Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10024
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王兆麟(Jaw-Lin Wang)
dc.contributor.authorChun-Hsien Liuen
dc.contributor.author劉俊顯zh_TW
dc.date.accessioned2021-05-20T20:56:30Z-
dc.date.available2014-08-01
dc.date.available2021-05-20T20:56:30Z-
dc.date.copyright2011-08-01
dc.date.issued2011
dc.date.submitted2011-07-28
dc.identifier.citation1. Busscher I, van der Veen AJ, van Dieen JH, et al. In vitro biomechanical characteristics of the spine: a comparison between human and porcine spinal segments. Spine (Phila Pa 1976) 2010;35:E35-42.
2. Cannella M, Arthur A, Allen S, et al. The role of the nucleus pulposus in neutral zone human lumbar intervertebral disc mechanics. J Biomech 2008;41:2104-11.
3. Cheng BC, Gordon J, Cheng J, et al. Immediate biomechanical effects of lumbar posterior dynamic stabilization above a circumferential fusion. Spine (Phila Pa 1976) 2007;32:2551-7.
4. Chou WY, Hsu CJ, Chang WN, et al. Adjacent segment degeneration after lumbar spinal posterolateral fusion with instrumentation in elderly patients. Arch Orthop Trauma Surg 2002;122:39-43.
5. Delank KS, Gercek E, Kuhn S, et al. How does spinal canal decompression and dorsal stabilization affect segmental mobility? A biomechanical study. Arch Orthop Trauma Surg 2010;130:285-92.
6. Etebar S, Cahill DW. Risk factors for adjacent-segment failure following lumbar fixation with rigid instrumentation for degenerative instability. J Neurosurg 1999;90:163-9.
7. Hongo M, Gay RE, Zhao KD, et al. Junction kinematics between proximal mobile and distal fused lumbar segments: biomechanical analysis of pedicle and hook constructs. Spine J 2009;9:846-53.
8. Huang RC, Girardi FP, Cammisa FP, Jr., et al. Correlation between range of motion and outcome after lumbar total disc replacement: 8.6-year follow-up. Spine (Phila Pa 1976) 2005;30:1407-11.
9. Kanayama M, Hashimoto T, Shigenobu K, et al. Adjacent-segment morbidity after Graf ligamentoplasty compared with posterolateral lumbar fusion. J Neurosurg 2001;95:5-10.
10. Kumar MN, Jacquot F, Hall H. Long-term follow-up of functional outcomes and radiographic changes at adjacent levels following lumbar spine fusion for degenerative disc disease. Eur Spine J 2001;10:309-13.
11. Morishita Y, Hida S, Naito M, et al. Neurogenic intermittent claudication in lumbar spinal canal stenosis: the clinical relationship between the local pressure of the intervertebral foramen and the clinical findings in lumbar spinal canal stenosis. J Spinal Disord Tech 2009;22:130-4.
12. Park P, Garton HJ, Gala VC, et al. Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature. Spine (Phila Pa 1976) 2004;29:1938-44.
13. Phillips FM, Tzermiadianos MN, Voronov LI, et al. Effect of the Total Facet Arthroplasty System after complete laminectomy-facetectomy on the biomechanics of implanted and adjacent segments. Spine J 2009;9:96-102.
14. Putzier M, Hoff E, Tohtz S, et al. Dynamic stabilization adjacent to single-level fusion: part II. No clinical benefit for asymptomatic, initially degenerated adjacent segments after 6 years follow-up. Eur Spine J 2010;19:2181-9.
15. Ryan G, Pandit A, Apatsidis D. Stress distribution in the intervertebral disc correlates with strength distribution in subdiscal trabecular bone in the porcine lumbar spine. Clin Biomech (Bristol, Avon) 2008;23:859-69.
16. Schaeren S, Broger I, Jeanneret B. Minimum four-year follow-up of spinal stenosis with degenerative spondylolisthesis treated with decompression and dynamic stabilization. Spine (Phila Pa 1976) 2008;33:E636-42.
17. Schilling C, Kruger S, Grupp TM, et al. The effect of design parameters of dynamic pedicle screw systems on kinematics and load bearing: an in vitro study. Eur Spine J 2011;20:297-307.
18. Schmoelz W, Huber JF, Nydegger T, et al. Influence of a dynamic stabilisation system on load bearing of a bridged disc: an in vitro study of intradiscal pressure. Eur Spine J 2006;15:1276-85.
19. Schmoelz W, Huber JF, Nydegger T, et al. Dynamic stabilization of the lumbar spine and its effects on adjacent segments: an in vitro experiment. J Spinal Disord Tech 2003;16:418-23.
20. Schnake KJ, Schaeren S, Jeanneret B. Dynamic stabilization in addition to decompression for lumbar spinal stenosis with degenerative spondylolisthesis. Spine (Phila Pa 1976) 2006;31:442-9.
21. Stoll TM, Dubois G, Schwarzenbach O. The dynamic neutralization system for the spine: a multi-center study of a novel non-fusion system. Eur Spine J 2002;11 Suppl 2:S170-8.
22. Untch C, Liu Q, Hart R. Segmental motion adjacent to an instrumented lumbar fusion: the effect of extension of fusion to the sacrum. Spine (Phila Pa 1976) 2004;29:2376-81.
23. Yang JY, Lee JK, Song HS. The impact of adjacent segment degeneration on the clinical outcome after lumbar spinal fusion. Spine (Phila Pa 1976) 2008;33:503-7.
24. FDA Executive Summary for Zimmer Spine’s Dynesys Spinal System Orthopedic and Rehabilitation Devices Panel November 4, 2009
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10024-
dc.description.abstract背景簡介:人體因為年齡增長以及姿勢不良造成脊椎不正常受力,椎間盤會逐漸產生椎間不穩定的情形,同時會壓迫到椎間孔的神經造成許多神經性的疾病,臨床上較常見的治療方法為脊椎減壓手術,其原理為將活動度過大的退化節椎板切除減少神經的壓迫,同時配合後方脊椎融合術將退化節融合,而在臨床上和生物力學測試上皆發現,脊椎融合手術會造成鄰近節過度的代償現象,進而造成鄰近節提早退化,於是許多非融合式的裝置設計與手術逐漸產生,其目的為提升手術節的活動度,以減少鄰近節的代償現象,但是在臨床上仍然有許多的報告顯示非融合手術仍然有鄰近節提早退化情形的發生,這說明在非融合裝置的設計中,手術節的活動度似乎仍須進一步的研究。
目的: 藉由改變操作節所允許的活動角度,觀察在操作節與鄰近節的生物力學變化情形,希望能找到一個適合非融合手術裝置的固定椎節區間,以提供操作節足夠的穩定度,並且不會造成鄰近節過多的代償現象。
材料與方法:本實驗利用豬隻腰椎進行前彎後仰動作下的力學測試,將試樣依序由健康、模擬受傷、模擬固定、控制活動範圍四個階段進行測試,並於各椎節置入旗標,利用攝影機量測各節的相對活動角度,同時在各節椎間盤置入針型壓力感測器,量測椎間核壓力,並於各節椎間孔上黏貼直徑1.2mm的鋼珠,在各狀態拍攝X光影像,以分析椎間孔的面積變化。
結果:在前彎動作下,隨著操作節限制角度逐漸放寬,操作節的活動角度有上升的趨勢,而上、下鄰近節代償性活動角度則有下降的趨勢,在操作節的限制活動範圍為60%(4.04°)時,在操作節與上、下鄰近節活動角度相對於健康狀態皆沒有顯著性差異;操作節椎間核壓力變化隨著控制角度放寬而有逐漸下降的趨勢,但是皆沒有顯著差異,上下鄰近節椎間核壓力有下降的趨勢,在限制活動範圍為40%、60%、80%時,鄰近節的椎間核壓力變化皆比健康狀態的椎間盤壓力小;椎間孔面積變化並不顯著。在後仰動作中,隨著操作節控制角度的逐漸放寬,操作節的活動角度有上升的趨勢,而上、下鄰近節代償性活動角度則有下降的趨勢。在操作節限制活動範圍為40%(2.41°)時,操作節,上、下鄰近節相對於健康狀態皆沒有顯著性差異;操作節椎間孔面積隨著控制角度放寬而有逐漸下降的趨勢,但是皆沒有顯著差異,上下鄰近節椎間孔面積有下降的趨勢,且發現在限制活動範圍為60%、80%時鄰近節的椎間孔面積皆比健康狀態時的椎間孔面積小,在後仰動作中椎間核壓力變化並不顯著。於前彎與後仰活動中可發現隨著操作節限制角度的逐漸放寬操作節的中性區間有逐漸上升的趨勢,當限制角度範圍為20%、40%時相對於健康狀態的操作節沒有顯著性差異,而上下鄰近節則有代償性下降的趨勢,但是相對於健康狀態皆沒有顯著性差異。
結論: 操作節的前彎活動角度最大限制範圍為60% (4.04°)時,後仰動作活動角度限制範圍為40% (2.41°) 時,不會造成鄰近節過度代償,推測可以避免鄰近節提早退化的發生。
zh_TW
dc.description.abstractSummary of Background Data: Fusion surgery is often used to treat unstable spinal diseases. Fusion surgery usually decreases the motion of the implanted levels and induces compensation behaviors at the adjacent levels. It is wildly believed that the excess motions at the adjacent levels cause disc degeneration. Some dynamic devices, ex. Dynesys system, have been developed to solve the problems by preserving motion at the implanted levels. However, the flexibility of these products varies and their performances on reducing adjacent disc degeneration are still absurd.
Objective: The purpose of this study is to find the proper flexibility of posterior lumbar dynamic stabilizers by evaluating the neutral zone, range of motion, intradiscal pressure and intervertebral foramen area of the implanted and adjacent motion segments.
Materials and methods: Eight 4-level (L2-L5) lumbar spine were dissected from 6-month old pigs. All soft tissues except the surrounding ligaments and facet capsule were carefully removed. Specimens were wrapped in saline-soaked gauze and stored in the freezer until the experiment. The flexion / extension angular displacement of the specimen in the intact status were measured under 8 Nm of pure moment. Then the specimen was injured at L3-L4 level by damaging the facet joints and surrounding ligaments. The angular flexion/extension displacement obtained from the specimen in the intact status under 8 Nm of pure moment was applied to the specimens in the injured status and consecutively in 5 levels of constrained status which was controlled by a self-designed adjustable dynamic stabilizer implanted at L3-L4. The flexion / extension motion of L3-4 was constrained to be 0%, 20%, 40%, 60%, and 80 % of the flexion / extension motion of the injured status. The intersegmental neutral zone (NZ), range of motion (ROM), changes of intradiscal pressure (det IDP) and changes of intervertebral foramen area (det IFA) of the implanted and adjacent cranial/caudal motion segments were calculated. The IDP was measured by in-house 20 G needle pressure transducers inserted into the disc. The intervertebral foramen area was calculated based on lateral radiographys. The “det IDP” and “det IFA” was defined as the difference of IDP / IFA before and after the angular displacement loading.
Results: (1) During flexion. The NZ, ROM and the det IDP of the implanted and the adjacent cranial / caudal motion segments decreased with the increase of motion at the implanted level. The ROMs of the implanted and adjacent cranial/caudal motion segments in the status of 60% constrained motion at the implanted level were the same as those in the intact status. The det IDPs of the implanted and adjacent cranial/caudal motion segments in the status of 40%, 60% and 80% constrained motions were less than those in the intact status. The det IFAs of all motion segments in the injured and 5 constrained status were similar to those in the intact status. (2) During extension. The NZ, ROM and det IFA of the adjacent cranial and caudal motion segments decreased with the increase of motion at the implanted segment. The ROMs of the implanted and adjacent cranial/caudal motion segments in the status of 40% constrained motion at the implanted segment were the same as those in the intact status. The det IFAs of the implanted and adjacent cranial/caudal motion segments in the status of 60% and 80% constrained motions of the implanted segments were less than those in the intact status. The det IDPs of all motion segments in the injured and 5 constrained status were similar to those in the intact status.
Conclusions: It is found that 60% constrained flexion motion and 40% constrained extension motion at the implanted level induce least compensation ROM, IDP change or IFA change at the adjacent cranial and caudal levels without violating the stability at the implanted level. The result of this study is expected to be helpful for the development of new dynamic stabilization systems.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:56:30Z (GMT). No. of bitstreams: 1
ntu-100-R98548019-1.pdf: 1577215 bytes, checksum: 1e7f045cd520d3ad1129f7aec4e2c3a9 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents第一章 前言 1
1.1脊椎介紹 1
1.1.1脊椎基本架構 1
1.1.2椎間盤 1
1.1.3運動單元 2
1.2後方脊椎融合術 2
1.2.1後方脊椎融合術原理 2
1.2.2脊椎融合術的臨床結果 4
1.2.3脊椎融合術的生物力學測試結果 5
1.3非融合手術 6
1.3.1非融合手術簡介 6
1.3.2非融合手術的臨床結果 7
1.3.3非融合手術的生物力學測試結果 8
1.4實驗參數介紹 10
1.5研究假設與目的 11
第二章 材料與方法 12
2.1實驗方法 12
2.2實驗儀器 12
2.2.1混合式力學測試機 12
2.2.3活動範圍限制裝置 14
2.2.3活動範圍限制裝置 15
2.2.4 X光機 16
2.3實驗流程 17
2.3.1試樣處理 17
2.3.2實驗步驟 17
2.3.3量測裝置置入 19
2.3.4力學測試與角度限制模型 21
2.4資料分析 24
第三章 結果 25
3.1相對活動角度 25
3.1.1前彎動作 25
3.1.2後仰動作 26
3.2椎間核壓力變化 28
3.2.1前彎動作 28
3.2.2後仰動作 29
3.3椎間孔面積變化(相對於健康狀態的百分比) 31
3.3.1前彎動作 31
3.3.2後仰動作 31
3.4前彎後仰動作時的中性區間變化 34
第四章 討論 40
4.1相對活動角度 40
4.2椎間核壓力變化 40
4.3椎間孔面積變化 42
4.4中性區間變化 42
第五章 結論與未來展望 45
第六章 文獻回顧 46
dc.language.isozh-TW
dc.title動態式腰椎固定系統穩定度之生物力學探討zh_TW
dc.titleBiomechanical Studies of Stability of Lumbar Spinal Dynamic Stabilizeren
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林晉(Jinn Lin),趙振綱(Ching-Kong Chao)
dc.subject.keyword非融合手術,活動度,椎間核壓力,椎間孔面積,中性區,生物力學,zh_TW
dc.subject.keywordNon-Fusion Surgery,Range of Motion,Intradiscal Pressure,Foramen Size,Neutral Zone,Biomechanics,en
dc.relation.page47
dc.rights.note同意授權(全球公開)
dc.date.accepted2011-07-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf1.54 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved