–944 (2014). https://doi.org/10.1093/cercor/bhs382
44 Vasileva, A., Linden, R. M. & Jessberger, R. Homologous recombination is required for AAV-mediated gene targeting. Nucleic Acids Res 34, 3345–3360 (2006). https://doi.org/10.1093/nar/gkl455
45 Brovin, A., Minskaia, E., Sabantsev, M., Chuvpilo, S. & Karabelsky, A. Protein trans-splicing: optimization of intein-mediated GFP assembly as a model for the development of gene therapy. Front Bioeng Biotechnol 12, 1488912 (2024). https://doi.org/10.3389/fbioe.2024.1488912
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100625-
dc.description.abstract逆轉錄轉座子Gag樣基因1(Rtl1)是一個父源性表達的印跡基因,廣為人知其在胎盤及胎兒發育中的關鍵角色。令人意外的是,我們發現Rtl1在成鼠大腦中依然持續表達,特別集中於單胺能區域,例如腹側被蓋區(VTA)與藍斑核(LC)這兩個腦區對於情緒、動機與喚醒的調控至關重要。然而,Rtl1在發育完成後於這些神經迴路中所扮演的角色仍未明確。
為了釐清其功能,我們利用AAV-CRISPR/Cas9系統,選擇性敲落青少年期小鼠腹側被蓋區或藍斑核中的Rtl1表現。結果顯示,雖然在藍斑核中Rtl1的敲落對行為表現無明顯影響,但在腹側被蓋區中抑制Rtl1表達則導致探索行為增加、衝動控制改變以及輕微的運動障礙,顯示Rtl1在多巴胺系統中具有調節行為的作用。值得注意的是,這些行為變化並未伴隨腹側被蓋區內多巴胺含量的改變,但卻與週邊多巴胺濃度及酪胺酸羥化酶表現的變動有關。
我們亦將上述發現與早期Rtl1敲落模型進行比較。出生即缺乏Rtl1的小鼠表現出類似焦慮的行為,而在胚胎階段敲落Rtl1表現則導致明顯的過動行為。綜合而言,我們的研究結果指出,Rtl1在成鼠大腦中仍具功能性意義,並以區域性及時序性的方式參與行為調節。
zh_TW
dc.description.abstractRetrotransposon Gag like 1 (Rtl1) is a paternally expressed imprinted gene known for its essential role in placental and fetal development. Unexpectedly, we found that Rtl1 remains actively expressed in the adult brain, particularly in monoaminergic regions like the ventral tegmental area (VTA) and locus coeruleus (LC), which are critical for regulating emotion, motivation, and arousal. However, the functions of Rtl1 in these neural circuits beyond development have remained unclear.
To investigate this, we used an AAV-mediated CRISPR/Cas9 approach to selectively knock down Rtl1 in either the adult VTA or LC. While Rtl1 knockdown in LC had no significant behavioral effects, its reduction in the VTA led to increased exploratory activity, impaired impulse control, and mild motor deficits, highlighting the role for Rtl1 in behavioral regulation via the dopaminergic system. Notably, these behavioral changes occurred without affecting dopamine content within the VTA itself but were associated with changes in peripheral dopamine levels and tyrosine hydroxylase expression.
We further compared these effects to early-life Rtl1 knockdown models. Mice with Rtl1 loss from birth exhibited anxiety-like behaviors, while embryonic knockdown led to marked hyperactivity.
Together, our findings suggest that Rtl1 continues to play a functional role in the adult brain and contributes to behavioral regulation in a manner dependent on both brain region and developmental stage.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-10-08T16:09:42Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-10-08T16:09:42Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iv
Abstract v
Summary Graph vii
Contents viii
List of Figures xiv
List of Supplemental Figures xv
Chapter 1. Introduction 1
1. Genomic Imprinting and Epigenetic Regulation 1
2. Evolutionary Theories of Imprinted Genes in Development and Brain 1
3. The Dlk1-Dio3 Domain and the Functional Significance of Rtl1 2
4. Rtl1 in the Brain: An Overlooked Role 4
5. Knowledge Gaps and Study Objectives 6
Chapter 2. Materials and Method 7
1. Animals 7
2. DNA Extraction and Genotyping 7
3. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) sgRNA design for Rtl1 8
4. Cell Culture, Transfection, and FACS Sorting 10
5. Immunofluorescence staining 11
6. Western blotting 12
7. Dopamine Quantification by ELISA 13
8. In utero intracellular injection 14
9. Intracerebroventricular Viral Injection 15
10. Stereotaxic Surgery 16
11. Behavioral assessments 18
11.1. Open field test (OFT) 18
11.2. Light dark box test 19
11.3. Elevated plus maze test 19
11.4. Novelty suppressor feeding test (NSFT) 20
11.5. Emergency test 21
11.6. Marble burying test 22
11.7. Cliff avoidance test 22
11.8. Escaped home-cage test 23
11.9. Grooming recording 24
11.10. Three-chambered test 24
11.11. Catwalk 26
11.12. Wire hang test 27
11.13. Rotarod 28
12. Statistical analysis 28
Chapter 3. Results 30
1. Targeted Downregulation of Rtl1 Using AAV-Mediated CRISPR/Cas9 System 30
2. Embryonic Knockdown Rtl1 mice show hyperactive and less anxious 31
3. Postnatal Knockdown Rtl1 mice show anxiety-like behavior and hypoactivity 31
4. Anxiety-like behaviors are not observed following LC-RTL1 knockdown in the adolescent mice 32
5. Reduced expression of Rtl1 in the LC from adolescence onward has no significant impact on sociability or social novelty behavior. 34
6. RTL1 Is Predominantly Expressed in Tyrosine Hydroxylase–Positive Neurons in the Mouse Ventral Tegmental Area 35
7. Anxiety-like behaviors are not observed following RTL1 knockdown in the adolescence VTA 36
8. RTL1 KD in the VTA Induces Impulsivity-Associated Behaviors in Mice 38
9. VTA-Rtl1 KD mice Increases Peripheral Exploration and Reduces Immobility 39
10. VTA-Rtl1 KD mice Promotes Exploratory Activity 39
11. Marble Burying Behavior Remained Unchanged Following VTA-Rtl1 Knockdown 40
12. VTA-Rtl1 Knockdown Increases Grooming and Induces Abnormal Post-Grooming Motor Behavior 40
13. VTA-Rtl1 Knockdown Impairs Motor Performance and Learning on the Rotarod 41
14. VTA-Rtl1 knockdown seems increase VTA neuron activity. 42
15. VTA-Rtl1 Knockdown Reduces Peripheral Dopamine Levels Without Altering VTA Dopamine Content 42
16. Rtl1 Knockdown Alters Tyrosine Hydroxylase Protein Expression Patterns in the LC and VTA 43
17. Adolescent double knockdown of Rtl1 in the LC and VTA induces high mortality. 44
18. Excitation of Locus Coeruleus to Paraventricular Hypothalamus Projection Promotes Anxiety-Like Behavior 44
Chapter 4. Discussion 47
1. Technical Challenges and Strategic Advances in Region-Specific Rtl1 Knockdown Using AAV-CRISPR Systems. 47
2. Dual Contributions of Embryonic and Postnatal Rtl1 Expression to Emotional Behavior 49
3. LC and VTA Rtl1 Knockdown Does Not Induce anxiety related behavioral Changes Despite Molecular Perturbations 52
4. Elevated Neuronal Excitability and Dopamine Dysregulation Underlie Hyperactivity in VTA-Rtl1 Knockdown Mice 54
5. Limitation of this study 57
6. Limited Rescue of Rtl1 Function by AAV-Mediated Strategies 58
Chapter 5. Figure and Tables 60
Chapter 6. Supplementary Materials 87
Chapter 7. References 97
-
dc.language.isoen-
dc.subject印跡基因,CRISPR/Cas9,藍斑核,腹側被蓋區,焦慮行為,衝動行為,小鼠胚胎側腦室注射,zh_TW
dc.subjectRtl1,AAV-CRISPR/Cas9,Stage specific knockdown,Ventral tegmental area,Locus coeruleus,intra-cerebroventricular injection,en
dc.title利用AAV介導的CRISPR/Cas9技術在小鼠模型中探討Rtl1在大腦中的功能zh_TW
dc.titleInvestigating Rtl1 Function in the Brain Using AAV-Mediated CRISPR/Cas9 in Mouse Modelen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee姚皓傑;林劭品;蔡金吾zh_TW
dc.contributor.oralexamcommitteeHau-Jie Yau;Shau-Ping Lin;Jin-Wu Tsaien
dc.relation.page100-
dc.identifier.doi10.6342/NTU202504276-
dc.rights.note未授權-
dc.date.accepted2025-08-08-
dc.contributor.author-college醫學院-
dc.contributor.author-dept腦與心智科學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:腦與心智科學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
8.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved