Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100227
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王東美zh_TW
dc.contributor.advisorTong-Mei Wangen
dc.contributor.author賴昱任zh_TW
dc.contributor.authorYu-Ren Laien
dc.date.accessioned2025-09-30T16:05:02Z-
dc.date.available2025-10-01-
dc.date.copyright2025-09-30-
dc.date.issued2025-
dc.date.submitted2025-08-04-
dc.identifier.citation劉冠志(2012)。軟組織形變切割技術結合力回饋裝置應用於植牙手術模擬。﹝碩士論文。國立中正大學機械工程學研究所碩士論文﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/r3r2bc。
藍翊豪(2020)。以模擬骨塊測試不同鑽針轉速之植牙手感區分骨質能力之比較。國立台灣大學臨床牙醫學研究所碩士論文。
Aghaloo, T., Pi-Anfruns, J., Moshaverinia, A., Sim, D., Grogan, T., & Hadaya, D. (2019). The Effects of Systemic Diseases and Medications on Implant Osseointegration: A Systematic Review. Int J Oral Maxillofac Implants, 34, s35-s49. https://doi.org/10.11607/jomi.19suppl.g3
Al Amri, M. D., Al-Johany, S. S., Al Baker, A. M., Al Rifaiy, M. Q., Abduljabbar, T. S., & Al-Kheraif, A. A. (2017). Soft tissue changes and crestal bone loss around platform-switched implants placed at crestal and subcrestal levels: 36-month results from a prospective split-mouth clinical trial. Clinical Oral Implants Research, 28(11), 1342-1347. https://doi.org/https://doi.org/10.1111/clr.12990
Albrektsson, T., Brånemark, P. I., Hansson, H. A., & Lindström, J. (1981). Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand, 52(2), 155-170. https://doi.org/10.3109/17453678108991776
Albrektsson, T., Sennerby, L., & Wennerberg, A. (2008). State of the art of oral implants. Periodontol 2000, 47, 15-26. https://doi.org/10.1111/j.1600-0757.2007.00247.x
Albrektsson, T., Zarb, G., Worthington, P., & Eriksson, A. R. (1986). The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants, 1(1), 11-25.
Alghamdi, H., Anand, P. S., & Anil, S. (2011). Undersized implant site preparation to enhance primary implant stability in poor bone density: a prospective clinical study. J Oral Maxillofac Surg, 69(12), e506-512. https://doi.org/10.1016/j.joms.2011.08.007
Alkhodary, M. A., Abdelraheim, A. E. E., Al Dahman, Y. H., & Al-Mershed, M. (2015). The development of a composite bone model for training on placement of dental implants. International journal of health sciences, 9(2), 153.
Aneksomboonpol, P., Mahardawi, B., Nan, P. N., Laoharungpisit, P., Kumchai, T., Wongsirichat, N., & Aimjirakul, N. (2023). Surface structure characteristics of dental implants and their potential changes following installation: a literature review. J Korean Assoc Oral Maxillofac Surg, 49(3), 114-124. https://doi.org/10.5125/jkaoms.2023.49.3.114
Anitua, E., Tapia, R., Luzuriaga, F., & Orive, G. (2010). Influence of implant length, diameter, and geometry on stress distribution: a finite element analysis. Int J Periodontics Restorative Dent, 30(1), 89-95.
Antonacci, D., Del Fabbro, M., Bollero, P., Stocchero, M., Jinno, Y., & Canullo, L. (2023). Clinical effects of conventional and underprepared drilling preparation of the implant site based on bone density: A systematic review and meta-regression. J Prosthodont Res, 67(1), 23-34. https://doi.org/10.2186/jpr.JPR_D_21_00275
Bamgbose, B. O., Adeyemo, W. L., Ladeinde, A. L., & Ogunlewe, M. O. (2008). Conebeam computed tomography (CBCT): the new vista in oral and maxillofacial imaging. Nig Q J Hosp Med, 18(1), 32-35. https://doi.org/10.4314/nqjhm.v18i1.44955
Belser, U. C., Bernard, J. P., & Buser, D. (1996). Implant-supported restorations in the anterior region: prosthetic considerations. Pract Periodontics Aesthet Dent, 8(9), 875-883; quiz 884.
Bernabeu-Mira, J. C., Soto-Peñaloza, D., Peñarrocha-Diago, M., Camacho-Alonso, F., Rivas-Ballester, R., & Peñarrocha-Oltra, D. (2021). Low-speed drilling without irrigation versus conventional drilling for dental implant osteotomy preparation: a systematic review. Clin Oral Investig, 25(7), 4251-4267. https://doi.org/10.1007/s00784-021-03939-z
Block, M. S., & Kent, J. N. (1990). Factors associated with soft- and hard-tissue compromise of endosseous implants. Journal of Oral and Maxillofacial Surgery, 48(11), 1153-1160. https://doi.org/https://doi.org/10.1016/0278-2391(90)90531-6
Block, M. S., & Mercante, D. (2025). Selective serotonin reuptake inhibitors may increase implant failure. J Oral Maxillofac Surg, 83(5), 585-591. https://doi.org/10.1016/j.joms.2025.02.005
Bolanowski, S. J., Jr., Gescheider, G. A., Verrillo, R. T., & Checkosky, C. M. (1988). Four channels mediate the mechanical aspects of touch. J Acoust Soc Am, 84(5), 1680-1694. https://doi.org/10.1121/1.397184
Brånemark, P. I. (1983). Osseointegration and its experimental background. J Prosthet Dent, 50(3), 399-410. https://doi.org/10.1016/s0022-3913(83)80101-2
Cehreli, M., Sahin, S., & Akça, K. (2004). Role of mechanical environment and implant design on bone tissue differentiation: current knowledge and future contexts. J Dent, 32(2), 123-132. https://doi.org/10.1016/j.jdent.2003.09.003
Chen, S. T., Buser, D., Sculean, A., & Belser, U. C. (2023). Complications and treatment errors in implant positioning in the aesthetic zone: Diagnosis and possible solutions. Periodontol 2000, 92(1), 220-234. https://doi.org/10.1111/prd.12474
Chrcanovic, B. R., Kisch, J., Albrektsson, T., & Wennerberg, A. (2017). Is the intake of selective serotonin reuptake inhibitors associated with an increased risk of dental implant failure? Int J Oral Maxillofac Surg, 46(6), 782-788. https://doi.org/https://doi.org/10.1016/j.ijom.2017.01.016
Chung, D. M., Oh, T.-J., Shotwell, J. L., Misch, C. E., & Wang, H.-L. (2006). Significance of keratinized mucosa in maintenance of dental implants with different surfaces. Journal of Periodontology, 77(8), 1410-1420. https://doi.org/https://doi.org/10.1902/jop.2006.050393
Chung, S., Li, X., & Nelson, S. B. (2002). Short-term depression at thalamocortical synapses contributes to rapid adaptation of cortical sensory responses in vivo. Neuron, 34(3), 437-446. https://doi.org/10.1016/s0896-6273(02)00659-1
Compain, H., Berquet, A., Loison-Robert, L. S., Ahossi, V., & Zwetyenga, N. (2018). Duration of treatment with bisphosphonates at the time of osteonecrosis of the jaw onset in patients with rheumatoid arthritis. Review. J Stomatol Oral Maxillofac Surg, 119(3), 177-181. https://doi.org/10.1016/j.jormas.2017.12.009
Correa, L. R., Spin-Neto, R., Stavropoulos, A., Schropp, L., da Silveira, H. E., & Wenzel, A. (2014). Planning of dental implant size with digital panoramic radiographs, CBCT-generated panoramic images, and CBCT cross-sectional images. Clin Oral Implants Res, 25(6), 690-695. https://doi.org/10.1111/clr.12126
D'Haese, J., Ackhurst, J., Wismeijer, D., De Bruyn, H., & Tahmaseb, A. (2017). Current state of the art of computer-guided implant surgery. Periodontol 2000, 73(1), 121-133. https://doi.org/10.1111/prd.12175
Dard, M., Kuehne, S., Obrecht, M., Grandin, M., Helfenstein, J., & Pippenger, B. E. (2016). Integrative performance analysis of a novel bone level tapered implant. Adv Dent Res, 28(1), 28-33. https://doi.org/10.1177/0022034515624443
Darian-Smith, I., & Kenins, P. (1980). Innervation density of mechanoreceptive fibres supplying glabrous skin of the monkey's index finger. J Physiol, 309, 147-155. https://doi.org/10.1113/jphysiol.1980.sp013500
Davies, J. E. (1998). Mechanisms of endosseous integration. Int J Prosthodont, 11(5), 391-401.
Dioguardi, M., Spirito, F., Quarta, C., Sovereto, D., Basile, E., Ballini, A., Caloro, G. A., Troiano, G., Lo Muzio, L., & Mastrangelo, F. (2023). Guided dental implant surgery: systematic review. J Clin Med, 12(4). https://doi.org/10.3390/jcm12041490
Dos Santos, M. V., Elias, C. N., & Cavalcanti Lima, J. H. (2011). The effects of superficial roughness and design on the primary stability of dental implants. Clin Implant Dent Relat Res, 13(3), 215-223. https://doi.org/10.1111/j.1708-8208.2009.00202.x
Engquist, B., Bergendal, T., Kallus, T., & Linden, U. (1988). A retrospective multicenter evaluation of osseointegrated implants supporting overdentures. Int J Oral Maxillofac Implants, 3(2), 129-134.
Ericsson, I., Nilson, H., Lindh, T., Nilner, K., & Randow, K. (2000). Immediate functional loading of Brånemark single tooth implants. An 18 months' clinical pilot follow-up study. Clin Oral Implants Res, 11(1), 26-33. https://doi.org/10.1034/j.1600-0501.2000.011001026.x
Esposito, M., Grusovin, M. G., Maghaireh, H., & Worthington, H. V. (2013). Interventions for replacing missing teeth: different times for loading dental implants. Cochrane Database Syst Rev, 2013(3), Cd003878. https://doi.org/10.1002/14651858.CD003878.pub5
Esposito, M., Hirsch, J. M., Lekholm, U., & Thomsen, P. (1998). Biological factors contributing to failures of osseointegrated oral implants. (I). Success criteria and epidemiology. Eur J Oral Sci, 106(1), 527-551. https://doi.org/10.1046/j.0909-8836..t01-2-.x
Fernández-Olavarria, A., Gutiérrez-Corrales, A., González-Martín, M., Torres-Lagares, D., Torres-Carranza, E., & Serrera-Figallo, M. (2023). Influence of different drilling protocols and bone density on the insertion torque of dental implants. Med Oral Patol Oral Cir Bucal, 28(4), e385-e394. https://doi.org/10.4317/medoral.25804
G, D. E. V., Bonino, M., Spinelli, D., Schiavetti, R., Sannino, G., Pozzi, A., & Ottria, L. (2011). Rationale for tilted implants: FEA considerations and clinical reports. Oral Implantol (Rome), 4(3-4), 23-33.
Garber, D. A., & Belser, U. C. (1995). Restoration-driven implant placement with restoration-generated site development. Compend Contin Educ Dent, 16(8), 796, 798-802, 804.
Gargallo-Albiol, J., Barootchi, S., Marqués-Guasch, J., & Wang, H. L. (2020). Fully guided versus half-guided and freehand implant placement: Systematic review and meta-analysis. Int J Oral Maxillofac Implants, 35(6), 1159-1169. https://doi.org/10.11607/jomi.7942
Gargallo-Albiol, J., Barootchi, S., Salomó-Coll, O., & Wang, H. L. (2019). Advantages and disadvantages of implant navigation surgery. A systematic review. Ann Anat, 225, 1-10. https://doi.org/10.1016/j.aanat.2019.04.005
Gehrke, S. A., Frugis, V. L., Shibli, J. A., Fernandez, M. P., Sánchez de Val, J. E., Girardo, J. L., Taschieri, S., & Corbella, S. (2016). Influence of implant design (cylindrical and conical) in the load transfer surrounding long (13mm) and short (7mm) Length Implants: A photoelastic analysis. Open Dent J, 10, 522-530. https://doi.org/10.2174/1874210601610010522
Gibney, J. W. (2001). Minimally invasive implant surgery. J Oral Implantol, 27(2), 73-76. https://doi.org/10.1563/1548-1336(2001)027<0073:Miis>2.3.Co;2
Glauser, R., Rée, A., Lundgren, A., Gottlow, J., Hämmerle, C. H., & Schärer, P. (2001). Immediate occlusal loading of Brånemark implants applied in various jawbone regions: a prospective, 1-year clinical study. Clin Implant Dent Relat Res, 3(4), 204-213. https://doi.org/10.1111/j.1708-8208.2001.tb00142.x
Greenstein, G., Cavallaro, J., Greenstein, B., & Tarnow, D. (2010). Treatment planning implant dentistry with a 2-mm twist drill. Compend Contin Educ Dent, 31(2), 126-128, 130, 132 passim; quiz 137-128. https://doi.org/10.1111/clr.13864
Heimes, D., Becker, P., Pabst, A., Smeets, R., Kraus, A., Hartmann, A., Sagheb, K., & Kämmerer, P. W. (2023). How does dental implant macrogeometry affect primary implant stability? A narrative review. Int J Implant Dent, 9(1), 20. https://doi.org/10.1186/s40729-023-00485-z
Himmlová, L., Dostálová, T., Kácovský, A., & Konvicková, S. (2004). Influence of implant length and diameter on stress distribution: a finite element analysis. J Prosthet Dent, 91(1), 20-25. https://doi.org/10.1016/j.prosdent.2003.08.008
Howe, M. S., Keys, W., & Richards, D. (2019). Long-term (10-year) dental implant survival: A systematic review and sensitivity meta-analysis. J Dent, 84, 9-21. https://doi.org/10.1016/j.jdent.2019.03.008
Huang, Y.-C., Huang, Y.-C., & Ding, S.-J. (2023). Primary stability of implant placement and loading related to dental implant materials and designs: A literature review. Journal of Dental Sciences, 18(4), 1467-1476. https://doi.org/https://doi.org/10.1016/j.jds.2023.06.010
Huwais, S., & Meyer, E. G. (2017). A novel osseous densification approach in implant osteotomy preparation to increase biomechanical primary stability, bone mineral density, and bone-to-implant contact. Int J Oral Maxillofac Implants, 32(1), 27-36. https://doi.org/10.11607/jomi.4817
Isidor, F. (1997). Histological evaluation of peri-implant bone at implants subjected to occlusal overload or plaque accumulation. Clin Oral Implants Res, 8(1), 1-9. https://doi.org/10.1111/j.1600-0501.1997.tb00001.x
Jaffin, R. A., & Berman, C. L. (1991). The excessive loss of Branemark fixtures in type IV bone: a 5-year analysis. J Periodontol, 62(1), 2-4. https://doi.org/10.1902/jop.1991.62.1.2
Javed, F., Ahmed, H. B., Crespi, R., & Romanos, G. E. (2013). Role of primary stability for successful osseointegration of dental implants: Factors of influence and evaluation. Interv Med Appl Sci, 5(4), 162-167. https://doi.org/10.1556/imas.5.2013.4.3
Javed, F., & Romanos, G. E. (2010). The role of primary stability for successful immediate loading of dental implants. A literature review. J Dent, 38(8), 612-620. https://doi.org/10.1016/j.jdent.2010.05.013
Jenmalm, P., Birznieks, I., Goodwin, A. W., & Johansson, R. S. (2003). Influence of object shape on responses of human tactile afferents under conditions characteristic of manipulation. Eur J Neurosci, 18(1), 164-176. https://doi.org/10.1046/j.1460-9568.2003.02721.x
Johansson, R. S., & Flanagan, J. R. (2009). Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat Rev Neurosci, 10(5), 345-359. https://doi.org/10.1038/nrn2621
Johansson, R. S., Landstro¨m, U., & Lundstro¨m, R. (1982). Responses of mechanoreceptive afferent units in the glabrous skin of the human hand to sinusoidal skin displacements. Brain Research, 244(1), 17-25. https://doi.org/https://doi.org/10.1016/0006-8993(82)90899-X
Johansson, R. S., & Vallbo, Å. B. (1983). Tactile sensory coding in the glabrous skin of the human hand. Trends in Neurosciences, 6, 27-32.
Johansson, R. S., & Westling, G. (1987). Signals in tactile afferents from the fingers eliciting adaptive motor responses during precision grip. Exp Brain Res, 66(1), 141-154. https://doi.org/10.1007/bf00236210
Khader, Y. S., Dauod, A. S., El-Qaderi, S. S., Alkafajei, A., & Batayha, W. Q. (2006). Periodontal status of diabetics compared with nondiabetics: a meta-analysis. J Diabetes Complications, 20(1), 59-68. https://doi.org/10.1016/j.jdiacomp.2005.05.006
Kinoshita, H., Nagahata, M., Takano, N., Takemoto, S., Matsunaga, S., Abe, S., Yoshinari, M., & Kawada, E. (2016). Development of a drilling simulator for dental implant surgery. Journal of Dental Education, 80(1), 83-90. https://doi.org/https://doi.org/10.1002/j.0022-0337.2016.80.1.tb06061.x
Kligman, S., Ren, Z., Chung, C. H., Perillo, M. A., Chang, Y. C., Koo, H., Zheng, Z., & Li, C. (2021). The impact of dental implant surface modifications on osseointegration and biofilm formation. J Clin Med, 10(8). https://doi.org/10.3390/jcm10081641
Kochar, S. P., Reche, A., & Paul, P. (2022). The etiology and management of dental implant failure: A review. Cureus, 14(10), e30455. https://doi.org/10.7759/cureus.30455
Kopic, S., & Geibel, J. P. (2010). Update on the mechanisms of gastric acid secretion. Curr Gastroenterol Rep, 12(6), 458-464. https://doi.org/10.1007/s11894-010-0137-9
Kotsakis, G. A., & Romanos, G. E. (2022). Biological mechanisms underlying complications related to implant site preparation. Periodontol 2000, 88(1), 52-63. https://doi.org/10.1111/prd.12410
Kourtis, S. G., Sotiriadou, S., Voliotis, S., & Challas, A. (2004). Private practice results of dental implants. Part I: Survival and evaluation of risk factors—Part II: Surgical and prosthetic complications. Implant Dentistry, 13(4). https://journals.lww.com/implantdent/fulltext/2004/13040/private_practice_results_of_dental_implants__part.16.aspx
Kreve, S., Ferreira, I., da Costa Valente, M. L., & Dos Reis, A. C. (2024). Relationship between dental implant macro-design and osseointegration: a systematic review. Oral Maxillofac Surg, 28(1), 1-14. https://doi.org/10.1007/s10006-022-01116-4
Kühl, S., Zürcher, S., Mahid, T., Müller-Gerbl, M., Filippi, A., & Cattin, P. (2013). Accuracy of full guided vs. half-guided implant surgery. Clin Oral Implants Res, 24(7), 763-769. https://doi.org/10.1111/j.1600-0501.2012.02484.x
Laederach, V., Mukaddam, K., Payer, M., Filippi, A., & Kühl, S. (2017). Deviations of different systems for guided implant surgery. Clinical Oral Implants Research, 28(9), 1147-1151. https://doi.org/https://doi.org/10.1111/clr.12930
Lekholm, U. (2003). Immediate/early loading of oral implants in compromised patients. Periodontol 2000, 33, 194-203. https://doi.org/10.1046/j.0906-6713.2003.03316.x
Lindh, C., Oliveira, G. H., Leles, C. R., do Carmo Matias Freire, M., & Ribeiro-Rotta, R. F. (2014). Bone quality assessment in routine dental implant treatment among Brazilian and Swedish specialists. Clin Oral Implants Res, 25(9), 1004-1009. https://doi.org/10.1111/clr.12221
Lindquist, L. W., Rockler, B., & Carlsson, G. E. (1988). Bone resorption around fixtures in edentulous patients treated with mandibular fixed tissue-integrated prostheses. The Journal of Prosthetic Dentistry, 59(1), 59-63. https://doi.org/https://doi.org/10.1016/0022-3913(88)90109-6
Loggia, G., Avrumova, F., & Lebl, D. R. (2025). Visuohaptic feedback in robotic-assisted spine surgery for pedicle screw placement. J Clin Med, 14(11). https://doi.org/10.3390/jcm14113804
Luke Yeo, I. S. (2022). Dental implants: enhancing biological response through surface modifications. Dent Clin North Am, 66(4), 627-642. https://doi.org/10.1016/j.cden.2022.05.009
MacAvelia, T., Ghasempoor, A., & Janabi-Sharifi, F. (2014). Force and torque modelling of drilling simulation for orthopaedic surgery. Comput Methods Biomech Biomed Engin, 17(12), 1285-1294. https://doi.org/10.1080/10255842.2012.739163
Malchiodi, L., Cucchi, A., Ghensi, P., Consonni, D., & Nocini, P. F. (2014). Influence of crown-implant ratio on implant success rates and crestal bone levels: a 36-month follow-up prospective study. Clin Oral Implants Res, 25(2), 240-251. https://doi.org/10.1111/clr.12105
Maló, P., Araújo Nobre, M. D., Lopes, A., & Rodrigues, R. (2015). Double full-arch versus single full-arch, four implant-supported rehabilitations: A retrospective, 5-Year cohort study. J Prosthodont, 24(4), 263-270. https://doi.org/10.1111/jopr.12228
Maló, P., Rangert, B., & Dvärsäter, L. (2000). Immediate function of Brånemark implants in the esthetic zone: a retrospective clinical study with 6 months to 4 years of follow-up. Clin Implant Dent Relat Res, 2(3), 138-146. https://doi.org/10.1111/j.1708-8208.2000.tb00004.x
Marchand, F., Raskin, A., Dionnes-Hornes, A., Barry, T., Dubois, N., Valéro, R., & Vialettes, B. (2012). Dental implants and diabetes: Conditions for success. Diabetes & Metabolism, 38(1), 14-19. https://doi.org/https://doi.org/10.1016/j.diabet.2011.10.002
Marković, A., Mišić, T., Miličić, B., Calvo-Guirado, J. L., Aleksić, Z., & Ðinić, A. (2013). Heat generation during implant placement in low-density bone: effect of surgical technique, insertion torque and implant macro design. Clin Oral Implants Res, 24(7), 798-805. https://doi.org/10.1111/j.1600-0501.2012.02460.x
Mengel, R., Behle, M., & Flores-de-Jacoby, L. (2007). Osseointegrated implants in subjects treated for generalized aggressive periodontitis: 10-year results of a prospective, long-term cohort study. J Periodontol, 78(12), 2229-2237. https://doi.org/10.1902/jop.2007.070201
Meredith, N. (1998). Assessment of implant stability as a prognostic determinant. Int J Prosthodont, 11(5), 491-501.
Michaeli, E., Weinberg, I., & Nahlieli, O. (2009). Dental implants in the diabetic patient: Systemic and rehabilitative considerations. Quintessence international (Berlin, Germany : 1985), 40, 639-645.
Migliorati, C. A., Siegel, M. A., & Elting, L. S. (2006). Bisphosphonate-associated osteonecrosis: a long-term complication of bisphosphonate treatment. Lancet Oncol, 7(6), 508-514. https://doi.org/10.1016/s1470-2045(06)70726-4
Misch, C. E. (1990). Density of bone: effect on treatment plans, surgical approach, healing, and progressive boen loading. Int J Oral Implantol, 6(2), 23-31.
Moraschini, V., Barboza, E. S. P., & Peixoto, G. A. (2016). The impact of diabetes on dental implant failure: a systematic review and meta-analysis. International Journal of Oral and Maxillofacial Surgery, 45(10), 1237-1245. https://doi.org/https://doi.org/10.1016/j.ijom.2016.05.019
Nicolau, P., Guerra, F., Reis, R., Krafft, T., Benz, K., & Jackowski, J. (2019). 10-year outcomes with immediate and early loaded implants with a chemically modified SLA surface. Quintessence Int, 50(2), 114-124. https://doi.org/10.3290/j.qi.a41664
O'Sullivan, D., Sennerby, L., Jagger, D., & Meredith, N. (2004). A comparison of two methods of enhancing implant primary stability. Clin Implant Dent Relat Res, 6(1), 48-57. https://doi.org/10.1111/j.1708-8208.2004.tb00027.x
O'Sullivan, D., Sennerby, L., & Meredith, N. (2000). Measurements comparing the initial stability of five designs of dental implants: a human cadaver study. Clin Implant Dent Relat Res, 2(2), 85-92. https://doi.org/10.1111/j.1708-8208.2000.tb00110.x
O'Sullivan, D., Sennerby, L., & Meredith, N. (2004). Influence of implant taper on the primary and secondary stability of osseointegrated titanium implants. Clin Oral Implants Res, 15(4), 474-480. https://doi.org/10.1111/j.1600-0501.2004.01041.x
Olmedo-Gaya, M. V., Romero-Olid, M. N., Ocaña-Peinado, F. M., Vallecillo-Rivas, M., Vallecillo, C., & Reyes-Botella, C. (2023). Influence of different surgical techniques on primary implant stability in the posterior maxilla: a randomized controlled clinical trial. Clin Oral Investig, 27(7), 3499-3508. https://doi.org/10.1007/s00784-023-04962-y
Pauwels, R., Beinsberger, J., Collaert, B., Theodorakou, C., Rogers, J., Walker, A., Cockmartin, L., Bosmans, H., Jacobs, R., Bogaerts, R., & Horner, K. (2012). Effective dose range for dental cone beam computed tomography scanners. Eur J Radiol, 81(2), 267-271. https://doi.org/10.1016/j.ejrad.2010.11.028
Pettersson, A., Komiyama, A., Hultin, M., Näsström, K., & Klinge, B. (2012). Accuracy of virtually planned and template guided implant surgery on edentate patients. Clin Implant Dent Relat Res, 14(4), 527-537. https://doi.org/10.1111/j.1708-8208.2010.00285.x
Piattelli, A., Pontes, A. E., Degidi, M., & Iezzi, G. (2011). Histologic studies on osseointegration: soft tissues response to implant surfaces and components. A review. Dent Mater, 27(1), 53-60. https://doi.org/10.1016/j.dental.2010.10.019
Pozzo, T., Papaxanthis, C., Petit, J. L., Schweighofer, N., & Stucchi, N. (2006). Kinematic features of movement tunes perception and action coupling. Behavioural Brain Research, 169(1), 75-82. https://doi.org/https://doi.org/10.1016/j.bbr.2005.12.005
Prasad, S., & Bansal, N. (2017). Predoctoral dental students' perceptions of dental implant training: Effect of preclinical simulation and clinical experience [Article]. Journal of Dental Education, 81(4), 395-403. https://doi.org/10.21815/JDE.016.001
Putra, R. H., Yoda, N., Astuti, E. R., & Sasaki, K. (2022). The accuracy of implant placement with computer-guided surgery in partially edentulous patients and possible influencing factors: A systematic review and meta-analysis. J Prosthodont Res, 66(1), 29-39. https://doi.org/10.2186/jpr.JPR_D_20_00184
Renouard, F., & Nisand, D. (2006). Impact of implant length and diameter on survival rates. Clin Oral Implants Res, 17 Suppl 2, 35-51. https://doi.org/10.1111/j.1600-0501.2006.01349.x
Renvert, S., & Persson, G. R. (2009). Periodontitis as a potential risk factor for peri-implantitis. J Clin Periodontol, 36 Suppl 10, 9-14. https://doi.org/10.1111/j.1600-051X.2009.01416.x
Romandini, M., Pedrinaci, I., Lima, C., Soldini, M. C., Araoz, A., & Sanz, M. (2021). Prevalence and risk/protective indicators of buccal soft tissue dehiscence around dental implants. J Clin Periodontol, 48(3), 455-463. https://doi.org/10.1111/jcpe.13417
Romanos, G. E., & Javed, F. (2014). Platform switching minimises crestal bone loss around dental implants: truth or myth? J Oral Rehabil, 41(9), 700-708. https://doi.org/10.1111/joor.12189
Roos, J., Sennerby, L., & Albrektsson, T. (1997). An update on the clinical documentation on currently used bone anchored endosseous oral implants. Dent Update, 24(5), 194-200.
Rothwell, B. R., & Richard, E. L. (1984). Diabetes mellitus: medical and dental considerations. Spec Care Dentist, 4(2), 58-65. https://doi.org/10.1111/j.1754-4505.1984.tb00148.x
Rungcharassaeng, K., Caruso, J. M., Kan, J. Y. K., Schutyser, F., & Boumans, T. (2015). Accuracy of computer-guided surgery: A comparison of operator experience. The Journal of Prosthetic Dentistry, 114(3), 407-413. https://doi.org/https://doi.org/10.1016/j.prosdent.2015.04.004
Saini, M., Singh, Y., Arora, P., Arora, V., & Jain, K. (2015). Implant biomaterials: A comprehensive review. World J Clin Cases, 3(1), 52-57. https://doi.org/10.12998/wjcc.v3.i1.52
Samra, R., & Showkat, R. (2021). Impact of drilling speed in implantology: A review. J Pierre Fauchard Academy (Pierre Fauchard Academy. India Section), 35, 78-86. https://doi.org/10.18311/jpfa/2021/27610
Sánchez-Gárces, M. A., & Gay-Escoda, C. (2004). Periimplantitis. Med Oral Patol Oral Cir Bucal, 9 Suppl, 69-74; 63-69.
Schiegnitz, E., & Al-Nawas, B. (2018). Narrow-diameter implants: A systematic review and meta-analysis. Clin Oral Implants Res, 29 Suppl 16, 21-40. https://doi.org/10.1111/clr.13272
Seifert, L. B., Schnurr, B., Herrera-Vizcaino, C., Begic, A., Thieringer, F., Schwarz, F., & Sader, R. (2020). 3D-printed patient individualised models vs cadaveric models in an undergraduate oral and maxillofacial surgery curriculum: Comparison of student's perceptions. European J Dent Edu, 24(4), 799-806. https://doi.org/https://doi.org/10.1111/eje.12522
Shemtov-Yona, K. (2021). Quantitative assessment of the jawbone quality classification: A meta-analysis study. PLoS One, 16(6), e0253283. https://doi.org/10.1371/journal.pone.0253283
Silva, G. A. F., Faot, F., Possebon, A., da Silva, W. J., & Del Bel Cury, A. A. (2021). Effect of macrogeometry and bone type on insertion torque, primary stability, surface topography damage and titanium release of dental implants during surgical insertion into artificial bone. J Mech Behav Biomed Mater, 119, 104515. https://doi.org/10.1016/j.jmbbm.2021.104515
Sulaiman, N., Fadhul, F., & Chrcanovic, B. R. (2023). Bisphosphonates and dental implants: A systematic review and meta-analysis. Materials (Basel), 16(18). https://doi.org/10.3390/ma16186078
Szmukler-Moncler, S., Salama, H., Reingewirtz, Y., & Dubruille, J. H. (1998). Timing of loading and effect of micromotion on bone-dental implant interface: review of experimental literature. J Biomed Mater Res, 43(2), 192-203. https://doi.org/10.1002/(sici)1097-4636(199822)43:2<192::aid-jbm14>3.0.co;2-k
Tabassum, A., Meijer, G. J., Walboomers, X. F., & Jansen, J. A. (2014). Evaluation of primary and secondary stability of titanium implants using different surgical techniques. Clin Oral Implants Res, 25(4), 487-492. https://doi.org/10.1111/clr.12180
Tavelli, L., Zucchelli, G., Stefanini, M., Rasperini, G., Wang, H. L., & Barootchi, S. (2023). Vertical soft tissue augmentation to treat implant esthetic complications: A prospective clinical and volumetric case series. Clin Implant Dent Relat Res, 25(2), 204-214. https://doi.org/10.1111/cid.13188
Topçu, A. O., Yamalik, N., Güncü, G. N., Tözüm, T. F., El, H., Uysal, S., & Hersek, N. (2017). Implant-site related and patient-based factors with the potential to impact patients' satisfaction, quality of life measures and perceptions toward dental implant treatment. Implant Dentistry, 26(4). https://journals.lww.com/implantdent/fulltext/2017/08000/implant_site_related_and_patient_based_factors.16.aspx
Toyoshima, T., Wagner, W., Klein, M. O., Stender, E., Wieland, M., & Al-Nawas, B. (2011). Primary stability of a hybrid self-tapping implant compared to a cylindrical non-self-tapping implant with respect to drilling protocols in an ex vivo model. Clin Impl Dent Related Res, 13(1), 71-78. https://doi.org/https://doi.org/10.1111/j.1708-8208.2009.00185.x
Trisi, P., & Rao, W. (1999). Bone classification: clinical-histomorphometric comparison. Clin Oral Implants Res, 10(1), 1-7. https://doi.org/10.1034/j.1600-0501.1999.100101.x
Turkyilmaz, I., & McGlumphy, E. A. (2008). Influence of bone density on implant stability parameters and implant success: a retrospective clinical study. BMC Oral Health, 8, 32. https://doi.org/10.1186/1472-6831-8-32
van Steenberghe, D., Jacobs, R., Desnyder, M., Maffei, G., & Quirynen, M. (2002). The relative impact of local and endogenous patient-related factors on implant failure up to the abutment stage. Clin Oral Implants Res, 13(6), 617-622. https://doi.org/10.1034/j.1600-0501.2002.130607.x
Vandeweghe, S., Koole, S., Younes, F., De Coster, P., & De Bruyn, H. (2014). Dental implants placed by undergraduate students: clinical outcomes and patients’/students’ perceptions. European Journal of Dental Education, 18(s1), 60-69. https://doi.org/https://doi.org/10.1111/eje.12077
Varghai, K., Eppell, S. J., & Wang, R. (2020). Effect of drilling speed on dental implant insertion torque. J Oral Implant, 46(5), 467-474. https://doi.org/10.1563/aaid-joi-D-18-00250
Wang, J., Ge, Y., Mühlemann, S., Pan, S., & Jung, R. E. (2023). The accuracy of dynamic computer assisted implant surgery in fully edentulous jaws: A retrospective case series. Clin Oral Implants Res, 34(11), 1278-1288. https://doi.org/10.1111/clr.14168
Wang, T. M., Lin, Y. C., Lan, Y. H., & Lin, L. D. (2022). Evaluation of sawbones training protocol in bone quality classification using tactile sensation. J Dent Sci, 17(2), 897-902. https://doi.org/10.1016/j.jds.2021.12.013
Wei, S. M., Zhu, Y., Wei, J. X., Zhang, C. N., Shi, J. Y., & Lai, H. C. (2021). Accuracy of dynamic navigation in implant surgery: A systematic review and meta-analysis. Clin Oral Implants Res, 32(4), 383-393. https://doi.org/10.1111/clr.13719
Wu, D., Isaksson, P., Ferguson, S. J., & Persson, C. (2018). Young's modulus of trabecular bone at the tissue level: A review. Acta Biomater, 78, 1-12. https://doi.org/10.1016/j.actbio.2018.08.001
Zarb, G. A., & Zarb, F. L. (1985). Tissue integrated dental prostheses. Quintessence Int, 16(1), 39-42.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100227-
dc.description.abstract實驗目的
骨質的軟硬一直被認為是影響人工植牙成功率的重要因子之一。過硬或過軟的骨質可能影響對於後續骨質判斷以及鑽骨策略,進而影響人工牙根植體植入時的初期穩定度、等待骨整合的時間以及植體的成功率。臨床上在不同骨質區植牙時,除了利用傳統放射線檢查或電腦斷層攝影提供一部分的骨質資訊,有經驗的手術醫師常輔助以鑽骨時的手感來診斷骨質以決定手術步驟與癒合時間,調整手術鑽孔步驟或方式例如「預攻螺紋」、「擴骨」、「較小尺寸預鑽孔」等術式以期得到較合適的人工牙根初期穩定度。此外,植牙區域也是影響植體治療成功的關鍵之一。日漸流行的全導引植牙手術(fully guided implant surgery)是使用術前電腦斷層配合口內掃描檔案或是石膏模型的桌掃檔案、依據將來植牙義齒的外型來規劃人工牙根的位置,並使用電腦設計製作 (CAD/CAM)手術導板,讓醫師在手術中可以全程用來確認植牙之位置、角度與深度。此方法可以增加手術安全度與減少手術時間。然而由於全導引手術導板上的引導套環與植牙鑽針緊密貼合而產生摩擦力,可能會影響到手感的判斷;更因於不同的骨密度下,手感判斷可能因為先前手感的經驗而造成失準,導致後續骨質判斷失誤。因此本實驗目的為探討有無使用全導引手術導板於先前骨頭硬度不同時,對於關鍵植牙位置是否會影響到手術醫師對骨質的判斷能力。將納入30名牙醫師做為受試者,利用四種不同密度的模擬骨塊,紀錄有無使用全導引手術導板鑽孔,合併先前鑽過不同骨質硬度之後,受試醫師判斷骨質硬度的精確性是否受到影響,藉此探討全導引手術導板和鑽骨前經歷不同骨質軟硬對於人工植牙手術診斷骨質的影響。
實驗材料與方法
本實驗納入30名牙醫師作為受試者,納入條件為執業年資未滿10年,臨床植牙經驗少於10顆,且年齡介於24至40歲。排除條件為無法配合完整測試流程者。實驗設計區分成徒手鑽骨以及全導引手術兩輪,每輪區分成中間骨質硬度軟硬中ABC三組,每一組有五次鑽骨測試。實驗模型以3Shape trio 4 口掃機取得,合併模擬病人的錐狀射束電腦斷層掃描(cone beam computed tomography, CBCT)的DICOM(Digital Imaging and Communications in Medicine)檔案設定出植牙位置。將模型透過Meshmixer(Autodesk Meshmixer, Autodesk, San Rafael, USA)軟體進行編輯,設計模擬骨塊置放之凹槽。模型凹槽處分別放置不同的模擬骨塊。每組模擬骨塊置放順序如下:編號A模型為5,5,10 pcf;編號B模型為15,15,10 pcf;編號C模型為10,10,10 pcf。進行每組測試時,請受試者先鑽取一個50 pcf的模擬骨塊,告知此為最硬的模擬骨塊。接著鑽一個10 pcf的模擬骨塊,再依序鑽放置模型凹槽的模擬骨塊。第一輪為徒手鑽孔(Free hand drilling),測試三組結束。等待一個月後,接續第二輪使用全導引手術導板(Fully guided drilling with stent)。每次鑽骨完成後,即在問卷上標記手感硬度,在長度為10公分的視覺評比量表(Visual Analogue Scale, VAS)上標記,再以標記處的線段長度(mm)做為VAS數值。此VAS數值即為受試者診斷模擬骨塊的硬度。
統計分析
數據於Microsoft Excel (V 14.1) 進行資料建檔,隨後匯入 SAS 統計分析軟體 (SAS System for Windows, V9.4, SAS Institute Inc., Cary, NC, USA) 執行後續統計程序。先進行常態性分析後,再進行配對t檢定(paired t test)評估是否有無統計上的顯著差異,所有的統計分析p value設定在< 0.05表示在統計學上有顯著意義。
實驗結果
本研究共納入30位牙醫師(年齡24–40歲;臨床經驗<10年;植牙經驗<10顆)。每位受試者皆完成六組鑽孔測試(徒手與全導引各三組),三組不同排列之骨塊中進行(A組:5,5,10 pcf;B組:15,15,10 pcf;C組:10,10,10 pcf)。每次鑽骨後,受試者以10 公分的視覺類比量表(VAS)紀錄其對骨質硬度之觸覺感受。
在徒手鑽孔條件下,中間骨塊密度變化對最終骨塊(10 pcf)之手感評估具有顯著影響。A組(中間變軟)中,第二次與第五次鑽孔VAS值成顯著差異(VAS差值為9.44±18.77, p <0.05);B組(中間變硬)也具顯著差異(VAS差值為-8.22±17.8, p <0.05)。C組(骨質不變)前後則無顯著差異(VAS差值為1.71±15.33, p>0.05)。
在使用全導引手術導板條件下,A組(中間變軟)前後VAS有上升並有顯著差異(VAS差值為10.62±23.07, p<0.05);B組(中間變硬)則無顯著差異(VAS差值為−2.99±18.62, p >0.05);C組(骨質不變)亦無顯著差異(VAS差值為3.31±17.96, p> 0.05)。
此外,於骨質不變組(C組)中,受試者對相同10 pcf骨塊的鑽孔手感評估在使用全導引手術導板條件下顯著高於徒手鑽孔(VAS差值為-8.82±18.27, p> 0.05)。
對中間骨質變化對手感變化幅度的影響進行分析,結果顯示,雖然徒手與導板組在不同骨質條件下的手感變化量皆有顯著差異,但比較兩組手感變化幅度的差值,並無統計上的顯著差異(p > 0.05)。
結論
先前骨質變化會明顯影響手感,只有在使用全導引手術導板,並且先前鑽孔的骨質相對堅硬的情形下,才有手感沒有產生明顯偏差狀況。使用全導引手術導板會使得鑽骨手感偏移,診斷為較硬的骨質,但是面對骨質變化所造成的手感差異,和徒手鑽骨並無顯著差別。
zh_TW
dc.description.abstractObjective
Bone quality was a critical factor for dental implant success, influencing initial stability and osseointegration. Clinically, surgeons often relied on tactile sensation during drilling to assess bone density and adapted surgical techniques (e.g., pre-tapping, bone expansion, undersized drilling), with supplemented radiographic data.
Fully guided implant surgery, using CAD/CAM surgical guides based on preoperative CT and scan data, enhanced accuracy and safety. However, friction between the guide sleeve and drill may have impede tactiled feedback, and prior drilling experiences could have biased bone density perception.
This study investigated if using fully guided surgical templates, under varying preceding bone hardness conditions, affected surgeons' bone quality assessment at critical implant sites. Thirty dentists were enrolled and drilled simulated bone blocks with different densities, both with and without a surgical guide, with previous exposure to different bone hardness. The study aimed to evaluate the impact of fully guided surgery and the varying bone hardness experienced before drilling on the bone quality assessment in dental implant surgery.
Materials and methods
This study enrolled 30 dentists as participants. Inclusion criteria were: less than 10 years of practice, clinical experience with fewer than 10 dental implants, and age between 24 and 40 years. The exclusion criterion was the inability to complete the entire testing procedure. The experimental design consisted of two rounds, with each round comprising three groups, and each group involving five drilling tests.
Experimental models were acquired using a 3Shape TRIOS 4 intraoral scanner and merged with a simulated patient's cone-beam computed tomography (CBCT) scan and applied DICOM files(Digital Imaging and Communications in Medicine) to determine implant positions. The models were edited using Meshmixer software to create recesses for the insertion of simulated bone blocks. Different simulated bone blocks were placed into these model recesses. For each round, the A group's model contained blocks of 5, 5, and 10 pounds pcf (per cubic foot); the B group's model contained blocks of 15, 15, and 10 pcf; and the C group's model contained blocks of 10, 10, and 10 pcf.
In each group of tests, participants first drilled a 50 pcf simulated bone block and were informed that this represented the hardest simulated bone. Subsequently, the experiment proceeded in sequence. Next, a 10 pcf simulated bone block was drilled, followed by sequential drilling of the blocks in the model. The first round involved three groups of conventional free hand drilling tests. After a 4 weeks washout period, the second round commenced, utilizing fully guided drilling with a surgical stent. After completing each drilling, participants recorded their perceived tactile hardness on a questionnaire using a 10 cm Visual Analog Scale (VAS). The length of the VAS was measured and converted into a value representing the bone hardness as perceived by the participant.
Statistical analysis
Data was initially recorded in Microsoft Excel (V 14.1) and subsequently imported into SAS statistical analysis software (SAS System for Windows, V9.4, SAS Institute Inc., Cary, NC, USA) for further statistical procedures. Normality tests were conducted first, followed by paired t-tests to evaluate statistically significant differences. For all statistical analyses, a p-value of < 0.05 was considered statistically significant.
Results
A total of 30 dentists (aged 24–40 years; clinical experience <10 years; implant experience <10 cases) participated in this study. Each participant performed six drilling tests (three freehand and three fully guided) on three different bone block arrangements (Group A: 5, 5, 10 pcf; Group B: 15, 15, 10 pcf; Group C: 10, 10, 10 pcf). After each drilling, participants recorded their tactile perception of bone density using a 10 cm visual analog scale (VAS).
For the freehand drilling condition, changes in the density of the intermediate bone blocks had a significant impact on the perceived hardness of the final bone block (10 pcf). Specifically, in Group A (intermediate softening), a significant difference was found between the second and fifth drilling VAS scores (VAS difference: 9.44±18.77, p<0.05). A significant difference was also observed in Group B (intermediate hardening) (VAS difference: −8.22±17.8, p<0.05). In contrast, Group C (constant bone quality) showed no significant difference (VAS difference: 1.71±15.33, p>0.05).
Under the fully guided drilling condition, Group A (intermediate softening) exhibited a significant increase in VAS scores (VAS difference: 10.62±23.07, p<0.05). However, no significant differences were found in Group B (intermediate hardening) (VAS difference: −2.99±18.62, p>0.05) or Group C (constant bone quality) (VAS difference: 3.31±17.96, p>0.05).
Furthermore, within the constant bone quality group (Group C), the participants' tactile perception of the same 10 pcf bone block was significantly higher when using the fully guided surgical guide compared to freehand drilling (VAS difference: −8.82±18.27, p>0.05).
An analysis of the effect of intermediate bone quality change on the magnitude of tactile perception change revealed that, although the freehand and guided groups both showed significant changes in tactile perception under different bone quality conditions, a comparison of the magnitudes of these changes between the two groups showed no statistically significant difference (p>0.05).
Conclusion
Variations in preceding bone quality significantly impacted tactile sensation. Only when using a fully guided surgical stent, and specifically after previously drilling in relatively hard bone, did the tactile sensation not exhibit significant deviation. The use of a fully guided surgical stent tends to alter the tactile perception during drilling, leading to a diagnosis of harder bone quality. However, the variation in tactile perception caused by experiencing varying bone densities prior to drilling showed no significant difference when compared to free hand drilling.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-30T16:05:02Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-30T16:05:02Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT vi
目次 ix
圖次 xiii
表次 xiv
Chapter 1 緒論 1
1.1 引言 1
Chapter 2 文獻回顧 5
2.1 人工植牙的骨整合與長期成功率 5
2.2 植體穩定度(Implant stability) 6
2.2.1 初始穩定度(primary stability)和骨整合(osteointegration) 6
2.2.2 影響植體穩定性的因素(Factors Affecting Implant Stability) 7
2.2.2.1 骨質密度 7
2.2.2.1.1 Linkow與Cherchève於 1970 年提出的骨質密度分類 7
2.2.2.1.2 Zarb 和Lekholm分類 7
2.2.2.1.3 Misch 分類 8
2.2.2.2 植體設計 9
2.2.2.2.1 植體的表面特性: 9
2.2.2.2.2 植體尺寸 11
2.2.2.2.3 植體形狀: 12
2.2.2.3 手術流程 13
2.2.2.3.1 植牙區域的製備(implant site preparation) 13
2.2.2.3.2 植牙置放位置之準確性(accuracy of implant positioning) 15
.2.2.2.3.2.1 完全導引方法(fully guided) 16
.2.2.2.3.2.2 半導引方法(half guided) 16
2.2.2.4 患者因素 17
2.2.2.4.1 局部因素 17
2.2.2.4.2 系統性因素 18
.2.2.2.4.2.1 糖尿病風險 18
.2.2.2.4.2.2 藥物方面 19
2.2.3 手感回饋 20
2.2.3.1 有無受訓的手術醫師對於手感回饋之差異 20
2.2.3.2 鑽針速度對於手感回饋之影響 21
2.2.3.3 感覺適應(Sensory adaption) 23
2.2.3.3.1 觸覺之生理機制 23
2.2.3.3.2 手感回饋之感覺適應 24
Chapter 3 研究目的 25
Chapter 4 正式研究方法及程序 26
4.1 研究之虛無假設 26
4.2 實驗材料及方法 26
4.2.1 實驗受試者 26
4.2.2 實驗的術前準備 27
4.2.2.1 模擬植體位置設計 27
4.2.2.2 實驗標準模型製備 27
4.2.2.3 模擬骨塊製備 27
4.2.2.4 全導引手術導板之製作流程 28
4.2.2.5 標準模型準備 29
4.2.3 實驗設計 30
4.2.3.1 實驗用植牙機器: 30
4.2.3.2 問卷設計: 30
4.2.3.3 實驗流程 31
4.2.3.4 實驗後階段 31
4.2.4 統計分析 32
4.2.4.1 比較使用徒手鑽孔與全導引手術導板時之初始手感差異: 32
4.2.4.2 比較於使用徒手鑽孔與全導引手術導板,並經歷中間骨塊密度差異時對於手感的影響: 32
4.2.4.3 比較於使用徒手鑽孔與全導引手術導板,經歷相似中間骨塊影響後的手感差異: 33
Chapter 5 實驗結果 34
5.1 受試者統計性描述 34
5.2 常態性分析 35
5.3 中間骨質特性對後續骨質評估之影響 36
5.3.1 中間骨質軟硬變化於徒手鑽孔以及使用全導引手術導板情形下對手感有無影響 36
5.3.2 骨質沒有變化時,全導引手術導板使用與否對操作手感的影響 36
5.3.3 骨質變化後,全導引手術導板使用與否對操作手感的影響 37
5.3.4 中間骨質變化對於手感的變化與使用全導引手術導板有無影響 37
5.3.5 骨質軟硬對徒手鑽孔及使用全導引手術導板下手感變化差異之影響 37
Chapter 6 討論 39
6.1 牙科人工植體的發展與挑戰 39
6.2 實驗設計討論 40
6.3 實驗結果討論 41
6.3.1 於徒手鑽孔下,先前的骨質軟硬程度對於目標骨質密度判斷之影響 41
6.3.2 於使用全導引手術導板鑽孔下,先前的骨質軟硬程度對於目標骨質密度判斷之影響 42
6.3.3 有無使用全導引手術導板對於手感判斷之影響 43
6.3.4 全導引手術導板與骨質變化之感知獨立性 44
6.4 實驗結果與臨床暗示 45
Chapter 7 結論 47
Chapter 8 實驗限制與未來展望 48
Chapter 9 圖片 49
Chapter 10 表格 62
-
dc.language.isozh_TW-
dc.subject骨質zh_TW
dc.subject人工植牙zh_TW
dc.subject感覺適應zh_TW
dc.subject全導引手術導板zh_TW
dc.subject手感zh_TW
dc.subjecttactile perceptionen
dc.subjectbone density assessmenten
dc.subjectsensory adaptionen
dc.subjectfully guided surgeryen
dc.subjectdental implanten
dc.title感覺適應於全導引植牙手術對植牙手感診斷骨質能力之影響zh_TW
dc.titleThe Impact of Sensory Adaptation on the Accuracy of Bone Quality Assessment Through Tactile Perception in Fully Guided Dental Implant Surgeryen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee章浩宏;藍鼎勛zh_TW
dc.contributor.oralexamcommitteeHao-Hueng Chang;Ting-Hsun Lanen
dc.subject.keyword人工植牙,骨質,手感,全導引手術導板,感覺適應,zh_TW
dc.subject.keyworddental implant,fully guided surgery,tactile perception,bone density assessment,sensory adaption,en
dc.relation.page92-
dc.identifier.doi10.6342/NTU202503229-
dc.rights.note未授權-
dc.date.accepted2025-08-04-
dc.contributor.author-college醫學院-
dc.contributor.author-dept臨床牙醫學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
10.79 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved