Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100215
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor潘述元zh_TW
dc.contributor.advisorShu-Yuan Panen
dc.contributor.author林德楷zh_TW
dc.contributor.authorDe-Kai Linen
dc.date.accessioned2025-09-24T16:52:53Z-
dc.date.available2025-09-25-
dc.date.copyright2025-09-24-
dc.date.issued2025-
dc.date.submitted2025-08-13-
dc.identifier.citation1.Kim, J.-W., Y.-S. Jeong, and J.-S. Kim, Bubbling fluidized bed biomass gasification using a two-stage process at 600 °C: A way to avoid bed agglomeration. Energy, 2022. 250: p. 123882.
2.George, J., P. Arun, and C. Muraleedharan, Experimental investigation on co-gasification of coffee husk and sawdust in a bubbling fluidised bed gasifier. Journal of the Energy Institute, 2019. 92(6): p. 1977-1986.
3.Njuguna, F.I., et al., Experimental investigation and optimization of the gasification parameters of macadamia nutshells in a batch-fed bubbling fluidized bed gasifier with air preheating. Energy Storage and Saving, 2023. 2(4): p. 559-570.
4.Nam, H., et al., Enriched hydrogen production over air and air-steam fluidized bed gasification in a bubbling fluidized bed reactor with CaO: Effects of biomass and bed material catalyst. Energy Conversion and Management, 2020. 225: p. 113408.
5.Wang, C., et al., A two-stage circulated fluidized bed process to minimize tar generation of biomass gasification for fuel gas production. Applied Energy, 2022. 323: p. 119639.
6.中華民國內政部, 已登記土地面積, 中華民國內政部, Editor. 2021, 中華民國內政部: Taipei.
7.蘇向豪、鄭書允, 我國農業剩餘資源產出潛勢評估與後續應用市場建議. 台灣經濟研究月刊, 2022. 45(12): p. 41-50.
8.行政院農業委員會, 綠色國民所得帳農業固體廢棄物歷年表, 行政院農業委員會, Editor. 2021: Taipei,Taiwan.
9.Agency, I.E., Outlook for Biogas and Biomethane : A global geospatial assessment, I.E. Agency, Editor. 2024, International Energy Agency: Paris, France.
10.中華民國農業部, 綠色國民所得帳農業固體廢棄物歷年表, 中華民國農業部, Editor. 2025: Taipei.
11.中華民國環境部, 全國一般廢棄物產生量, 中華民國環境部, Editor. 2023: Taipei, Taiwan.
12.臺中市政府環境保護局, 108年度臺中市資源回收品質管理與垃圾採樣計畫期末報告, 臺中市政府環境保護局, Editor. 2018: Taichung, Taiwan.
13.ISO 1929:2009, Solid mineral fuels — Determination of gross calorific value by the bomb calorimetric method and calculation of net calorific value. 2009.
14.楊仁泊, 國內有機廢棄物堆肥化產生二氧化碳當量之探討 工業污染防治, 2011. 117: p. 135-150.
15.環境部氣候變遷署, 國家溫室氣體排放量清冊, 環境部氣候變遷署, Editor. 2020, 環境部氣候變遷署: 台北
16.Awan, N., et al., Fast pyrolysis of Pakistani cotton stalks in Fluidized Bed Reactor : Design and Preliminary results. Life Science Journal, 2014. 11: p. 137-144.
17.Campoy, M., et al., Gasification of wastes in a pilot fluidized bed gasifier. Fuel Processing Technology, 2014. 121: p. 63-69.
18.Nguyen, H.N., et al., Simultaneous syngas and CO2 adsorbent production via rice straw gasification: An experimental study. Biomass and Bioenergy, 2024. 183: p. 107137.
19.Lazzarotto, I.P., et al., The role of CaO in the steam gasification of plastic wastes recovered from the municipal solid waste in a fluidized bed reactor. Process Safety and Environmental Protection, 2020. 140: p. 60-67.
20.行政院農業委員會, 農業統計年報, 行政院農業委員會, Editor. 2021: Taipei, Taiwan.
21.Osman, A.I., et al., Conversion of biomass to biofuels and life cycle assessment: a review. Environmental Chemistry Letters, 2021. 19(6): p. 4075-4118.
22.Ruiz, J.A., et al., Biomass gasification for electricity generation: Review of current technology barriers. Renewable and Sustainable Energy Reviews, 2013. 18: p. 174-183.
23.Saddler, S.v.D.a.J., Progress in Commercialization of Biojet /Sustainable Aviation Fuels (SAF): Technologies and policies I. Bioenergy, Editor. 2024.
24.Fiore, M., V. Magi, and A. Viggiano, Internal combustion engines powered by syngas: A review. Applied Energy, 2020. 276: p. 115415.
25.Gwak, I.S., et al., Economic evaluation of domestic biowaste to ethanol via a fluidized bed gasifier. Journal of Industrial and Engineering Chemistry, 2017. 47: p. 391-398.
26.Nam, H., et al., Enriched-air fluidized bed gasification using bench and pilot scale reactors of dairy manure with sand bedding based on response surface methods. Energy, 2016. 95: p. 187-199.
27.Ly, H.V., et al., Catalytic upgrade for pyrolysis of food waste in a bubbling fluidized-bed reactor. Environmental Pollution, 2021. 275: p. 116023.
28.Faust, R., et al., Interactions between Automotive Shredder Residue and Olivine Bed Material during Indirect Fluidized Bed Gasification. Energy & Fuels, 2021.
29.Han, L., et al., Hydrogen production via CaO sorption enhanced anaerobic gasification of sawdust in a bubbling fluidized bed. International Journal of Hydrogen Energy, 2011. 36(8): p. 4820-4829.
30.Jordan, C.A. and G. Akay, Effect of CaO on tar production and dew point depression during gasification of fuel cane bagasse in a novel downdraft gasifier. Fuel Processing Technology, 2013. 106: p. 654-660.
31.闫宪尧, 余水华, and 楚化强, 钙基材料捕集 CO2强化煤水蒸气气化制氢研究进展. 洁净煤技术, 2022. 10.
32.Li, J., et al., Predicting the vanadium speciation during petroleum coke gasification by thermodynamic equilibrium calculation. Fuel, 2016. 176: p. 48-55.
33.Abad, A., et al., In situ gasification Chemical-Looping Combustion of coal using limestone as oxygen carrier precursor and sulphur sorbent. Chemical Engineering Journal, 2017. 310: p. 226-239.
34.Wang, D., et al., Comparison of catalytic pyrolysis of biomass with MCM-41 and CaO catalysts by using TGA–FTIR analysis. Journal of Analytical and Applied Pyrolysis, 2010. 89(2): p. 171-177.
35.Florin, N.H. and A.T. Harris, Enhanced hydrogen production from biomass with in situ carbon dioxide capture using calcium oxide sorbents. Chemical Engineering Science, 2008. 63(2): p. 287-316.
36.Arnold, R. and J. Hill, Catalysts for gasification: A review. Sustainable Energy & Fuels, 2019. 3.
37.Yongbin, J., H. Jiejie, and W. Yang, Effects of Calcium Oxide on the Cracking of Coal Tar in the Freeboard of a Fluidized Bed. Energy & Fuels, 2004. 18(6): p. 1625-1632.
38.Udomsirichakorn, J., et al., Effect of CaO on tar reforming to hydrogen-enriched gas with in-process CO2 capture in a bubbling fluidized bed biomass steam gasifier. International Journal of Hydrogen Energy, 2013. 38(34): p. 14495-14504.
39.Huang, B.-S., et al., Hydrogen production by biomass gasification in a fluidized-bed reactor promoted by an Fe/CaO catalyst. International Journal of Hydrogen Energy, 2012. 37(8): p. 6511-6518.
40.Baena-Moreno, F.M., et al., Biogas upgrading through calcium looping: Experimental validation and study of CO2 capture. Biomass and Bioenergy, 2023. 176: p. 106918.
41.Anantharaman, A., R.A. Cocco, and J.W. Chew, Evaluation of correlations for minimum fluidization velocity (Umf) in gas-solid fluidization. Powder Technology, 2018. 323: p. 454-485.
42.Zhao, J., et al., Hydrogen-rich syngas produced from co-gasification of municipal solid waste and wheat straw in an oxygen-enriched air fluidized bed. International Journal of Hydrogen Energy, 2021. 46(34): p. 18051-18063.
43.Park, S.J., et al., Gasification operational characteristics of 20-tons-Per-Day rice husk fluidized-bed reactor. Renewable Energy, 2021. 169: p. 788-798.
44.Loha, C., H. Chattopadhyay, and P.K. Chatterjee, Three dimensional kinetic modeling of fluidized bed biomass gasification. Chemical Engineering Science, 2014. 109: p. 53-64.
45.Furusawa, Y., et al., Estimation of cold gas efficiency and reactor size of low-temperature gasifier for advanced-integrated coal gasification combined cycle systems. Fuel Processing Technology, 2019. 193: p. 304-316.
46.Rabea, K., et al., An improved kinetic modelling of woody biomass gasification in a downdraft reactor based on the pyrolysis gas evolution. Energy Conversion and Management, 2022. 258: p. 115495.
47.Arfelli, F., et al., Life Cycle Assessment of a Wood Biomass Gasification Plant and Implications for Syngas and Biochar Utilization. Energies, 2024. 17(11): p. 2599.
48.Carpentieri, M., A. Corti, and L. Lombardi, Life cycle assessment (LCA) of an integrated biomass gasification combined cycle (IBGCC) with CO2 removal. Energy Conversion and Management, 2005. 46(11): p. 1790-1808.
49.行政院環境保護署, 廢棄物中灰分、可燃分測定方法, 行政院環境保護署, Editor. 2004: Taipei, Taiwan.
50.Ministry of Environment, T.R., 環境檢驗方法偵測極限測定指引, T.R. Ministry of Environment, Editor. 2005, Ministry of Environment, Taiwan ROC: Taipei. Taiwan.
51.Abouemara, K., et al., The review of power generation from integrated biomass gasification and solid oxide fuel cells: current status and future directions. Fuel, 2024. 360: p. 130511.
52.Corigliano, O. and P. Fragiacomo, Extensive analysis of SOFC fed by direct syngas at different anodic compositions by using two numerical approaches. Energy Conversion and Management, 2020. 209: p. 112664.
53.Pröll, T., et al., Fluidized Bed Steam Gasification of Solid Biomass - Performance Characteristics of an 8 MWth Combined Heat and Power Plant. International Journal of Chemical Reactor Engineering - INT J CHEM REACT ENG, 2007. 5.
54.台灣電力股份有限公司, 住宅類售電資訊, 台灣電力股份有限公司, Editor. 2021, 台灣電力股份有限公司: Taipei.
55.Nisamaneenate, J., et al., Mitigating bed agglomeration in a fluidized bed gasifier operating on rice straw. Energy Reports, 2020. 6: p. 275-285.
56.Zeng, X., et al., Enhanced hydrogen production via staged catalytic gasification of rice husk using Ca(OH)2 adsorbent and Ce–Ni/γAl2O3 catalyst in a fluidized bed. International Journal of Hydrogen Energy, 2023. 48(44): p. 16630-16648.
57.Li, B., et al., Hydrogen production from agricultural biomass wastes gasification in a fluidized bed with calcium oxide enhancing. International Journal of Hydrogen Energy, 2017. 42(8): p. 4832-4839.
58.Yu, T., et al., Steam gasification of biochars derived from pruned apple branch with various pyrolysis temperatures. International Journal of Hydrogen Energy, 2020. 45(36): p. 18321-18330.
59.Kook, J.W., et al., Gasification and tar removal characteristics of rice husk in a bubbling fluidized bed reactor. Fuel, 2016. 181: p. 942-950.
60.Ninduangdee, P. and V.I. Kuprianov, Fluidized bed co-combustion of rice husk pellets and moisturized rice husk: The effects of co-combustion methods on gaseous emissions. Biomass and Bioenergy, 2018. 112: p. 73-84.
61.Liu, H.-p., et al., Co-combustion of Oil Shale Retorting Solid Waste with Cornstalk Particles in a Circulating Fluidized Bed. Energy & Fuels, 2015. 29(10): p. 6832-6838.
62.Li, S.Y., et al. Characterization of Combustion and Emission of Several Kinds of Herbaceous Biomass Pellets in a Circulating Fluidized Bed Combustor. in Proceedings of the 20th International Conference on Fluidized Bed Combustion. 2010. Berlin, Heidelberg: Springer Berlin Heidelberg.
63.Anh Vo, T., et al., Enhancement of biofuel quality via conventional and catalytic co-pyrolysis of bamboo with polystyrene in a bubbling fluidized bed reactor: Coupled experiments and artificial neural network modeling. Fuel, 2023. 346: p. 128403.
64.Zhang, L.-h., et al., Comparison of the thermal behaviors and pollutant emissions of pelletized bamboo combustion in a fluidized bed combustor at different secondary gas injection modes. Energy, 2016. 116: p. 306-316.
65.Jung, S.-H., B.-S. Kang, and J.-S. Kim, Production of bio-oil from rice straw and bamboo sawdust under various reaction conditions in a fast pyrolysis plant equipped with a fluidized bed and a char separation system. Journal of Analytical and Applied Pyrolysis, 2008. 82(2): p. 240-247.
66.Meng, F., et al., Effect of gasifying agents on sawdust gasification in a novel pilot scale bubbling fluidized bed system. Fuel, 2019. 249: p. 112-118.
67.Karmee, S.K., G. Kumari, and B. Soni, Pilot scale oxidative fast pyrolysis of sawdust in a fluidized bed reactor: A biorefinery approach. Bioresource Technology, 2020. 318: p. 124071.
68.Treedet, W. and R. Suntivarakorn, Design and operation of a low cost bio-oil fast pyrolysis from sugarcane bagasse on circulating fluidized bed reactor in a pilot plant. Fuel Processing Technology, 2018. 179: p. 17-31.
69.Jenkins, B.M., et al., Combustion properties of biomass. Fuel Processing Technology, 1998. 54(1): p. 17-46.
70.Gómez, E.O., et al., Preliminary tests with a sugarcane bagasse fueled fluidized-bed air gasifier. Energy Conversion and Management, 1999. 40(2): p. 205-214.
71.Wilk, V. and H. Hofbauer, Co-gasification of Plastics and Biomass in a Dual Fluidized-Bed Steam Gasifier: Possible Interactions of Fuels. Energy & Fuels, 2013. 27(6): p. 3261-3273.
72.He, M., et al., Syngas production from catalytic gasification of waste polyethylene: Influence of temperature on gas yield and composition. International Journal of Hydrogen Energy, 2009. 34(3): p. 1342-1348.
73.Zheng, X., et al., Experimental study on gasification performance of bamboo and PE from municipal solid waste in a bench-scale fixed bed reactor. Energy Conversion and Management, 2016. 117: p. 393-399.
74.Shariff, A., et al. Corn cob as a potential feedstock for slow pyrolysis of biomass. 2016.
75.Cao, Q., et al., Pyrolytic behavior of waste corn cob. Bioresource Technology, 2004. 94(1): p. 83-89.
76.Demiral, İ., A. Eryazıcı, and S. Şensöz, Bio-oil production from pyrolysis of corncob (Zea mays L.). Biomass and Bioenergy, 2012. 36: p. 43-49.
77.Qu, T., et al., Experimental Study of Biomass Pyrolysis Based on Three Major Components: Hemicellulose, Cellulose, and Lignin. Industrial & Engineering Chemistry Research, 2011. 50(18): p. 10424-10433.
78.Zhu, J., et al., Co-pyrolysis of textile dyeing sludge and four typical lignocellulosic biomasses: Thermal conversion characteristics, synergetic effects and reaction kinetics. International Journal of Hydrogen Energy, 2018. 43(49): p. 22135-22147.
79.Parnthong, J., et al., Higher heating value prediction of hydrochar from sugarcane leaf and giant leucaena wood during hydrothermal carbonization process. Journal of Environmental Chemical Engineering, 2022. 10(6): p. 108529.
80.Arromdee, P. and V.I. Kuprianov, Combustion of peanut shells in a cone-shaped bubbling fluidized-bed combustor using alumina as the bed material. Applied Energy, 2012. 97: p. 470-482.
81.Duan, F., et al., Effect of secondary gas injection on the peanut shell combustion and its pollutant emissions in a vortexing fluidized bed combustor. Bioresource Technology, 2014. 154: p. 201-208.
82.Adjin-Tetteh, M., et al., Thermochemical conversion and characterization of cocoa pod husks a potential agricultural waste from Ghana. Industrial Crops and Products, 2018. 119: p. 304-312.
83.Titiloye, J.O., M.S. Abu Bakar, and T.E. Odetoye, Thermochemical characterisation of agricultural wastes from West Africa. Industrial Crops and Products, 2013. 47: p. 199-203.
84.Forero-Nuñez, C., J. Jochum, and F. Sierra, Effect of particle size and addition of cocoa pod husk on the properties of sawdust and coal pellets. Ingeniería e Investigación, 2015. 35: p. 17-23.
85.Schmid, M., et al., Product gas composition for steam-oxygen fluidized bed gasification of dried sewage sludge, straw pellets and wood pellets and the influence of limestone as bed material. Biomass and Bioenergy, 2018. 117: p. 71-77.
86.Robaina, B.A.R., et al., Assessment of fluidized bed gasification of grapefruit solid waste. Bioresource Technology Reports, 2021. 15.
87.Barisano, D., et al., Steam/oxygen biomass gasification at pilot scale in an internally circulating bubbling fluidized bed reactor. Fuel Processing Technology, 2016. 141: p. 74-81.
88.Maglinao, A.L., S.C. Capareda, and H. Nam, Fluidized bed gasification of high tonnage sorghum, cotton gin trash and beef cattle manure: Evaluation of synthesis gas production. Energy Conversion and Management, 2015. 105: p. 578-587.
89.Kim, Y.D., et al., Air-blown gasification of woody biomass in a bubbling fluidized bed gasifier. Applied Energy, 2013. 112: p. 414-420.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100215-
dc.description.abstract流體化床技術近年來因其透過氣化反應產生合成氣,具有高燃料利用潛力與實用性,逐漸被視為新興的廢棄物處理技術。本研究以臺灣大學校園中隨機採集並破碎處理的落葉與枯枝作為氣化原料,模擬農業廢棄物中之果樹枝條,並探討其在特定操作條件下的轉換潛力。本研究實驗採用反應曲面法(Response Surface Methodology,簡稱RSM)中的中心複合設計(Central Composite Design,簡稱CCD),選定兩項操作參數進行變因實驗。固定參數包括:儀器功率 1 kW、氣體收集時間 120 分鐘(作為反應時長)、最高反應溫度 700 °C、進氣量 2 mL/min,以及生質料重量20 g;非固定參數為氧化鈣/碳(CaO/C)比與蒸氣/生質物(S/B)比,對應變動條件為水蒸氣通入量 0–5 mL/min 與氧化鈣重量 0–25 g。本研究氣體分析部分採用氣相層析儀(GC-TCD 與 GC-MS)進行氣體成分鑑定,灰分以元素分析儀進行,並針對所得數據進行質量平衡計算、RSM 預測模型建構、生命週期評估(Life Cycle Assessment,簡稱LCA)與能源轉換潛力探討。
根據本研究實驗結果顯示,當 S/B 固定為 0.317 且調變 CaO/C 時,以 CaO/C = 1 的反應表現最佳,所得合成氣熱值達 0.43 kJ/g-biomass,且 H₂ 與 CH₄ 濃度皆為最高;若固定 CaO/C = 1 並調變 S/B 值,以 S/B = 0.423 時獲得最佳結果,熱值提升至每公克枝條生物質可產生約 0.68 kJ,且合成氣之H₂ 與 CH₄ 濃度亦為最高。關於RSM 模型方面,以 S/B 比與 CaO/C 比為自變數,合成氣中 CO、CO₂、CH₄ 與 H₂ 濃度為依變數進行建模。結果預測當 S/B = 0.41 與 CaO/C = 1.25 時,氣體產率最佳,每公克枝條生物質可產生合成氣含CO₂、CH₄、CO及H₂分別為1.7 mmol、0.2 mmol、0.1 mmol及1.3 mmol,對應合成氣熱值為 0.7 kJ/g-biomass。另一方面,本研究生命週期評估以中點衝擊與終點衝擊為兩大分析面向,針對三組數據進行比較(控制組、最佳 CaO/C 比組與最佳 S/B 比組)。結果指出,當 S/B = 0.423 且 CaO/C = 1 時,每產出 1 MJ 能量之環境衝擊最小。除水資源消耗與 CO₂ 排放外,另一關鍵衝擊來自於氧化鈣製程,因此催化劑使用量為影響環境負載之重要因素。根據終點衝擊結果顯示,本技術造成人類健康潛在風險主要來源為催化劑製程產生之毒性與空氣污染物排放,且對資源消耗與生態系影響之影響較低。
最後,本研究針對應用氧化鈣輔助蒸氣氣化將果樹枝條轉生質能之潛力進行評估,我國每年果樹枝條產量約 60 萬公噸,其中,以屏東縣產量最多;依本研究結果推估,屏東縣透過流體化床技術每年可產生約 32,600 GJ 能源。若以人口數計算各縣市之能源供應潛力,則以臺東縣最具發展潛力。全臺每年若採用此技術進行氣化處理,預估可減少約 210~4,254 公噸之化石燃料衍生 CO₂ 排放當量。綜合以上,經由優化的操作條件與催化劑添加,流體化床結合氧化鈣輔助蒸氣氣化技術可有效提升合成氣品質與反應效率,具有取代化石燃料之潛力。未來建議方向包括系統及設備設計最佳化、實驗放大規模與實地測試,以確實驗證其潛力並進而推廣之。
zh_TW
dc.description.abstractIn recent years, fluidized bed technology has emerged as a promising waste treatment approach due to its high fuel utilization efficiency and practicality in syngas production via gasification. This study investigates the conversion potential of branches randomly collected and shredded from the campus of National Taiwan University, serving as a simulated representation of fruit tree branches in agricultural waste, under controlled operating conditions. A Central Composite Design (CCD) under the framework of Response Surface Methodology (RSM) was employed to evaluate the effects of two key operating parameters. The fixed experimental parameters included a reactor power of 1 kW, gas collection time of 120 minutes (as the reaction duration), a maximum reaction temperature of 700 °C, an inlet gas flow rate of 2 mL/min, and a biomass feedstock weight of 20 g. The variable parameters were the calcium oxide to carbon ratio (CaO/C) and the steam to biomass ratio (S/B), corresponding to steam flow rates of 0–5 mL/min and CaO of 0–25 g, respectively. Gas composition was analyzed using gas chromatography (GC-TCD and GC-MS), while ash content was determined via elemental analysis. The experimental data were further utilized to conduct mass balance calculations, develop RSM-based predictive models, perform life cycle assessment (LCA), and evaluate the overall energy conversion potential.
Experimental results indicated that when the steam to biomass (S/B) ratio was fixed at 0.317 and the CaO/C ratio varied, the optimal performance was observed at CaO/C = 1. Under this condition, the resulting syngas exhibited the highest heating value of 0.43 kJ/g, along with the highest concentrations of H₂ and CH₄. Conversely, when the CaO/C ratio was fixed at 1 and the S/B ratio was varied, the best outcome was achieved at S/B = 0.423, yielding an increased heating value of 0.68 kJ/g-biomass and similarly elevated H₂ and CH₄ concentrations. The mass balance analysis revealed a relatively low overall mass recovery rate of approximately 30–40%, which is likely attributed to unquantified carbon content in low-chain hydrocarbons and tar, as well as the loss of ash particles carried out of the reactor by the gas stream during the reaction process. With respect to the RSM model, the steam to biomass ratio (S/B) and CaO/C ratio were selected as independent variables, while the concentrations of CO, CO₂, CH₄, and H₂ in the syngas were treated as dependent variables. The predictive model suggested that the optimal gas yield occurs at S/B = 0.41 and CaO/C = 1.25, with the corresponding gas concentrations of CO₂: 1.7 mmol/g-biomass, CH₄: 0.2 mmol/g, CO: 0.1 mmol/g, and H₂: 1.3 mmol/g. Under these conditions, the predicted syngas heating value reaches 0.7 kJ/g-biomass.
On the other hand, the life cycle assessment (LCA) in this study was conducted using both midpoint and endpoint approaches to compare three experimental conditions: the control group, the optimal CaO/C ratio group, and the optimal S/B ratio group. The results indicated that the combination of S/B = 0.423 and CaO/C = 1 yielded the lowest environmental impact per MJ of energy produced. In addition to water consumption and CO₂ emissions, a significant contributor to environmental burden was identified as the calcium oxide production process, highlighting catalyst consumption as a key influencing factor. According to the endpoint analysis, this technology poses the greatest potential risk to human health compared to impacts on resource depletion and ecosystems, primarily due to the toxicity and air pollutants emitted during catalyst manufacturing.
Furthermore, this study assessed the potential of converting fruit branches into bioenergy via CaO-assisted steam gasification. In Taiwan, annual fruit branches is estimated at approximately 600,000 tonnes, with Pingtung County contributing the largest share. Based on the findings, it is estimated that this county could generate approximately 32,600 GJ of energy annually using fluidized bed gasification. When normalized by population to assess regional energy supply potential, Taitung County was identified as having the highest development potential. If this technology were implemented nationwide, the estimated annual reduction in fossil fuel–derived CO₂-eq emissions could range from 211 to 4,254 tonnes.
In conclusion, with optimized operating conditions and catalyst addition, fluidized bed gasification can significantly enhance syngas quality and reaction efficiency, demonstrating considerable potential as an alternative to fossil fuels. Future work should focus on equipment optimization, scale-up studies, and field trials to validate its practical applicability and support broader deployment.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-24T16:52:53Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-24T16:52:53Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
摘要 II
Abstract IV
Acknowledgments VII
Table of Contents VIII
List of Figure X
List of Table XIII
List of Abbreviations XV
Chapter 1. Introduction 1
1.1 Introduction 1
1.2 Objectives 5
1.3 Main Framework 6
Chapter 2. Literature Reviews 8
2.1 Types of Biomass Resources 8
2.1.1 Agricultural wastes 8
2.1.2 Branches in Agriculture and Urban Area 9
2.2 Fluidized Bed 10
2.2.1 Gasification 10
2.2.2 Gasification Technique 14
2.2.3 Fluidized Bed Reactor (FDBR) 16
2.3 Bed Materials and Operations 17
2.3.1 Bed Materials and Catalysts 17
2.3.2 Minimum Fluidized Velocity 21
2.3.3 Equivalent ratio (ER) and Steam to Biomass Ratio (S/B) 22
2.4 Data Processing 24
2.4.1 Cold Gas Efficiency (CGE) 24
2.4.2 Carbon Conversion Efficiency (CCE) 25
2.5 Life Cycle Assessment (LCA) 26
Chapter 3. Materials and Methods 30
3.1 Equipment and Materials 30
3.2 Fluidized Bed Reactor 31
3.3 Experimental Design 33
3.3.1 Sample Pretreatment 34
3.3.2 Carbon Mass Balance 36
3.4 Characterization of Samples 37
3.4.1 Proximate Analysis 37
3.4.2 Thermogravimetric Analysis (TGA) 37
3.4.3 Elemental Analyzer (EA) 38
3.4.4 Adiabatic Bomb Calorimeter 38
3.4.5 Densimeter 38
3.4.6 Gas chromatography (GC) 38
3.4.7 Limit of Detection 40
3.5 Life Cycle Assessment (LCA) 41
Chapter 4. Results and Discussion 43
4.1 Physico-chemical Properties of Fruit branches 43
4.1.1 Thermogravimetric Analysis (TGA) 43
4.1.2 Properties of fruit branches 44
4.2 Performance of Syngas Production Using CaO-Steam Gasification 45
4.2.1 Carbon Mass Balance 45
4.2.2 Effect of CaO/C Ratio 47
4.2.3 Effect of Steam to Biomass (S/B) Ratio 48
4.2.4 Prediction Models based on RSM 51
4.3 Life-Cycle Environmental Impact Assessment 57
4.3.1 Midpoint Impact Assessment 57
4.3.2 Endpoint Impact Assessment 60
4.4 Potential of Energy Conversion in Taiwan 62
4.4.1 Production of fruit branches and the potential of energy conversion 62
4.4.2 Household coverage ratio and the potential reduction in CO2 from replacing fossil fuels 68
Chapter 5. Conclusion and Recommendation 72
5.1 Conclusion 72
5.2 Recommendation 73
Declaration 77
References 78
Appendix 87
-
dc.language.isoen-
dc.subject流體化床zh_TW
dc.subject氣化zh_TW
dc.subject生命週期評估zh_TW
dc.subject生物質廢棄物zh_TW
dc.subject合成氣zh_TW
dc.subjectSyngasen
dc.subjectBiomassen
dc.subjectLife cycle assessmenten
dc.subjectFluidized beden
dc.subjectGasificationen
dc.title應用氧化鈣輔助蒸氣氣化將枝條轉生質能之潛力評估zh_TW
dc.titleAssessment of the Potential for Converting Branches into Bioenergy via CaO-Assisted Steam Gasificationen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee柯淳涵;曾堯宣zh_TW
dc.contributor.oralexamcommitteeChun-Han Ko;Yao-Hsuan Tsengen
dc.subject.keyword氣化,流體化床,合成氣,生物質廢棄物,生命週期評估,zh_TW
dc.subject.keywordGasification,Fluidized bed,Syngas,Biomass,Life cycle assessment,en
dc.relation.page100-
dc.identifier.doi10.6342/NTU202503298-
dc.rights.note未授權-
dc.date.accepted2025-08-14-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物環境系統工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
4.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved