Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10038
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳哲夫
dc.contributor.authorChe-Wei Hsuen
dc.contributor.author許哲維zh_TW
dc.date.accessioned2021-05-20T20:57:28Z-
dc.date.available2016-08-03
dc.date.available2021-05-20T20:57:28Z-
dc.date.copyright2011-08-03
dc.date.issued2011
dc.date.submitted2011-07-28
dc.identifier.citation1 Jones AG, Crystallization Process Systems, Butterworth-Heinemann: Oxford, 2002.
2 Jones AG. Optimal operation of a batch cooling crystallizer. Chem Eng Sci. 1974;29:1075–1087.
3 Kubota N, Doki N, Yokota M, Sato A. Seeding policy in batch cooling crystallization. Powder Technology 2001;121(1): 31-38.
4 Lung-Somarriba BLM, Moscosa-Santillan M, Porte C, Delacroix A. Effect of seeded surface area on crystal size distribution in glycine batch cooling crystallization: a seeding methodology. Journal of Crystal Growth 2004;270(3-4): 624-32.
5 Hojjati H, Rohani S. Cooling and seeding effect on supersaturation and final crystal size distribution (CSD) of ammonium sulphate in a batch crystallizer. Chemical Engineering and Processing 2005;44(9): 949-57.
6 Chung SH, Ma DL, Braatz RD. Optimal seeding in batch crystallization. Can J Chem Eng. 1999; 77: 590–596.
7 Mullin JW, Nyvlt J. Programmed Cooling of Batch Crystallizers. Chemical Engineering Science 1971;26(3): 369-377.
8 Choong, K. L. and R. Smith . Optimization of batch cooling crystallization. Chemical Engineering Science 2004;59(2): 313-327.
9 J. D. Ward, C. C. Yu, et al. A New Framework and a Simpler Method for the Development of Batch Crystallization Recipes. Aiche Journal 2011;57(3): 606-617.
10 J. D. Ward, D. A. Mellichamp, and M. F. Doherty, Choosing an operating policy for seeded batch crystallization, AIChE J. 52, 2046-2054 (2006). (SCI, EI)
11 Rawlings JB, Miller SM, Witkowski WR. Model identification and control of solution crystallization processes: A Review. Ind Eng Chem Res. 1993; 32: 1275–1296.
12 Chang CT, Epstein MAF. Identification of Batch Crystallization Control Strategies Using Characteristic Curves. In: Nucleation, Growth and Impurity Effects in Crystallization Process Engineering; EpsteinMAF, ed. AIChE: New York; 1982.
13 Eaton JW, Rawlings JB. Feedback control of chemical processes using on-line optimization techniques. Comput Chem Eng. 1990; 14: 469–479.
14 Jones AG. Optimal operation of a batch cooling crystallizer. Chem Eng Sci. 1974; 29: 1075–1087.
15 Ma DL, Braatz RD. Robust identification and control of batch processes. Comput Chem Eng. 2003; 27: 1175–1184.
16 Choong KL, Smith R. Optimization of batch cooling crystallization. Chem Eng Sci. 2004; 59: 313–327.
17 Nagy, Z. K. Model based robust control approach for batch crystallization product design. Computers & Chemical Engineering 2009; 33(10): 1685-1691.
18 Sheikhzadeh, M., M. Trifkovic, et al. Real-time optimal control of an anti-solvent isothermal semi-batch crystallization process. Chemical Engineering Science 2008; 63(3): 829-839.
19 Trifkovic, M., M. Sheikhzadeh, et al. Kinetics estimation and single and multi-objective optimization of a seeded, anti-solvent, isothermal batch crystallizer. Industrial & Engineering Chemistry Research 2008; 47(5): 1586-1595.
20 Paengjuntuek, W., P. Kittisupakom, et al. Optimization and nonlinear control of a batch crystallization process. Journal of the Chinese Institute of Chemical Engineers 2008; 39(3): 249-256.
21 Nagy, Z. K., J. W. Chew, et al. Comparative performance of concentration and temperature controlled batch crystallizations. Journal of Process Control 2008; 18(3-4): 399-407.
22 Yang, A. D., G. Montague, et al. Importance of heterogeneous energy dissipation in the modeling and optimization of batch cooling crystallization. Industrial & Engineering Chemistry Research 2007; 46(22): 7177-7187.
23 Elsner, M. P., G. Ziornek, et al. Simultaneous preferential crystallization in a coupled, batch operation mode - Part 1: Theoretical analysis and optimization. Chemical Engineering Science 2007; 62(17): 4760-4769.
24 Sarkar, D., S. Rohani, et al. Multi-objective optimization of seeded batch crystallization processes. Chemical Engineering Science 2006; 61(16): 5282-5295.
25 Costa, C. B. B., A. C. da Costa, et al. Mathematical modeling and optimal control strategy development for an adipic acid crystallization process. Chemical Engineering and Processing 2005; 44(7): 737-753.
26 Worlitschek, J. and M. Mazzotti Model-based optimization of particle size distribution in batch-cooling crystallization of paracetamol. Crystal Growth & Design 2004; 4(5): 891-903.
27 Choong, K. L. and R. Smith. Novel strategies for optimization of batch, semi-batch and heating/cooling evaporative crystallization. Chemical Engineering Science 2004; 59(2): 329-343.
28 Choong, K. L. and R. Smith. Optimization of batch cooling crystallization. Chemical Engineering Science 2004; 59(2): 313-327.
29 Choong, K. L. and R. Smith. Optimization of semi-batch reactive crystallization processes. Chemical Engineering Science 2004; 59(7): 1529-1540.
30 Nagy, Z. K. and R. D. Braatz. Robust nonlinear model predictive control of batch processes. Aiche Journal 2003; 49(7): 1776-1786.
31 Nagy, Z. K. and R. D. Braatz. Worst-case and distributional robustness analysis of finite-time control trajectories for nonlinear distributed parameter systems. Ieee Transactions on Control Systems Technology 2003; 11(5): 694-704.
32 Ma, D. L., S. H. Chung, et al. Worst-case performance analysis of optimal batch control trajectories. Aiche Journal 1999; 45(7): 1469-1476.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10038-
dc.description.abstract結晶是一個常被用來作為液態固態分離的程序。而一個結晶槽的成品可以用結晶大小分佈函數(Crystal Size Distribution Function, CSD)來描述。成品的好壞將影響下游程序的效率,例如過濾或是乾燥程序。在結晶的過程中,同時會出現結晶成核(crystal nucleation)與結晶成長(crystal growth)現象,在大多數的情況下結晶成核現象是不受歡迎的。一個控制得好的結晶槽,可以有效抑制結晶成核現象的發生。
要最佳化一個結晶程序可以從兩方面來著手,一種是改善晶種的性質,另一種是改善冷卻的方法。而不管是使用哪一種手段,都需要一個目標函數來評斷結果的好壞。在這個研究中,我們比較前人在這個領域上使用過的目標函數,希望能夠發現一個最適合的目標函數。
在使用各個目標函數後,我們發現有些目標函數的結果藉由產生大量的成核現象以達到其目標函數值的最小值。但以一個先加入晶種的結晶程序而言,其目標是將晶種長大並避免成核現象的發生,前述達到其目標函數值的方法是與其牴觸的。事實上在真實的程序裡,在結晶之後很有可能經過一個過濾的程序將過小的晶體或是新成核的晶體移除。所以對於各個不同的目標函數,我們除了直接比較用其最佳化的結果的目標函數值以外,也比較新成核晶體被移除後的目標函數值。最後我們發現使用目標函數”最小化新成核晶體的質量”來最佳化,其結果在新成核晶體被移除後,對於各個目標函數值都有較佳的值。
對於目標函數”最小化結晶分佈函數的變異係數”,我們發現與其最佳化結晶成長曲線,使用晶種性質作為控制變數有較佳的效果。較大量的晶種質量與較集中的晶種分佈,在使用”最小化結晶分佈函數的變異係數”作為目標函數時,將有效防止大量成核現象的發生。
最後,我們探討結晶成核速率式中,在晶體體積項(Third Moment)較高的幕次對於最佳化程序的影響。我們發現,較高的幕次將抑制成核現象的發生,造成最佳化的結果有較佳的表現。另外較高的幕次也將使得最佳化晶體成長曲線在程序的一開始有較高的值。
zh_TW
dc.description.abstractCrystallization is a widely used process for liquid solid separation. The products from this process are crystals, which can be described by a distribution function called “crystal size distribution function (CSD)”. The properties of the crystals affect the efficiency of downstream process, such as filtration or drying. During the process both crystal nucleation and crystal growth happens, and most of the time, the crystal nucleation is undesirable. A well-controlled crystallizer can produce crystals with less crystal nucleation.
Researchers have optimize a crystallization processes by improving the seed properties or the cooling policy. In both cases an objective function is required. In this work we compare the objective function that researchers have used, to see which objective function is best when optimizing the cooling policy for a batch crystallizer.
The result shows that some of the objective functions are minimized by producing a large amount of nuclei. However, for a seeded batch crystallizer the idea is to grow the seed crystals while suppressing the nucleation. Moreover, in industrial practice, the product crystals would probably be filtered so that fines (nucleated crystals) would be removed. Therefore, for each objective function we also determine the objective value after the nucleated crystals are removed, to see whether the result from each objective function is still the best. After the analysis we conclud that the objective function “minimizing the nucleated crystal mass” is better than others.
In this work we also discuss the utility of changing seed properties when using “minimizing weight coefficient of variation” as objective function. We found that if the seed distribution is too wide, the system would be more likely to generate a narrow distribution crystal by excess nucleation. To prevent excess nucleation and achieve a narrow product CSD, a large seed loading and a narrow seed distribution helps.
Finally, we also considered the effect of using different nucleation parameters. We changed the exponent on third moment term in nucleation rate equation. The result shows that for higher value of the exponent, the nucleation rate is suppressed, and the performance is better when the growth rate trajectory is optimized using the objective function “minimizing nucleated crystal mass.” The optimized result also mention that for higher value of the exponent on third moment term in nucleation rate equation, higher growth at the beginning of the batch is desirable.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:57:28Z (GMT). No. of bitstreams: 1
ntu-100-R98524018-1.pdf: 2270037 bytes, checksum: ba6a96394d7cc93523495ec618439804 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsTable Of Content
List Of Figures viii
List Of Tables xii
1. Introduction 1
1.1. Overview 1
1.2. Literature Survey 4
2. Dimensionless Model 8
2.1. Dimensionless Moment Equations 8
2.2. Seed 12
3. Optimization by Simulated Annealing 15
1.1. Simulated Annealing 15
4.1. Control Variable 22
4.2. Final Mass Constraint 22
4. Discussion 24
4.1. Objective Function Classification 24
4.2. Comparison Method 27
4.3. Weight COV and Number COV 29
4.5. Single Moment Objective Functions 44
4.6. Objective Function Category Comparison 51
4.7. Other Solution For Minimizing Coefficient of variation 57
4.8. The Effect of Changing j 63
5. Conclusion 73
6. Notations 75
7. Reference 77
dc.language.isoen
dc.title最佳化批次結晶程序之目標函數選擇zh_TW
dc.titleComparison of objective functions for seeded batch crystallizationen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳誠亮,錢義隆,蕭立鼎
dc.subject.keyword結晶,最佳化,目標函數,zh_TW
dc.subject.keywordCrystallization,Optimization,Objective function,en
dc.relation.page81
dc.rights.note同意授權(全球公開)
dc.date.accepted2011-07-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf2.22 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved