Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100225
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林俊彬zh_TW
dc.contributor.advisorChun-Pin Linen
dc.contributor.author程士容zh_TW
dc.contributor.authorShih-Jung Chengen
dc.date.accessioned2025-09-30T16:04:38Z-
dc.date.available2025-10-01-
dc.date.copyright2025-09-30-
dc.date.issued2025-
dc.date.submitted2025-07-25-
dc.identifier.citation1. Ribeiro, D., et al., Guided Endodontics: Static vs. Dynamic Computer-Aided Techniques-A Literature Review. J Pers Med, 2022. 12(9).
2. Glossary of Endodontic Terms Tenth Edition, in Glossary of Endodontic Terms, D.D.S. Scott B. McClanahan, M.S., Chair, et al., Editors. 2020, American Association of Endodontists.
3. Alan, S. and J. Law, Endodontic case difficulty assessment and referral. Endodontics: colleagues for excellence, 2005.
4. Connert, T., R. Weiger, and G. Krastl, Present status and future directions - Guided endodontics. Int Endod J, 2022. 55 Suppl 4(Suppl 4): p. 995-1002.
5. Buchgreitz, J., M. Buchgreitz, and L. Bjorndal, Guided root canal preparation using cone beam computed tomography and optical surface scans - an observational study of pulp space obliteration and drill path depth in 50 patients. Int Endod J, 2019. 52(5): p. 559-568.
6. McCabe, P.S. and P.M. Dummer, Pulp canal obliteration: an endodontic diagnosis and treatment challenge. Int Endod J, 2012. 45(2): p. 177-97.
7. Kulinkovych-Levchuk, K., et al., Guided Endodontics: A Literature Review. Int J Environ Res Public Health, 2022. 19(21).
8. Mashyakhy, M., et al., Prevalence of Missed Canals and Their Association with Apical Periodontitis in Posterior Endodontically Treated Teeth: A CBCT Study. Int J Dent, 2021. 2021: p. 9962429.
9. Rouhani, A., et al., Prevalence of missed canals in endodontically treated teeth: A cone-beam computed tomography study. J Clin Exp Dent, 2023. 15(8): p. e605-e611.
10. Kinariwala, N. and L. Samaranayake, Guided Endodontics. 2021: Springer.
11. Cvek, M., L. Granath, and M. Lundberg, Failures and healing in endodontically treated non-vital anterior teeth with posttraumatically reduced pulpal lumen. Acta Odontol Scand, 1982. 40(4): p. 223-8.
12. Kiefner, P., et al., Treatment of calcified root canals in elderly people: a clinical study about the accessibility, the time needed and the outcome with a three-year follow-up. Gerodontology, 2017. 34(2): p. 164-170.
13. Daokar, D.S., Endodontic Failures-A Review. IOSR Journal of Dental and Medical Sciences, 2013. 4(5): p. 5-10.
14. 邱雨婷, 何怡青, and 李士元, 數位口內掃描機簡介. 中華民國家庭牙醫學雜誌, 2015. 10(3): p. 4-13.
15. Schwartz, R.S., A New Look at the Endo- Restorative Interface. 2020.
16. Chan, M.Y.C., et al., A Literature Review of Minimally Invasive Endodontic Access Cavities - Past, Present and Future. Eur Endod J, 2022. 7(1): p. 1-10.
17. Clark, D. and J. Khademi, Modern molar endodontic access and directed dentin conservation. Dent Clin North Am, 2010. 54(2): p. 249-73.
18. Krastl, G., et al., Guided Endodontics: a novel treatment approach for teeth with pulp canal calcification and apical pathology. Dent Traumatol, 2016. 32(3): p. 240-246.
19. Block, M.S., et al., Implant Placement Accuracy Using Dynamic Navigation. International Journal of Oral & Maxillofacial Implants, 2017. 32(1).
20. 李俊則 and 張禎元, 光學視覺與機械手臂系統整合之校正方法介紹. 科儀新知, 2021(26): p. 24-36.
21. Liu, C., et al., The evolution of robotics: research and application progress of dental implant robotic systems. Int J Oral Sci, 2024. 16(1): p. 28.
22. Kuo, C.-H. and J.S. Dai, Robotics for Minimally Invasive Surgery: A Historical Review from the Perspective of Kinematics, in International Symposium on History of Machines and Mechanisms. 2009. p. 337-354.
