Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100571
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余明俊zh_TW
dc.contributor.advisorMing-Jiun Yuen
dc.contributor.author黃晨瑄zh_TW
dc.contributor.authorChen-Shiuan Huangen
dc.date.accessioned2025-10-07T16:07:59Z-
dc.date.available2026-01-01-
dc.date.copyright2025-10-07-
dc.date.issued2025-
dc.date.submitted2025-07-25-
dc.identifier.citationChang, B., K.K.H. Svoboda, and X. Liu, Cell polarization: From epithelial cells to odontoblasts. Eur J Cell Biol, 2019. 98(1): p. 1-11.
2. Guo, X. and J. Dong, Protein polarization: Spatiotemporal precisions in cell division and differentiation. Curr Opin Plant Biol, 2022. 68: p. 102257.
3. Sai, X., et al., Planar cell polarity-dependent asymmetric organization of microtubules for polarized positioning of the basal body in node cells. Development, 2022. 149(9).
4. Ridley, A.J., et al., Cell migration: integrating signals from front to back. Science, 2003. 302(5651): p. 1704-9.
5. Buckley, C.E. and D. St Johnston, Apical-basal polarity and the control of epithelial form and function. Nat Rev Mol Cell Biol, 2022. 23(8): p. 559-577.
6. Ahn, Y. and J.H. Park, Novel Potential Therapeutic Targets in Autosomal Dominant Polycystic Kidney Disease from the Perspective of Cell Polarity and Fibrosis. Biomol Ther (Seoul), 2024. 32(3): p. 291-300.
7. Fedeles, S. and A.R. Gallagher, Cell polarity and cystic kidney disease. Pediatr Nephrol, 2013. 28(8): p. 1161-72.
8. Happe, H., E. de Heer, and D.J. Peters, Polycystic kidney disease: the complexity of planar cell polarity and signaling during tissue regeneration and cyst formation. Biochim Biophys Acta, 2011. 1812(10): p. 1249-55.
9. Wilson, P.D., Apico-basal polarity in polycystic kidney disease epithelia. Biochim Biophys Acta, 2011. 1812(10): p. 1239-48.
10. Guo, C. and J. Shen, Cytoskeletal Organization and Cell Polarity in the Pathogenesis of Crohn's Disease. Clin Rev Allergy Immunol, 2021. 60(2): p. 164-174.
11. Huang, L.J., et al., Multiomics analyses reveal a critical role of selenium in controlling T cell differentiation in Crohn's disease. Immunity, 2021. 54(8): p. 1728-1744 e7.
12. Gong, M., et al., MARK2 variants cause autism spectrum disorder via the downregulation of WNT/β-catenin signaling pathway. Am J Hum Genet, 2024. 111(11): p. 2392-2410.
13. Borrie, S.C. and C. Bagni, Neurons acetylate their way to migration. EMBO Rep, 2016. 17(12): p. 1674-1676.
14. Atri, C., F.Z. Guerfali, and D. Laouini, Role of Human Macrophage Polarization in Inflammation during Infectious Diseases. Int J Mol Sci, 2018. 19(6).
15. Cerdeira, C.D. and M. Brigagão, Targeting Macrophage Polarization in Infectious Diseases: M1/M2 Functional Profiles, Immune Signaling and Microbial Virulence Factors. Immunol Invest, 2024. 53(7): p. 1030-1091.
16. Leiz, J. and K.M. Schmidt-Ott, Claudins in the Renal Collecting Duct. International Journal of Molecular Sciences, 2020. 21(1): p. 221.
17. Szaszi, K. and Y. Amoozadeh, New insights into functions, regulation, and pathological roles of tight junctions in kidney tubular epithelium. Int Rev Cell Mol Biol, 2014. 308: p. 205-71.
18. Kirk, A., et al., Differential expression of claudin tight junction proteins in the human cortical nephron. Nephrology Dialysis Transplantation, 2010. 25(7): p. 2107-2119.
19. Boscher, C., et al., Polarization and sprouting of endothelial cells by angiopoietin-1 require PAK2 and paxillin-dependent Cdc42 activation. Mol Biol Cell, 2019. 30(17): p. 2227-2239.
20. Campbell, H.K., et al., PAK2 links cell survival to mechanotransduction and metabolism. J Cell Biol, 2019. 218(6): p. 1958-1971.
21. Kosoff, R.E., et al., Pak2 restrains endomitosis during megakaryopoiesis and alters cytoskeleton organization. Blood, 2015. 125(19): p. 2995-3005.
22. Radu, M., et al., PAK signalling during the development and progression of cancer. Nat Rev Cancer, 2014. 14(1): p. 13-25.
23. Koh, W., R.D. Mahan, and G.E. Davis, Cdc42- and Rac1-mediated endothelial lumen formation requires Pak2, Pak4 and Par3, and PKC-dependent signaling. J Cell Sci, 2008. 121(Pt 7): p. 989-1001.
24. Renkema, G.H., K. Pulkkinen, and K. Saksela, Cdc42/Rac1-mediated activation primes PAK2 for superactivation by tyrosine phosphorylation. Mol Cell Biol, 2002. 22(19): p. 6719-25.
25. Bernstein, B.W. and J.R. Bamburg, ADF/cofilin: a functional node in cell biology. Trends Cell Biol, 2010. 20(4): p. 187-95.
26. Kodama, T., et al., The effect of a novel immunosuppressive drug, a PAK-2 inhibitor, on macrophage differentiation/polarization in a rat small intestinal transplantation model. Transpl Immunol, 2019. 57: p. 101246.
27. Yu, M.J., et al., Systems-level analysis of cell-specific AQP2 gene expression in renal collecting duct. Proc Natl Acad Sci U S A, 2009. 106(7): p. 2441-6.
28. Yang, C.R., et al., Deep proteomic profiling of vasopressin-sensitive collecting duct cells. I. Virtual Western blots and molecular weight distributions. Am J Physiol Cell Physiol, 2015. 309(12): p. C785-98.
29. Uawithya, P., et al., Transcriptional profiling of native inner medullary collecting duct cells from rat kidney. Physiol Genomics, 2008. 32(2): p. 229-53.
30. Yu, M.J., et al., Large-scale quantitative LC-MS/MS analysis of detergent-resistant membrane proteins from rat renal collecting duct. Am J Physiol Cell Physiol, 2008. 295(3): p. C661-78.
31. Moeller, H.B., S. Rittig, and R.A. Fenton, Nephrogenic diabetes insipidus: essential insights into the molecular background and potential therapies for treatment. Endocr Rev, 2013. 34(2): p. 278-301.
32. Knepper, M.A., T.H. Kwon, and S. Nielsen, Molecular physiology of water balance. N Engl J Med, 2015. 372(14): p. 1349-58.
33. Sasaki, S., Aquaporin 2: from its discovery to molecular structure and medical implications. Mol Aspects Med, 2012. 33(5-6): p. 535-46.
34. Jung, H.J. and T.H. Kwon, Molecular mechanisms regulating aquaporin-2 in kidney collecting duct. Am J Physiol Renal Physiol, 2016. 311(6): p. F1318-f1328.
35. Vukicevic, T., et al., The Trafficking of the Water Channel Aquaporin-2 in Renal Principal Cells-a Potential Target for Pharmacological Intervention in Cardiovascular Diseases. Front Pharmacol, 2016. 7: p. 23.
36. J.-P. Duong Van Huyen, M.B., A. Vandewalle, Differential Effects of Aldosterone and vasopressin on Chloride Fluxes in Transimmortalized Mouse Cortical Collecting Duct Cells. J. Membrane Biol., 1998.
37. Yang, H.H., et al., Glucocorticoid Receptor Maintains Vasopressin Responses in Kidney Collecting Duct Cells. Front Physiol, 2022. 13: p. 816959.
38. Mannherz, H.G., et al., The interaction of bovine pancreatic deoxyribonuclease I and skeletal muscle actin. Eur J Biochem, 1980. 104(2): p. 367-79.
39. Cramer, L.P., L.J. Briggs, and H.R. Dawe, Use of fluorescently labelled deoxyribonuclease I to spatially measure G-actin levels in migrating and non-migrating cells. Cell Motil Cytoskeleton, 2002. 51(1): p. 27-38.
40. Mouilleron, S., et al., Structure of a pentavalent G-actin*MRTF-A complex reveals how G-actin controls nucleocytoplasmic shuttling of a transcriptional coactivator. Sci Signal, 2011. 4(177): p. ra40.
41. Wang, Y., J.A. Mack, and E.V. Maytin, CD44 inhibits alpha-SMA gene expression via a novel G-actin/MRTF-mediated pathway that intersects with TGFbetaR/p38MAPK signaling in murine skin fibroblasts. J Biol Chem, 2019. 294(34): p. 12779-12794.
42. Schliwa, M., Action of cytochalasin D on cytoskeletal networks. J Cell Biol, 1982. 92(1): p. 79-91.
43. Miranda, M.Z., et al., MRTF: Basic Biology and Role in Kidney Disease. Int J Mol Sci, 2021. 22(11).
44. Kelpsch, D.J. and T.L. Tootle, Nuclear Actin: From Discovery to Function. Anat Rec (Hoboken), 2018. 301(12): p. 1999-2013.
45. Sen, B., et al., Nuclear actin structure regulates chromatin accessibility. Nat Commun, 2024. 15(1): p. 4095.
46. Miralles, F., et al., Actin Dynamics Control SRF Activity by Regulation of Its Coactivator MAL. Cell, 2003. 113(3): p. 329-342.
47. Sidorenko, E. and M.K. Vartiainen, Nucleoskeletal regulation of transcription: Actin on MRTF. Exp Biol Med (Maywood), 2019. 244(15): p. 1372-1381.
48. Wei, M., et al., Nuclear actin regulates inducible transcription by enhancing RNA polymerase II clustering. Science Advances, 2020. 6(16): p. eaay6515.
49. Gasparics, Á. and A. Sebe, MRTFs- master regulators of EMT. Developmental Dynamics, 2018. 247(3): p. 396-404.
50. Small, E.M., The Actin–MRTF–SRF Gene Regulatory Axis and Myofibroblast Differentiation. Journal of Cardiovascular Translational Research, 2012. 5(6): p. 794-804.
51. Radin, M.J., et al., Aquaporin-2 regulation in health and disease. Vet Clin Pathol, 2012. 41(4): p. 455-70.
52. Valenti, G., et al., Minireview: aquaporin 2 trafficking. Endocrinology, 2005. 146(12): p. 5063-70.
53. Chou, C.L., et al., Non-muscle myosin II and myosin light chain kinase are downstream targets for vasopressin signaling in the renal collecting duct. J Biol Chem, 2004. 279(47): p. 49026-35.
54. Yui, N., et al., AQP2 is necessary for vasopressin‐ and forskolin‐mediated filamentous actin depolymerization in renal epithelial cells. Biology Open, 2011. 1(2): p. 101-108.
55. Klussmann, E., et al., An inhibitory role of Rho in the vasopressin-mediated translocation of aquaporin-2 into cell membranes of renal principal cells. J Biol Chem, 2001. 276(23): p. 20451-7.
56. Riethmüller, C., et al., Translocation of aquaporin-containing vesicles to the plasma membrane is facilitated by actomyosin relaxation. Biophys J, 2008. 94(2): p. 671-8.
57. Noda, Y., et al., Reciprocal interaction with G-actin and tropomyosin is essential for aquaporin-2 trafficking. J Cell Biol, 2008. 182(3): p. 587-601.
58. Ho, C.H., et al., alpha-Actinin 4 Links Vasopressin Short-Term and Long-Term Regulation of Aquaporin-2 in Kidney Collecting Duct Cells. Front Physiol, 2021. 12: p. 725172.
59. Loo, C.S., et al., Quantitative apical membrane proteomics reveals vasopressin-induced actin dynamics in collecting duct cells. Proc Natl Acad Sci U S A, 2013. 110(42): p. 17119-24.
60. Noda, Y. and S. Sasaki, The role of actin remodeling in the trafficking of intracellular vesicles, transporters, and channels: focusing on aquaporin-2. Pflugers Arch, 2008. 456(4): p. 737-45.
61. Kortenoeven, M.L., et al., In mpkCCD cells, long-term regulation of aquaporin-2 by vasopressin occurs independent of protein kinase A and CREB but may involve Epac. Am J Physiol Renal Physiol, 2012. 302(11): p. F1395-401.
62. Murillo-de-Ozores, A.R., et al., CREB-family transcription factors and vasopressin-mediated regulation of Aqp2 gene transcription. bioRxiv, 2025.
63. Lin, S.T., et al., Transcription Factor Elf3 Modulates Vasopressin-Induced Aquaporin-2 Gene Expression in Kidney Collecting Duct Cells. Front Physiol, 2019. 10: p. 1308.
64. Field, J. and E. Manser, The PAKs come of age: Celebrating 18 years of discovery. Cell Logist, 2012. 2(2): p. 54-58.
65. Chen, X.-P., et al., PAK2 as a therapeutic target in cancer: Mechanisms, challenges, and future perspectives. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 2025. 1880(1): p. 189246.
66. Carmosino, M., et al., Axial heterogeneity of vasopressin-receptor subtypes along the human and mouse collecting duct. American Journal of Physiology-Renal Physiology, 2007. 292(1): p. F351-F360.
67. Giesecke, T., et al., Vasopressin Increases Urinary Acidification via V1a Receptors in Collecting Duct Intercalated Cells. J Am Soc Nephrol, 2019. 30(6): p. 946-961.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100571-
dc.description.abstract腎臟上皮細胞的極性對於進行方向性的物質運輸至關重要,而這個過程仰賴正確的細胞接合結構與動態穩定的肌動蛋白骨架。Pak2是一種 p21活化型激酶,已知在多種細胞中參與細胞骨架與極性的調控,但其在腎臟集尿管細胞中的功能尚未明確。本研究顯示,在腎臟集尿管細胞mpkCCD中降低Pak2表現會使跨上皮電阻下降以及接合蛋白 ZO-1 和 E-cadherin 的錯誤定位,代表細胞極化受損。此外,我們觀察到降低Pak2表現會使細胞質中單體肌動蛋白(G-actin)顯著升高,顯示肌動蛋白聚合受阻。更重要的是,Pak2表現下降也導致腦下垂體加壓素第二型受體(Avpr2)和水通道蛋白2(Aqp2)基因的 mRNA表現量降低,而這兩者皆是血管加壓素(vasopressin)訊號傳導的重要組成。使用細胞骨架聚合抑制劑 cytochalasin D處理細胞,模擬細胞Pak2降低的狀況,同樣可以觀察到提升G-actin水平、破壞細胞極性並抑制Avpr2和Aqp2基因表現,進一步證實G-actin升高對這些效應具有關鍵影響。整體而言,本研究發現 Pak2在維持腎臟集尿管細胞的細胞骨架動態、細胞極性,以及血管加壓素相關基因表達中扮演關鍵角色,並揭示了細胞骨架與基因轉錄之間新的調控連結。zh_TW
dc.description.abstractCell polarization is essential for vectorial transport in renal epithelial cells and relies on proper junctional organization and actin cytoskeletal dynamics. Pak2, a p21-activated kinase, is known to regulate cytoskeletal organization and polarity in various cell types, but its role in kidney collecting duct cells remains unclear. In this study, we show that Pak2 knockdown in kidney collecting duct cells (mpkCCD) disrupts epithelial polarization, as indicated by reduced transepithelial electrical resistance and mis-localization of junctional proteins ZO-1 and E-cadherin. This effect was accompanied by elevated cytoplasmic G-actin levels, suggesting impaired actin polymerization. Notably, Pak2 knockdown also led to decreased mRNA expression of Avpr2 and Aqp2, key components for the vasopressin response. Treatment with cytochalasin D, an actin polymerization inhibitor that increases G-actin, phenocopied the effects of Pak2 knockdown, indicating that elevated G-actin impairs both polarity and gene transcription. These findings identify Pak2 as a critical regulator of actin dynamics, cell polarity, and vasopressin-responsive gene expression in renal collecting duct cells.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-10-07T16:07:59Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-10-07T16:07:59Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
Abstract ii
Contents iii
Introduction 1
Materials and methods 4
Results 12
Cell polarization was required for Avpr2 and vasopressin-induced AQP2 expression. 12
Pak2 was successfully knocked down in the mpkCCD cells. 13
Pak2 was required for cell polarization, Avpr2 mRNA expression, and vasopressin responses in the mpkCCD cells. 14
Pak2 knockdown had marginal effects on the levels of junctional proteins. 15
Pak2 knockdown altered cellular distribution of junctional proteins. 16
Pak2 knockdown elevated the amount of G-actin in the mpkCCD cells. 17
Cytochalasin D elevated G-actin level in the mpkCCD cells. 17
Cytochalasin D–induced G-actin elevation reduced TEER and decreased Avpr2 and Aqp2 mRNA in mpkCCD cells. 18
Discussion 21
Figures and Legends 25
Figure 1. Cell polarization was required for Avpr2 and vasopressin-induced AQP2 expression. 25
Figure 2. Pak2 was knocked down in the mpkCCD cells. 27
Figure 3. Pak2 was required for cell polarization and expression of Avpr2 and Aqp2 in mpkCCD cells. 29
Figure 4. Pak2 knockdown had marginal effects on the levels of junctional proteins. 31
Figure 5. Pak2 knockdown altered cellular distribution of junctional proteins. 32
Figure 6. Pak2 knockdown elevated G-actin level in the mpkCCD cells. 33
Figure 7. Cytochalasin D elevated G-actin level in the mpkCCD cells. 35
Figure 8. Cytochalasin D–induced G-actin elevation reduced TEER and decreased Avpr2 and Aqp2 mRNA in mpkCCD cells. 36
Figure 9. Hypothetical model 38
References 40
-
dc.language.isoen-
dc.subject上皮細胞zh_TW
dc.subject極化zh_TW
dc.subject水通道蛋白zh_TW
dc.subject抗利尿激素zh_TW
dc.subjectPak2en
dc.subjectepithelial cellen
dc.subjectcell polarizationen
dc.subjectvasioressinen
dc.subjectAquaporin 2en
dc.titlePak2對於上皮細胞極化與功能的角色zh_TW
dc.titleRoles of Pak2 in Epithelial Cell Polarization and Functionsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳秉民;潘思宇zh_TW
dc.contributor.oralexamcommitteePing-Min Chen;Szu-Yu Panen
dc.subject.keyword上皮細胞,極化,水通道蛋白,抗利尿激素,zh_TW
dc.subject.keywordepithelial cell,cell polarization,Aquaporin 2,Pak2,vasioressin,en
dc.relation.page48-
dc.identifier.doi10.6342/NTU202502439-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-28-
dc.contributor.author-college醫學院-
dc.contributor.author-dept生物化學暨分子生物學研究所-
dc.date.embargo-lift2030-07-24-
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
5.47 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved