請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10054
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 高景輝(Ching Huei Kao) | |
dc.contributor.author | Yi-Hsuan Chen | en |
dc.contributor.author | 陳怡萱 | zh_TW |
dc.date.accessioned | 2021-05-20T20:58:40Z | - |
dc.date.available | 2012-07-29 | |
dc.date.available | 2021-05-20T20:58:40Z | - |
dc.date.copyright | 2011-07-29 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-07-26 | |
dc.identifier.citation | Allen GJ, Muir SR, Sanders D (1995) Release of Ca2+ from individual plant vacuoles by both InsP3 and cyclic ADP-ribose. Science 268:735-737
Aloni R (1980) Role of auxin and sucrose in the differentiation of sieve and tracheary elements in plant tissue cultures. Planta 150:255-263 Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97:883-893 Arasimowicz M, Floryszak-Wieczorek J (2007) Nitric oxide as a bioactive signaling molecule in plant stress responses. Plant Sci 172:876-887 Baker CJ, Mock NM (1994) An improved method for monitoring cell death in cell suspension and leaf disc assays using evans blue. Plant Cell, Tissue Organ Cult 39: 7-12 Besson-Bard A, Astier J, Rasul S, Wawer I, Dubreuil-Maurizi C, Jeandroz S, Wendehenne D (2009) Current view of nitric oxide-responsive genes in plants. Plant Sci 177:302-309 Besson-Bard A, Pugin A, Wendehenne D (2008) New insights into nitric oxide signaling in plants. Annu Rev Plant Biol 59:21-39 Blakely LM, Durham M, Evans TA, Blakely RM (1982) Experimental studies on lateral root formation in radish seedling roots. I. General methods, developmental stages, and spontaneous formation of laterals. Bot Gaz 143:341-352 Bories PN, Bories C (1995) Nitrate determination in biological fluids by an enzymatic one-step assay with nitrate reductase. Clin Chem 41:904-907 Bush DS (1995) Calcium regulation in plant cells and its role in signaling. Annual Rev Plant Physiol Plant Mol Biol 46:95-122 Cai H, Griendling KK, Harrison DG (2003) The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases. Trends Pharmacol Sci 24:471-478 Cao XY, Xuan W, Liu ZY, Li XN, Zhao N, Xu P, Wang Z, Guan RZ, ShenWB (2007) Carbon monxie promotes lateral root formation in rapeseed. J Integr Plant Biol 49:1070-1079 Casimiro I, Beckman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett MJ (2003) Dissecting Arabidopsis lateral root development. Trends Plant Sci 8:165-171 Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, Inze’ D, Sandberg G, Casero PJ, Bennett M (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13:843-52 Catala C, Rose JKC, Bennett AB (2000) Auxin-regulated genes encoding cell wall-modifying proteins are expressed during early tomato fruit growth. Plant Physiol 122:527-534 Clementi E (1998) Role of nitric oxide and its intracellular signaling pathways in the control of Ca2+ homeostasis. Biochem Pharmacol 55:713-718 Corpas FJ, Barroso JB, Carrras A, Valderranme R, Palma JM, Leon AM, Sandalio LM, del Rio LA (2006) Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta 224:246-254 Correa-Aragunde N, Graziano M, Lamattina L (2004) Nitric oxide plays a central role in determining lateral root development in tomato. Planta 218:900-905 Correa-Aragunde N, Graziano M, Chevallier C, Lamattina L (2006) Nitric oxide modulates the expression of cell cycle regulatory genes during lateral root formation in tomato. J Exp Bot 57:581-588 Cosgrove D (1986) Biophysical control of plant cell growth. Ann Rev Plant Physiol 37: 377-405 Cosgrove O, Hedrich R (1991) Stretch-activated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells of Vicia faba L. Planta 186:143-153 Creus CM, Graziano M, Casanovas EM, Pereyra MA, Simontacchi M, Puntarulo S, Barassi CA, Lamattina L (2005) Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato. Planta 221:297-303 Davis SJ, Bhoo SH, Durski AM, Walter JM, Vierstra RD (2001) The heme-xoygrnase family required for phytochrome chromophore biosynthesis is necessary for proper photomophogenesis in higher plants. Plant Physiol 126:656-9 Davis SJ, Kurepa J, Vierstra RD (1999) The Arabidopsis thaliana HY1 locus, required for phytochrome-chromophore biosynthesis, encodes a protein related to heme oxygenases. Proc Natl Acad Sci USA 96:6541-6546 Delledonne M, Xia Y, Dixon RA, Lamd C (1998) Nitric oxide functions as a signal in plant defense resistance. Nature 394:585-588 Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP ribose. Proc Natl Acad Sci USA 95:1032-1033 Felle H (1988) Auxin causes oscillations of cytosolic free calcium and pH in Zea mays coleoptiles. Planta 174:495-499 Forde BG, Lorenzo H (2001) The nutritional control of root development. Plant Soil 232:51-68 Forstermann U, Closs EI, Pollock JS, Nakane M, Schwarz P, Gath I, Kleinert H (1994) Nitric oxide isozymes. Characterization, purification, molecular cloning, and functions. Hyper 23:1121-1131 Gehring C, Irving H, Parish R (1990a) Effects of auxin and abscisic acid on cytosolic calcium and pH in plant cells. Proc Natl Acad Sci USA 87:9645-9649 Gehring C, Williams D, Cody S, Parish R (1990b) Phototropism and geotropism in maize coleoptiles are spatially correlated with increases in cytosolic free calcium. Nature 345:528-530 Gilroy S, Jones R (1993) Calmodulin stimulation of unidirectional calcium uptake by the endoplasmic reticulum of barley. Planta 190:289-296 Gouvea, CMCP, Souza JF, Magalhaes ACN, Martins IS (1997) NO-releasing substances that induce growth elongation in maize root segments. Plant Growth Regul 21:183-187 Graziano M, Lamattina L (2007) Nitric oxide accumulation is required for molecular and physiological responses to iron deficiency in tomato roots. Plant J 52:949-960 Guardiola JL, Lazaro E (1987) The effect of synthetic auxins on fruit growth and anatomical development in ‘Satsuma’ mandarin. Sci Horti 31:119-130 Guo K, Xia K, Yang XM (2008) Regulation of tomato lateral root development by carbon monoxide and involvement in auxin and nitric oxide. J Exp Bot 59:3443-3452 Guo K, Kong WW, Yang ZM (2009) Carbon monoxide promotes root hair development in tomato. Plant Cell Environ 32:1033-1045 Hao ZB, Ichii M (1999) A mutant RM09 of rice (Oryza sativa L.) exhibiting altered lateral root initiation and gravitropism. Jpn J Crop Sci 68:245-252 Hartsfield CL (2002) Cross talk between carbon monoxide and nitric oxide. Antioxid Redox Signal 4:301-307 Hasnain S, Sabri AN (1997) Growth stimulation of Triticum aestivum seedlings under Cr-stresses by non-rhizospheric pseudomonad strains. Environ Pollut 97:265-273 Hedrich R, Busch H, Raschke K (1990) Ca2+ and nucleotide dependent regulation of voltage dependent anion channels in the plasma membrane of guard cells. EMBO 9:3889-3892 Hu X, Neill SJ, Tang Z, Cai W (2005) Nitric oxide mediates gravitropic bending in soybean roots. Plant Physiol 137:663-670 Izawa T, Qjkawa T, Tokutomi S, Okuno K, Shimamoto K (2000) Phytochrome confer the photoperiodic control of flowering in rice (a short-day plant). Plant J 22:391-399 Jackson WT (1960) Effect of indoleacetic acid on rate of elongation of root hairs of Agrostis alba L. Physiol Plant 13:36-45 Jacobs WP (1952) The role of auxin in differentiation of xylem around a wound. Amer J Bot 39:301-309 Johannes E, Brosnan J, Sanders O (1992) Parallel pathways for intracellular Ca2+ release from the vacuole of higher plants. Plant J 2:97-102 Kim SY, Mulkey TJ (1997) Effect of ethylene antagonist on auxin-induced inhibition of intact primary root elongation in maize (Zea mays L.). J Plant Biol 40:256–260 Knight M, Campbell A, Smith S, Trewavas A (1991) Transgenic plant aeqourin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352:524-526 Knight M, Smith S, Trewavas A (1992) Wind-induced plant motion immediately increases cytosolic calcium. Proc Natl Acad Sci USA 89:4967-4967 Kolbert Z, Bartha B, Erdein L (2008) Exogenous auxin-induced NO is nitrate reductase-associated in Arabidopsis thaliana root primodia. J Plant Physiol 165:967-975 Lamattina L, Garcia-Mata C, Graziano M, Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109-136. Lamotte O, Courtois C, Barnavon PA, Wendehenne D (2005) Nitric oxide in plants: the biosynthesis and cell signaling properties of a fascinating molecule. Planta 221:1-4 Lanteri ML, Pagnussat GC, Lamattina L (2006) Calcium and calcium-dependent protein kinases are involved in nitric oxide- and auxin-induced adventitious root formation in cucumber. J Exp Bot 57:1341-1351 Lee JS, Mulkey TJ, Evans ML (1983) Gravity-induced polar transport of calcium across root tips of maize. Plant Physiol 73:874-876 Leo PD, Sacher JA (1970) Control of ribonuclease and acid phosphatase by auxin and abscisic acid during senescence of Rhoeo leaf sections. Plant Physiol 46:806-811 Leshem YY, Wills RBH, Ku VVV (1998) Evidence for the function of the free radical gas nitric oxide (NO) as an endogenous regulating factor in higher plants. Plant Physiol Biochem 36:825-833 Leyser HMO, Pickett FB, Dharmaseri S, Estelle M (1996) Mutations in AXR3 gene of Arabidopsis result in altered auxin responses including ectopic express of the SAUR-ACI promoter. Plant J 10:403-414 Lincoln E, Britton JH, Estelle M (1990) Growth and development of the axr1 mutants of Arabidopsis. Plant Cell 2:1071-1080 Liu K, Xu S, Xuan W, Ling T, Cao Z, Huang B, Sun Y, Fang L, Liu Z, Zhao N, Shen W (2007) Carbon monoxide counteracts the inhibition of seed germination and alleviates oxidative damage caused by salt stress in Oryza sativa. Plant Sci 172: 544-555 Lombardo MC, Graziano M, Polacco JC, Lamattina L (2006) Nitric oxide functions as a positive regulator of root hair development. Plant Signal Behav 1:28-33 Mackerness SAH, John CF, Jordan B, Thomas B (2001) Early signaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide. FEBS Lett 489:237-242 Malamy JE (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ 28:67-77 Malamy JE, Ryan KS (2001) Environmental regulation of lateral root initiation in Arabidopsis. Plant Physiol 127:899–909 Masucci JD, Schiefelbein JW (1994) The rhd6 mutation of Arabidopsis thaliana alters root hair initiation through an auxin and ethylene associated process. Plant Physiol 106:1335-1346 Mata GC and Lamattina L (2001) Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol 126:1196-1204 Meyer JW, Schmitt ME (2000) A central role for the endothelial NADPH oxidase in atherosclerosis. FEBS Lett 472:1-4 Morse MJ, Satter RL, Crain RC, Cote GG (1989) Signal transduction and phosphatidylinositol turnover in plants. Physiol Plant 76:118-121 Muday GK (2001) Auxins and tropisms. J Plant Growth Regul 20:226-243 Muday GK, Haworth P (1994) Tomato root growth, gravitropism and lateral development: correlation with auxin transport. Plant Physiol Biochem 32:193-203 Muramoto T, Kochchi T, Yokota A, Hwang I, Goodman HM (1999) The Arabidopsis photomorphogenic mutant hy1 is deficient in phytochrome chromophore biosynthesis as a result of a mutation in a plastid heme oxygenase. Plant Cell 11:3335-3348 Muramoto T, Tsurui N, Terry MJ, Yokota A, Kochi T (2002) Expression and biochemical properties of a ferredoxin-dependent heme oxygenase required to phytochrom chromophore synthesis. Plant Physiol 130:11958-11966 Nitsch JP (1953) The physiology of fruit growth. Ann Rev Plant Physiol 4:199-236 Noh B, Bandyopadhyay A, Peer WA, Spalding EP, Murphy AS (2003) Enhanced gravi- and phototropism in plant mdr mutants mislocalizing the auxin efflux protein PIN1. Nature 423:999-1002 Noriega GO, Balestrasse KB, Batlle A, Tomaro ML (2004) Heme oxygenase exerts a protective role against oxidative stress in soybean leaves. Biochem Biophys Res Commun 323:1003-1008 Noriega GO, Yannarelli GG, Balestrasse KB, Battle A, Tomaro ML (2007) The effect of nitric oxide on heme oxygenase gene expression in soybean leaves. Planta 226:1155-1163 Okada K and Shimura Y (1994) Modulation of root growth by physical stimuli. In: Meyerowiz EM, Sommerville CR, editors. Arabidopsis. Cold Spring Harbor: Cold Spring Harbor Press. p. 665-684 Osborne DJ (1959) Control of leaf senescence by auxins. Nature 183:1459-1460 Otterbein LE, Soares MP, Yamashita K, Bach FH (2003) Heme oxygenase-1: unleashing the protective properties of heme. Trends Immunol 24:449-455 Otvos K, Pasternak TP, Miskolczi P, Dooki M, Dorjgotov D, Sźcs A, Bottka S, Dudits D, Feher A (2005) Nitric oxide is required for, and promotes auxin-mediated activation of, cell division and embryogenic cell formation but does not influence cell cycle progression in alfalfa cell cultures. Plant J 43:849-860 Pagnussat GC, Lanteri ML, Lamattina L (2003) Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiol 132:1-8 Pagnussat GC, Simontacchi M, Puntarulo S, Lamattina L (2002) Nitric oxide is required for root organogenesis. Plant Physiol 129:954-956 Pasternak T, Rudas V, Potters G, Jansen MAK (2005) Morphogenic effects of abiotic stress: reorientation of growth in Arabidopsis thaliana seedlings. Environ Exp Bot 53:299-314 Pedroso MC and Durzan DJ (2000) Effect of different gravity environments on DNA fragmentation and cell death in Kalanchoe leaves. Ann Bot 86:983-994 Pedroso MC, Magalhaes JR, Durzan DJ (2000) Nitric oxide induces cell death in Taxus cells. Plant Sci 157:173-180 Piantadosi CA (2002) Biological chemistry of carbon monoxide. Antioxid Redox Signal 24:259-24270 Pickard BG, Thimann KV (1964) Transport and distribution of auxin during tropistic response. II. The lateral migration of auxin in phototropism of coleoptiles. Plant Physiol 39:341-350 Rayle DL, Cleland RE (1992) The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiol 99:1271-1274 Ridge RW, Katsumi M (2002) Root hairs: hormones and tip molecules. In: Waisel Y, Eshel A, Kafkafi U, editors. Plant Roots: The Hidden Half. 3rd ed. New York: Mercel Dekker, Inc., p.83-91 Riganti C, Costamagna C, Bosia A, Ghigo D (2006) The NADPH oxidase inhibitor apocynin (acetovanillone) induces oxidative stress. Toxicol Appl Pharmacol 212:179-187 Riganti C, Costamagna C, Doublier S, Miraglia E, Polimeni M, Bosia A, Ghigo D (2008) The NADPH oxidase inhibitor apocynin induces nitric oxide synthesis via oxidative stress. Toxicol Appl Pharmacol 228:277-285 Robinson D (1994) The responses of plants to non-uniform supplies of nutrients. New Phytol 127:635-674 Rodriguez-Serrano M, Romero-Puertas MC, Pazmino DM, Testillano PS, Risueno MC, del Rio LA, Sandalio LM (2009) Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol 150:229-243 Shacklock P, Read N, Trewavas A (1992) Cytosolic free calcium mediates red light-induced photo morphogenesis. Nature 358:753-755 Shin R, Schachtman DP (2004) Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc Natl Acad Sci USA 101: 8827-8832 Shishova M, Lindberg S (2004) Auxin induces an increase of Ca2+ concentration in the cytosol of wheat leaf protoplasts. Plant Physiol 161:937-945 Takahashi H, Inoue Y (2008) Stage-specific crosstalk between light, auxin, and ethylene during low-pH-induced root hair formation in lettuce (Lactuca sativa L.) seedlings. Plant growth Regul 56:31-41 Tanimoto M, Roberts K, Dolan L (1995) Ethylene is a positive regulator of root hair development in Arabidopsis thaliana. Plant J 8:943-948 Terry MJ, Linley PJ, Kohchi T (2002) Making light of it: the role of plant haem oxygenases in phytochrome chromophore synthesis. Biochem Soc Trans 30:604-609 Thomas H, Stoddart JL (1980) Leaf senescence. Ann. Rev. Plant Physiol 31:83-111 Torrey JG (1950) The induction of lateral roots by indoleacetic acid and root decapitation. Am J Bot 37:257-264 Tossi V, Raul C, Lamattina L (2009) Apocynin-induced nitric oxide production confers antioxidant protection in maize leaves. Plant Physiol 166:1336-1341 Vejrazka M, Mıcek R, Stıpek S (2005) Apocynin inhibits NADPH oxidase in phagocytes but stimulates ROS production in non-phagocytic cells. Biochim Biophys Acta 1722:143-147 Wang H, Taketa S, Miyao A, Hirochika H, Ichii M (2006) Isolation of a novel lateral-rootless mutant in rice (Oryza sativa L.) with reduced sensitivity to auxin. Plant Sci 170:70-77 Ward J, Schroeder J (1994) Calcium-activated K+ channels and calcium-induced calcium release by slow vacuolar ion channels in guard cell vacuoles implication in the control of stomatal closure. Plant Cell 6:683-699 Willmott N, Sethi JK, Walseth TF, Lee HC, White AM, Galione A (1996) Nitric oxide-induced mobilization of intracellular calcium via the cyclic ADP-ribose signaling pathway. J Biol Chem 271:3699-3705 Wilson A, Pickett FB, Turner JC, Estelle M (1990) A dominant mutation in Arabidopsis confers resistance to auxin, ethylene, and abscisic acid. Mol Gen Genet 222:377-383 Wilson ID, Neill SJ, Hancock JT (2008) Nitric oxide synthesis and signaling in plants. Plant Cell Environ 31:622-631 Xiong J, Lu H, Lu K, Duan Y, An L, Zhu C (2009) Cadmium decreases crown root number by decreasing endogenous nitric oxide, which is indispensable for crown root primordia initiation in rice seedlings. Planta 230: 599-610 Xu J, Xuan W, Huang BK, Zhou YH, Ling RF, Xu S, Shen WB (2006) Carbon monoxide-induced adventitious root of hypocotyls cuttings from mung bean seedling. Chin Sci Bull 51:668-674 Xuan W, Zhu FY, Xu S, Huang BK, Ling TF, Qi JY, Ye MB, Shen WB (2008) The heme oxygenase/ carbon monxide system is involved in the auxin-induced cucumber adventitious root process. Plant Physiol 148:881-893 Yannarelli G, Noriega GO, Battle A, Tomaro ML (2006) Heme oxygenase up-regulation in ultraviolet-B irradiated soybean plants involves reactive oxygen species. Planta 224:1154-1162 Zhang H, Forde BG (1999) Dual pathways for regulation of root branching by nitrate. Proc Natl Acad Sci USA 96:6529-6534 Zimmerman PW, Crocker W, Hitchock AE (1933) Initiation and stimulation of roots from exposure of plants to carbon monoxide gas. Contrib Boyce Thompson Inst 5:1-17 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10054 | - |
dc.description.abstract | 本論文以水稻品種台中在來一號 (Oryza sativa L. cv. Taichung Native 1, TN1)為材料,探討生長素與一氧化氮對黃化幼苗側根與根毛之形成是否需要Ca2+與heme oxygenase (HO)之參與,以及apocynin對水稻黃化幼苗側根形成之影響。
Sodium nitroprusside (SNP,一氧化氮釋放劑)、indole-3-butyric acid (IBA,植物體中存在之生長素)與hemin (Hm,HO之誘導劑)處理皆會誘導水稻側根與根毛之形成。SNP與IBA所誘導之一氧化氮形成以及側根與根毛形成可由一氧化氮清除劑2- (4-carboxy- phenyl)- 4,4,5,5- tetramethylimidazoline-1-oxyl-3-oxide (cPTIO)所抑制,而Hm處理不影響一氧化氮之形成,且其對側根與根毛形成之作用也不受cPTIO影響,nitrate reductase (NR)抑制劑tungstate會抑制IBA所誘導之一氧化氮形成以及側根與根毛之形成,顯示IBA是透過NR的作用產生一氧化氮進而影響側根與根毛之形成。Ca2+之螯合物、通道阻礙劑、CaM拮抗劑與IP3合成抑制劑皆可明顯抑制SNP與IBA所誘導之側根與根毛形成,而不影響SNP與IBA所誘導之一氧化氮形成,顯示SNP與IBA之作用需要Ca2+之參與,且Ca2+位於一氧化氮與IBA作用之下游。 SNP、IBA與Hm處理皆會使HO的活性提升,Zn protoporphyrin IX (ZnPPIX,HO抑制劑)與hemoglobin (Hb,一氧化碳與一氧化氮之清除劑)皆能有效抑制SNP、IBA與Hm誘導之側根與根毛形成及HO的活性提升。而HO催化反應之產物biliverdin IXα (BV) 也可有效地誘導側根與根毛形成,這些結果說明SNP、IBA與Hm所誘導之水稻黃化幼苗側根與根毛之形成需要透過HO的參與。 Apocynin會誘導水稻側根形成與H2O2合成,而diphenylene iodonium (DPI,NADPH oxidase抑制劑)可抑制其作用,顯示apocynin經由H2O2之作用調控側根形成。 | zh_TW |
dc.description.abstract | In this thesis, rice (Oryza sativa L. cv. Taichung Native 1, TN1, an Indica type) seedlings were used to investigate the involvement of Ca2+ and heme oxygenase (HO) in auxin- and nitric oxide (NO)-induced formation of lateral roots (LRs) and root hairs (RHs) and the effect of apocynin on LR formation.
Application of sodium nitroprusside (SNP; a NO donor), indole-3-butyric acid (IBA; a naturally occurring auxin), or hemin (Hm; a HO inducer) to rice seedlings induced the formation of LRs and RHs. LR and RH formation and NO production induced by SNP and IBA were prevented by the specific NO scavenger 2-(4-carboxyphenyl)-4,4,5,5- tetramethyl-imidazoline-1-oxyl-3-oxide (cPTIO). Hm had no effect on NO production. Hm-induced formation of LRs and RHs could not be blocked by cPTIO. Nitrate reductase (NR) inhibitor sodium tungstate completely inhibited IBA-induced LR and RH formations and NO production. Clearly the effect of IBA is attributed by NO released, and the NO generation in response to IBA might mainly involve NR activity. The effects of Ca2+ chelators, Ca2+-channel inhibitors, and calmodulin antagonists were effective in reducing the action of SNP and IBA. However, Ca2+ chelators and Ca2+- channel inhibitors had no effect on SNP- and IBA-induced NO generation. It is concluded that Ca2+ is involved in SNP- and IBA-induced LR and RH formations, and is acting downstream of NO and IBA. Treatment of rice seedlings with SNP, IBA, and Hm resulted in an enhancement of HO activity. Zn protoporphyrin IX (ZnPPIX; a HO inhibitor) and hemoglobin (Hb; a CO/NO scavenger) reduced the LR and RH formation and the enhancement of HO activity induced by SNP, IBA, and Hm. The product of HO catalyzed reaction, biliverdin IXα (BV), was also able to induce LR and RH formation and enhance HO activity. These data suggested that HO is involved in SNP-, IBA- and Hm-induced LR and RH formation. Apocynin was able to induce LR formation and the generation of H2O2, which could be blocked by diphenylene iodonium (a NADPH oxidase inhibitor). These results indicate that the apocynin-induced LR formation is related to H2O2. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T20:58:40Z (GMT). No. of bitstreams: 1 ntu-100-R98621115-1.pdf: 9411887 bytes, checksum: 1a70a4dbf53ad68edb6d0cd80bf20228 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 誌謝…………………………………………………………………………………………………i
中文摘要…………………………………………………………………………..………………ii ABSTRACT…………………………………………………………………………………….…iii 目表錄………………………………………………………………………………………………v 表目錄……………………………………………………………………………………………... vii 圖目錄…………………………………………………………………………………………...…viii 縮寫字對照………………………………………………………………………………………….x 前言…………………………………………………………………………………………………1 前人研究……………………………………………………………………………………………3 水稻根系…………………………………………………………………………………………3 生長素……………………………………………………………………………………………4 一氧化氮…………………………………………………………………………………………5 鈣離子……………………………………………………………………………………………7 Heme oxygenase…………………………………………………………………………………7 Apocynin…………………………………………………………………………………………9 本論文之研究方向………………………………………………………………………………9 材料與方法…………………………………………………………………………………………10 材料種植…………………………………………………………………………………………10 處理………………………………………………………………………………………………10 側根形成…………………………………………………………………………………………11 根毛形成…………………………………………………………………………………………11 一氧化氮螢光影像偵測…………………………………………………………………………11 過氧化氫螢光影像偵測…………………………………………………………………………12 HO活性分析……………………………………………………………………………………12 根細胞活力測定…………………………………………………………………………………13 統計分析…………………………………………………………………………………………13 結果…………………………………………………………………………………………………14 (一) SNP、IBA與Hm對水稻黃化幼苗根之側根與根毛形成之影響………………………14 (二) SNP與IBA誘導水稻黃化幼苗根側根與根毛之形成需要一氧化氮的參與,而Hm則不需要………………………………………………………………………………………21 (三) SNP與IBA誘導水稻黃化幼苗根側根與根毛之形成與Ca2+之關係……………………29 (四) 一氧化氮清除劑、一氧化氮合成抑制劑、Ca2+螯合物、Ca2+通道阻礙劑、IP3合成抑制劑與CaM拮抗劑對根細胞活力之影響…………………………………………………33 (五) SNP、IBA與Hm對heme oxygenase活性之影響…………………………………………35 (六) ZnPPIX與hemoglobin對SNP、IBA與Hm所誘導之水稻黃化幼苗側根與根毛之形成與heme oxygenase活性增加之影響………………………………………………………35 (七) Biliverdin IXα對水稻黃化幼苗側根與根毛之形成與heme oxygenase活性之影響……35 (八) Apocynin對水稻黃化幼苗側根形成之影響………………………………………………47 (九) Apocynin誘導水稻黃化幼苗側根之形成是經由H2O2而非一氧化氮…………………47 討論…………………………………………………………………………………………………53 參考文獻……………………………………………………………………………………………58 | |
dc.language.iso | zh-TW | |
dc.title | 水稻側根與根毛形成之研究 | zh_TW |
dc.title | Studies on the Formation of Lateral Roots and Root Hairs in Rice | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳宗禮(Tsung-Li, Chen),王恆隆(Heng-Long, Wang),洪傳揚(Chwan-Yang, Hong),許奕婷(Yi-Ting, Hsu) | |
dc.subject.keyword | 生長素,一氧化氮,側根,根毛,水稻,鈣,HO,apocynin, | zh_TW |
dc.subject.keyword | auxin,nitric oxide,lateral root,root hair,rice,calcium,HO,apocynin, | en |
dc.relation.page | 65 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2011-07-26 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農藝學研究所 | zh_TW |
顯示於系所單位: | 農藝學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf | 9.19 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。