23. Gasless trans-axillary robotic thyroidectomy: The introduction and principle - Scientific Figure on ResearchGate. . Available from: https://www.researchgate.net/figure/AESOP-automated-endoscopic-system-for-optimal-positioning-28_fig6_317947879.
24. da Vinci達文西外科手術機器臂系統. Available from: https://www.maxongroup.com/zh-tw/knowledge-and-support/blog/state-of-the-art-surgical-robots-for-minimally-invasive-surgery-77080.
25. Yang, G.Z., et al., Medical robotics-Regulatory, ethical, and legal considerations for increasing levels of autonomy. Sci Robot, 2017. 2(4).
26. Mako Total Knee SmartRobotics. Available from: https://www.stryker.com/us/en/joint-replacement/systems/Mako_SmartRobotics_Overview.html.
27. ROBODOC. Available from: https://www.medicalexpo.com.cn/prod/kaiser-precision/product-102760-868119.html.
28. cyberknife. Available from: https://cyberknife.com/cyberknife-technology/.
29. Frontiers of robotic endoscopic capsules: a review - Scientific Figure on ResearchGate.; Available from: https://www.researchgate.net/figure/a-PillCamRSB3-Given-Imaging-b-PillCamRCOLON2-Given-Imaging-c-PillCamRUGI-Given_fig2_301774845.
30. Bahrami, R., et al., Robot-assisted dental implant surgery procedure: A literature review. J Dent Sci, 2024. 19(3): p. 1359-1368.
31. YakeBot Dental Implant Robotic System. Available from: https://www.yakebot.com/product.html.
32. Yomi Dental Robot.
33. Xu, Z., et al., Accuracy and efficiency of robotic dental implant surgery with different human-robot interactions: An in vitro study. J Dent, 2023. 137: p. 104642.
34. “炳碩生醫” 金榫手術導航機器人輔助系統.
35. 金榫手術導航機器人輔助系統(Kinguide). Available from: https://www.pointroboticsinc.com/kinguide.
36. 「醫擘」EPROB機械手臂立體定位輔助手術系統|國家新創獎. 2024; Available from: https://innoaward.taiwan-healthcare.org/award_detail.php?REFDOCID=0s6o31ay18h66tgh.
37. Zehnder, M.S., et al., Guided endodontics: accuracy of a novel method for guided access cavity preparation and root canal location. Int Endod J, 2016. 49(10): p. 966-72.
38. Jorba-García, A., et al., Accuracy assessment of dynamic computer–aided implant placement: A systematic review and meta-analysis. Clinical Oral Investigations, 2021. 25: p. 2479-2494.
39. Werny, J.G., et al., Freehand vs. computer-aided implant surgery: a systematic review and meta-analysis—part 1: accuracy of planned and placed implant position. International journal of implant dentistry, 2025. 11(1): p. 35.
40. Jain, S.D., C.K. Carrico, and I. Bermanis, 3-Dimensional Accuracy of Dynamic Navigation Technology in Locating Calcified Canals. J Endod, 2020. 46(6): p. 839-845.
41. Martinho, F.C., et al., Comparison of the Accuracy and Efficiency of a 3-Dimensional Dynamic Navigation System for Osteotomy and Root-end Resection Performed by Novice and Experienced Endodontists. J Endod, 2022. 48(10): p. 1327-1333 e1.
42. Bolding, S.L. and U.N. Reebye, Accuracy of haptic robotic guidance of dental implant surgery for completely edentulous arches. The Journal of prosthetic dentistry, 2022. 128(4): p. 639-647.
43. Takacs, A., et al., Advancing accuracy in guided implant placement: A comprehensive meta-analysis: Meta-Analysis evaluation of the accuracy of available implant placement Methods. J Dent, 2023. 139: p. 104748.
44. Wang, Z., et al., Effect of Field of View and Voxel Size on CBCT-Based Accuracy of Dynamic Navigation in Endodontic Microsurgery: An In Vitro Study. J Endod, 2023. 49(8): p. 1012-1019.
45. Chong, B.S., M. Dhesi, and J. Makdissi, Computer-aided dynamic navigation: a novel method for guided endodontics. Quintessence Int, 2019. 50(3): p. 196-202.
46. Linn, T.Y., et al., Accuracy of implant site preparation in robotic navigated dental implant surgery. Clinical Implant Dentistry and Related Research, 2023. 25(5): p. 881-891.
47. Salechi, K., Accuracy of Dynamic Guidance System in Endodontic Access of Anterior Teeth - ex vivo Analysis. 2019, Medical University of South Carolina.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100225-
dc.description.abstract目前市售的動態導航系統多採用光學感測技術,然其仍存在光源穩定性不足、感測元件易受環境光干擾,以及感測器或光學配件容易被遮蔽等限制。為克服光學導航的不足,本研究旨在探討整合雙機器手臂系統之導引技術於根管定位與模擬臨床操作中的精準性、流程效率與臨床可行性。
本研究依據診間空間配置與臨床需求,設計並建置雙機器臂導航系統原型,並開發整合式軟體平台,將小範圍CBCT影像與口內掃描資料進行整合與對位,進行影像對位流程最佳化建置。接著,完成術前治療計畫擬定後,即可透過雙機器臂系統執行導航導引計畫。此外,本研究亦針對整體操作流程與註冊時間,將本系統與市售X-Guide光學動態導航系統進行比較,以評估其操作效率與定位精準度。在系統精準度驗證方面,於模型中比較術前治療計畫與實際鑽孔軌跡之間於尖端位置及鑽孔角度的誤差,以驗證其導航準確性。
本研究所開發之雙機器臂導航系統原型依照臨床空間配置設計,裝置尺寸為46 × 57 × 79 cm3,整合兩組三次元量測臂,系統校正誤差為0.152 mm。開發的非手術性根管治療規劃軟體可支援多種CBCT 參數組合,整合CBCT 影像與口掃模型,實現高效影像對位流程。影像對位平均誤差為0.088 mm,優於僅使用CBCT的對位誤差0.253 mm。註冊流程方面,系統平均耗時66.6 秒,較X-Guide 光學動態導航系統的111.07 秒快,效率提升66.62%。在導航精度驗證中,於以真牙模型複製的3D 列印模型中進行20 個根管鑽孔計畫,尖端位置平均誤差為0.595 mm,角度誤差為1.230°,均優於X-Guide 系統,證實本系統具備優異的定位精準性與臨床可行性。
本研究成功研發一套具臨床應用潛力的雙機器臂動態導航系統,系統具備高精度、高效率與良好臨床整合性,為牙科精準導航技術提供一項創新、可行的解決方案。
zh_TW
dc.description.abstractCurrent dynamic navigation systems predominantly rely on optical sensing technologies, which encounter challenges such as unstable lighting, ambient light interference, and sensor occlusion. This study evaluates a novel dual robotic arm navigation system designed for root canal localization, with emphasis on its accuracy, efficiency, and clinical applicability.
A prototype system was developed to accommodate clinical spatial constraints, incorporating custom software that aligns small field-of-view CBCT data with intraoral scans to enhance image registration. Following preoperative planning, the robotic system executes the navigation procedure. Its registration time and workflow efficiency were compared to those of the commercial X-Guide system, while accuracy was assessed using 3D-printed models by measuring deviations between planned and actual drilling paths.
The system measures 46 × 57 × 79 cm3 and integrates two 3D measurement arms, achieving a calibration error of 0.152 mm. The software supports various CBCT parameters and effectively fuses CBCT and intraoral scan data. The average image registration error was 0.088 mm, significantly improving upon CBCT-only registration at 0.253 mm. Registration time averaged 66.6 seconds, representing a 66% improvement over the X-Guide’s 111.07 seconds. Accuracy tests demonstrated an average apical deviation of 0.595 mm and angular error of 1.230°, both outperforming the X-Guide system.
In conclusion, this study successfully developed a dual-arm dynamic navigation system that offers high accuracy and efficiency, providing an innovative and practical solution for guided endodontics.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-30T16:04:38Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-30T16:04:38Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
中文摘要 ii
英文摘要 iii
第一章 研究背景 1
1.1 非手術性根管治療之臨床困境 1
1.1.1 牙髓根管鈣化 1
1.1.2 錯漏根管 2
1.1.3 醫源性操作失誤 2
1.2 數位牙科的普及和微創牙髓治療觀念的重視 3
1.2.1 數位印模系統 3
1.2.2 錐狀束電腦斷層掃描 4
1.2.3 微創牙髓治療 4
1.3 引導式根管治療 5
1.3.1 定義 5
1.3.2 靜態導航的應用與限制 5
1.3.3 動態導航應用與限制 6
1.3.4 靜態導航與動態導航之比較 7
1.4 現今光學動態導航系統 7
1.4.1 光學感測動態導航 7
1.4.2 光學感測與機器手臂整合之動態導航 8
1.5 醫療機器人在醫學上的應用 8
1.5.1 醫療機器臂的發展歷程 9
1.5.2 醫療機器人的分級 10
1.5.3 醫療機器人的類型 12
1.6 機器手臂於牙科的應用 14
1.6.1 機器手臂於植牙手術的應用 14
1.6.1.1 植牙機器臂系統的架構 14
1.6.1.2 植牙機器臂系統的分類 15
1.6.1.3 定位技術 17
1.6.2 市售植牙機器臂系統 18
1.6.2.1 Yomi機器臂系統 18
1.6.2.2 Yakebot機器臂系統 19
1.6.2.3 金榫(Kinguide)手術導航機器人輔助系統 19
1.6.2.4 醫擘(EPROB)機器手臂立體定位輔助手術系統 20
第二章 文獻回顧 21
2.1 引導式根管治療的流程 21
2.1.1 靜態導航的治療流程 21
2.1.1.1 取得與整合影像資料 21
2.1.1.2 規劃治療計畫 21
2.1.1.3 導板設計與製作 21
2.1.1.4 臨床操作步驟 22
2.1.1.5 與徒手操作比較:效率、精準度 22
2.1.2 光學動態導航的流程 23
2.1.2.1 基本組件 23
2.1.2.2 Scan:取得與整合影像資料 23
2.1.2.3 Plan:規劃治療計畫 23
2.1.2.4 Trace:追蹤器安裝、導航設備與器械校正、口內註冊 23
2.1.2.4.1 追蹤器安裝 24
2.1.2.4.2 導航設備與器械校正 24
2.1.2.4.3 口內註冊 24
2.1.2.5 Place:臨床操作與導航執行 24
2.1.2.6 與徒手操作的比較:效率、精準度 25
2.2 植牙機器臂系統的治療流程 25
2.2.1 流程 25
2.2.1.1 術前規劃 25
2.2.1.2 術中執行 26
2.2.1.3 術後評估 26
2.2.2 效率分析:機器手臂輔助植牙手術的臨床效益 26
2.2.3 精準度比較:徒手植牙、靜態導航、動態導航與機器手臂系統輔助植牙之誤差 27
第三章 動機與目的 29
第四章 材料與方法 31
4.1 雙機器臂動態導航系統原型之設計 31
4.1.1 空間規劃與使用情境 31
4.1.2 台車設計 32
4.1.3 機器臂的選用 34
4.1.4 雙機器臂系統的整合與定位 34
4.1.4.1 校正塊的製作 35
4.1.4.2 對應陶瓷珠的特製專用探頭 35
4.1.4.3 雙機器臂系統的整合 36
4.1.4.4 雙機器臂系統整合的精準度驗證 36
4.1.5 末端執行器的設計 36
4.1.5.1 顎側從動模組(即定位板)的設計與製作 36
4.1.5.1.1 定位板的固定材料的選用 37
4.1.5.2 手機銜接器 38
4.2 雙機器臂動態導航系統測試模型之製備 38
4.2.1 牙弓模具製作 38
4.2.2 真牙包埋石膏模型的製作 39
4.2.3 鑽孔標準模型的材料選擇 40
4.3 三次元量測儀測量 40
4.4 大範圍CBCT拍攝 41
4.5 CBCT影像拍攝參數與最佳化分析 41
4.5.1 CBCT影像拍攝參數:視野、旋轉角度、拍攝模式 41
4.5.1.1 視野 41
4.5.1.2 旋轉角度 41
4.5.1.3 影像拍攝模式 42
4.5.2 最佳化分析 42
4.5.2.1 CBCT影像拍攝 42
4.5.2.2 誤差分析方式:與CMM量測之比對 43
4.6 雙機器臂動態導航系統操作流程的設計 43
4.6.1 術前約診 44
4.6.1.1 CBCT的拍攝 44
4.6.1.2 數位口掃影像的取得 44
4.6.2 術前規劃 44
4.6.2.1 CBCT影像與數位口掃影像的對位 45
4.6.2.2 擬定治療計畫 47
4.6.3 治療當天 48
4.6.3.1 手機校正 48
4.6.3.2 口內註冊 48
4.7 雙機器臂動態導航系統軟體影像處理準確度評估 49
4.7.1 雙機器臂動態導航系統軟體對位精準度評估 49
4.7.2 雙機器臂動態導航系統擬定計畫的軟體確效 50
4.8 真牙包埋石膏模型以雙機器臂動態導航系統進行導航之評估 50
4.8.1 註冊流程與口內註冊時間的評估:與X-Guide的比較 50
4.8.1.1 註冊流程 50
4.8.1.2 口內註冊時間 53
4.8.2 人因誤差評估 53
4.8.3 鑽孔精準度評估:與X-Guide的比較 53
第五章 結果 56
5.1 雙機器臂系統整合的精準度驗證 56
5.2 雙機器臂動態導航系統測試模型之製備 56
5.2.1 鑽孔標準模型的材料選擇 56
5.3 真牙模型CMM量測結果 57
5.4 CBCT的最佳化影像分析 58
5.4.1 不同拍攝FOV與CMM量測之對位誤差 58
5.4.2 不同旋轉角度與CMM量測之對位誤差 58
5.4.3 不同拍攝模式與CMM量測之對位誤差 58
5.5 雙機器臂動態導航系統軟體影像處理準確度評估 59
5.5.1 雙機器臂動態導航系統軟體對位精準度評估 59
5.5.2 雙機器臂動態導航系統擬定計畫的軟體確效 59
5.6 真牙包埋石膏模型以雙機器臂動態導航系統進行導航之評估 60
5.6.1 定位板的固定材料的選用 60
5.6.2 註冊流程與口內註冊時間的評估:與X-Guide比較 61
5.6.2.1 口內註冊時間 62
5.6.2.2 兩系統的比較 64
5.6.3 人因誤差評估 65
5.6.4 鑽孔精準度評估:與X-Guide比較 66
第六章 討論 68
6.1 CBCT各項拍攝參數與對位誤差的影響 68
6.1.1 FOV對對位誤差的影響 68
6.1.2 旋轉角度對對位誤差的影響 68
6.1.3 拍攝模式對對位誤差的影響 69
6.2 鑽孔標準模型的材料選擇 69
6.3 手機、鑽針的選用 70
6.4 雙機器臂動態導航系統進行導航之評估 71
6.4.1 註冊流程與口內註冊時間的評估:與X-Guide比較 71
6.4.1.1 定位板固定材料與方式 71
6.4.1.2 特徵點註冊與ROI區域再註冊之操作時間 71
6.4.1.3 口內註冊之整體操作時間 72
6.4.2 鑽孔精準度評估:與X-Guide比較 72
第七章 未來研究方向 75
第八章 結論 76
附表 80 
-
dc.language.isozh_TW-
dc.subject引導式根管治療zh_TW
dc.subject牙科機器手臂zh_TW
dc.subject座標註冊zh_TW
dc.subject動態導航系統zh_TW
dc.subject微創牙髓治療zh_TW
dc.subjectMinimally Invasive Endodonticsen
dc.subjectDynamic navigation systemen
dc.subjectRegistrationen
dc.subjectGuided Endodonticsen
dc.subjectDental robotic armen
dc.title研發雙機器臂動態導航系統應用於引導式根管治療:精準度與效率之評估zh_TW
dc.titleDevelopment of a Dual Robotic Arm Dynamic Navigation System for Guided Endodontics: Evaluation of Accuracy and Efficiencyen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳文斌;章浩宏zh_TW
dc.contributor.oralexamcommitteeWeng-Pin Chen;Hao-Hueng Changen
dc.subject.keyword牙科機器手臂,引導式根管治療,微創牙髓治療,動態導航系統,座標註冊,zh_TW
dc.subject.keywordDental robotic arm,Guided Endodontics,Minimally Invasive Endodontics,Dynamic navigation system,Registration,en
dc.relation.page85-
dc.identifier.doi10.6342/NTU202501867-
dc.rights.note未授權-
dc.date.accepted2025-07-28-
dc.contributor.author-college醫學院-
dc.contributor.author-dept臨床牙醫學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
10.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved