請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100209完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林沛群 | zh_TW |
| dc.contributor.advisor | Pei-Chun Lin | en |
| dc.contributor.author | 李奕融 | zh_TW |
| dc.contributor.author | Yi-Jung Lee | en |
| dc.date.accessioned | 2025-09-24T16:51:40Z | - |
| dc.date.available | 2025-09-25 | - |
| dc.date.copyright | 2025-09-24 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-06 | - |
| dc.identifier.citation | [1] Hélio Ochoa and Rui Cortesão. Impedance control architecture for robotic-assisted mold polishing based on human demonstration. IEEE Transactions on Industrial Electronics, 69(4):3822–3830, 2022.
[2] H. Zhou, X. Zhang, and J. Liu. A corrective shared control architecture for human–robot collaborative polishing tasks. Robotics and Computer-Integrated Manufacturing, 92:102876, 2025. [3] Chosei Rei, Qichao Wang, Linlin Chen, Xinhua Yan, Peng Zhang, Liwei Fu, Chong Wang, and Xinghui Liu. Constant force grinding controller for robots based on sac optimal parameter finding algorithm. Scientific Reports, 14:14127, 2024. [4] Lei Zhang, Yanjun Han, Cheng Fan, Xunpeng Song, and Ye Tang. Polishing path planning for physically uniform overlap of polishing ribbons on freeform surface. International Journal of Advanced Manufacturing Technology, 92(15):1–17, 2017. [5] Fangchen Yin, Qingzhi Ji, and Changcai Cun. Data-driven modeling and prediction analysis for surface roughness of special-shaped stone by robotic grinding. IEEE Access, 10:67615–67629, 2022. [6] Yuxin Deng, Guilian Wang, Xu Yue, and Kuntao Zhou. A review of robot grinding and polishing force control mode. In IEEE International Conference on Mechatronics and Automation (ICMA), pages 1413–1418, 2022. [7] Wei Liu, Lei Zhang, Fang Chen, et al. Collaborative robotics: A survey from literature and practitioners perspectives. Journal of Intelligent & Robotic Systems, 107(3):45, 2024. [8] Lei Zhang, Wei Liu, Fang Chen, et al. Advancing human–robot collaboration in handcrafted manufacturing. The International Journal of Advanced Manufacturing Technology, 124(1):123–140, 2024. [9] P. G. Benardos and G.-C. Vosniakos. Prediction of surface roughness in machining: a review. International Journal of Machine Tools and Manufacture, 43(8):833–844, 2003. [10] Suiyan Shang, Chunjin Wang, Xiaoliang Liang, Chi Fai Cheung, and Pai Zheng. Surface roughness prediction in ultra-precision milling: An extreme learning machine method with data fusion. Micromachines, 14(11):2016, 2023. [11] Elias Montini, Fabio Daniele, Lorenzo Agbomemewa, et al. A smart work cell to reduce adoption barriers of collaborative robotics. In Advances in Production Management Systems. Production Management Systems for Responsible Manufacturing, Service, and Logistics Futures, pages 123–130. Springer, 2023. [12] Haibo Zhou, Shitai Ma, Guilian Wang, Yuxin Deng, and Zhenzhong Liu. A hybrid control strategy for grinding and polishing robot based on adaptive impedance control. Advances in Mechanical Engineering, 13(3):16878140211004034, 2021. [13] Neelesh K. Jain and Vijay K. Jain. Modeling of material removal in mechanical type advanced machining processes: a state-of-art review. International Journal of Machine Tools and Manufacture, 41(11):1573–1635, 2001. [14] Bruno Siciliano and Oussama Khatib. Springer handbook of robotics. Springer, Cham, 2016. [15] Fugui Xie, Zenghui Chong, Xin-Jun Liu, Huichan Zhao, and Jinsong Wang. Precise and smooth contact force control for a hybrid mobile robot used in polishing. Robotics and Computer-Integrated Manufacturing, 83:102573, 2023. [16] Sreekanth Kana, Srinivasan Lakshminarayanan, Dhanya Menoth Mohan, and Domenico Campolo. Impedance controlled human–robot collaborative tooling for edge chamfering and polishing applications. Robotics and Computer-Integrated Manufacturing, 72:102199, 2021. [17] Yunfei Dong, Tianyu Ren, Kui Hu, Dan Wu, and Ken Chen. Contact force detection and control for robotic polishing based on joint torque sensors. The International Journal of Advanced Manufacturing Technology, 107(5-8):2745–2756, 2020. [18] Chien-Hung Liu, Arthur Chen, Chien-Cheng A. Chen, and Yu-Ting Wang. Grinding force control in an automatic surface finishing system. Journal of Materials Processing Technology, 170(1):367–373, 2005. [19] Xiaoxu Xu, Ding Zhu, Heng Zhang, Shuo Yan, and Han Ding. Application of novel force control strategies to enhance robotic abrasive belt grinding quality of aeroengine blades. Chinese Journal of Aeronautics, 32(10):2368–2382, 2019. [20] Y. Sun, D. J. Giblin, and K. Kazerounian. Accurate robotic belt grinding of workpieces with complex geometries using relative calibration techniques. Robotics and Computer-Integrated Manufacturing, 25(1):204–210, 2009. [21] F. Nagata, T. Hase, Z. Haga, M. Omoto, and K. Watanabe. Basic performance of a desktop nc machine tool with compliant motion capability. In Proceedings of the 2008 IEEE International Conference on Mechatronics and Automation (ICMA), pages 83–88. IEEE, 2008. [22] Y. Pan, J. Li, T. Sun, D. Guo, and X. Zhang. New insights into the methods for predicting ground surface roughness in the age of digitalisation. Precision Engineering, 67:393–418, 2021. [23] U. S. Patnaik Durgumahanti, V. Singh, and P. Venkateswara Rao. A new model for grinding force prediction and analysis. International Journal of Machine Tools and Manufacture, 50(3):231–240, March 2010. [24] Ding Zhu, Xiaoxu Xu, Zhen Yang, Ke Zhuang, Shuo Yan, and Han Ding. Analysis and assessment of robotic belt grinding mechanisms by force modeling and force control experiments. Tribology International, 120:93–98, April 2018. [25] J. Qi and B. Chen. Surface roughness prediction based on the average cutting depth of abrasive grains in belt grinding. In 2018 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE), pages 169–174. IEEE, 2018. [26] M. Sabourin, F. Paquet, B. Hazel, J. Côté, and P. Mongenot. Robotic approach to improve turbine surface finish. In 2010 1st International Conference on Applied Robotics for the Power Industry (CARPI), pages 1–6. IEEE, 2010. [27] Y. Ren, Z. Chen, Y. Liu, Y. Gu, M. Jin, and H. Liu. Adaptive hybrid position/force control of dual-arm cooperative manipulators with uncertain dynamics and closed-chain kinematics. Journal of the Franklin Institute, 354(17):7767–7793, 2017. [28] Yixu Shi, Hongjun Yang, and Hongbo Liu. Intelligent control for a robot belt grinding system. IEEE Transactions on Control Systems Technology, 21(3):716–724, 2013. [29] Xiaoxu Xu, Wen Chen, Ding Zhu, Shuo Yan, and Han Ding. Hybrid active/passive force control strategy for grinding marks suppression and profile accuracy enhancement in robotic belt grinding of turbine blade. Robotics and Computer-Integrated Manufacturing, 67:102047, 2021. [30] Z. Lu, S. Kawamura, and A. A. Goldenberg. Sliding mode impedance control and its application to grinding tasks. In Proceedings of IEEE/RSJ International Workshop on Intelligent Robots and Systems, volume 1, pages 350–355. IEEE, 1991. [31] A. Wahrburg, J. Bös, K. D. Listmann, F. Dai, B. Matthias, and H. Ding. Motor-current-based estimation of cartesian contact forces and torques for robotic manipulators and its application to force control. IEEE Transactions on Automation Science and Engineering, 15(2):879–886, 2018. [32] W.-L. Zhu and A. Beaucamp. Compliant grinding and polishing: A review. International Journal of Machine Tools and Manufacture, 158:103634, 2020. [33] T. Furukawa, D.C. Rye, M.W.M.G. Dissanayake, and A.J. Barratt. Automated polishing of an unknown three-dimensional surface. Robotics and Computer-Integrated Manufacturing, 12(3):261–270, 1996. [34] F. Tian, C. Lv, Z. Li, and G. Liu. Modeling and control of robotic automatic polishing for curved surfaces. CIRP Journal of Manufacturing Science and Technology, 14:55–64, 2016. [35] Y.-L. Kuo, S.-Y. Huang, and C.-C. Lan. Sensorless force control of automated grinding/deburring using an adjustable force regulation mechanism. In 2019 IEEE International Conference on Robotics and Automation (ICRA), pages 9489–9495, 2019. [36] K. Seki, Y. Shinohara, M. Iwasaki, H. Chinda, and M. Takahashi. High precision force control of pneumatic cylinders considering disturbance suppression with specific frequency. In 2011 IEEE International Conference on Mechatronics, pages 937–942, 2011. [37] L. Liao, F. Xi, and K. Liu. Modeling and control of automated polishing/deburring process using a dual-purpose compliant toolhead. International Journal of Machine Tools and Manufacture, 48(12):1454–1463, 2008. [38] Z. Hu, N. Ling, J. Pan, and W. Jiang. Study of pzt actuated deformable aspheric polishing lap. In Proceedings of AOMATT 2008—4th International Symposium on Advanced Optical Manufacturing. SPIE, 2009. [39] F. Chen, H. Zhao, D. Li, L. Chen, C. Tan, and H. Ding. Robotic grinding of a blisk with two degrees of freedom contact force control. The International Journal of Advanced Manufacturing Technology, 101(1):461–474, 2019. [40] Y. Nogi, S. Sakaino, and T. Tsuji. Force control of grinding process based on frequency analysis. IEEE Robotics and Automation Letters, 7(2):3250–3256, 2022. [41] S. Lin, Q. Wang, Z. Jiang, and Y. Yin. Online force control of large optical grinding machine for brittle materials assisted by force prediction. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 234(1-2):14–26, 2020. [42] D. Zhu, Y. Hu, H. Wang, et al. Robotic grinding of complex components: A step towards efficient and intelligent machining—challenges, solutions, and applications. Robotics and Computer-Integrated Manufacturing, 65:101908, 2020. [43] G. Nanz and L.E. Camilletti. Modeling of chemical-mechanical polishing: a review. IEEE Transactions on Semiconductor Manufacturing, 8(4):382–389, 1995. [44] Yuxiang Wang, Xiaokang Huang, Xukai Ren, Ze Chai, and Xiaoqi Chen. In-process belt-image-based material removal rate monitoring for abrasive belt grinding using CatBoost algorithm. The International Journal of Advanced Manufacturing Technology, 102(5-8):1297–1318, 2022. [45] Yunpeng Feng, Haobo Cheng, Tan Wang, Zhichao Dong, and Hon-Yuen Tam. Optimal strategy for fabrication of large aperture aspheric surfaces. Appl. Opt., 53(1):147–155, Jan 2014. [46] Dong Wu, Cheng Liu, Xin Feng, and Lei Zhang. Nurbs-based tool path planning for five-axis machining of free-form surfaces using blending-axis interpolation. International Journal of Advanced Manufacturing Technology, 96(5-8):3393–3403, 2018. [47] Yanjun Guo, Xiaojing Yang, Jie Kang, Tong Yao, Bohan Cheng, Maozhong Li, and Qiming Xie. Spiral tool path optimization method for fast/slow tool servo-assisted diamond turning of freeform surfaces with highly form accuracy. Precision Engineering, 80:229–242, 2023. [48] J. Paulo Davim. A note on the determination of optimal cutting conditions for surface finish obtained in turning using design of experiments. Journal of Materials Processing Technology, 116:305–308, 2001. [49] Huguang Yang, Han Zheng, and Taohong Zhang. A review of artificial intelligent methods for machined surface roughness prediction. Tribology International, 199:109935, 2024. [50] Mariane Prado Motta, Cyril Pelaingre, Arnaud Delamézière, Lanouar Ben Ayed, and Claude Barlier. Machine learning models for surface roughness monitoring in machining operations. Procedia CIRP, 108:710–715, 2022. 6th CIRP Conference on Surface Integrity. [51] Danil Yu. Pimenov, A. Bustillo, and T. Mikolajczyk. Artificial intelligence for automatic prediction of required surface roughness by monitoring wear on face mill teeth. Journal of Intelligent Manufacturing, 29(5):1045–1061, 2018. [52] Sherwan Mohammed Najm and Imre Paniti. Predict the effects of forming tool characteristics on surface roughness of aluminum foil components formed by spif using ann and svr. International Journal of Precision Engineering and Manufacturing, 21:13–26, 2020. [53] N. Ben Fredj and R. Amamou. Ground surface roughness prediction based upon experimental design and neural network models. International Journal of Advanced Manufacturing Technology, 31(1-2):24–36, November 2006. [54] F. J. Shiou and C. C. Hsu. Surface finishing of hardened and tempered stainless tool steel using sequential ball grinding, ball burnishing and ball polishing processes on a machining centre. Journal of Materials Processing Technology, 205(1-3):249–258, August 2008. [55] Tao Zhao, Yaoyao Shi, Xiaojun Lin, Jihao Duan, Pengcheng Sun, and Jun Zhang. Surface roughness prediction and parameters optimization in grinding and polishing process for ibr of aero-engine. The International Journal of Advanced Manufacturing Technology, 74(5):653–663, 2014. [56] S.-P. Lo. An adaptive-network based fuzzy inference system for prediction of workpiece surface roughness in end milling. Journal of Materials Processing Technology, 142(3):665–675, 2003. [57] A. E. Khalick Mohammad, J. Hong, and D. Wang. Polishing of uneven surfaces using industrial robots based on neural network and genetic algorithm. The International Journal of Advanced Manufacturing Technology, 93(1-4):1463–1471, 2017. [58] Weiyan Guo, Cheng Wu, Zhen Ding, and Qiang Zhou. Prediction of surface roughness based on a hybrid feature selection method and long short-term memory network in grinding. The International Journal of Advanced Manufacturing Technology, 112:2853–2871, 2021. [59] Peng Zhang, Zhiyong Li, Liqin Zou, and Qiang Tang. Optimization of grinding process parameters based on BILSTM network and chaos sparrow search algorithm. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 236(4):1693–1701, 2022. [60] İbrahim Yazici and Emre Gures. Nr-v2x quality of service prediction through machine learning with nested cross-validation scheme. In 2024 6th International Conference on Communications, Signal Processing, and their Applications (ICCSPA), pages 1–5, 2024. [61] Yongqing Wang, Mengmeng Niu, Kuo Liu, Mingrui Shen, Bo Qin, and Honghui Wang. A novel data augmentation method based on coralgan for prediction of part surface roughness. IEEE Transactions on Neural Networks and Learning Systems, 34(10):7024–7033, 2023. [62] Fangrui Gao and Sibao Wang. An online milling surface roughness prediction method for thin-walled blade based on wavelet transform and convolutional neural network integrated with a digital twin system. In 2024 5th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT), pages 889–896, 2024. [63] Chunyang Xia, Zengxi Pan, Joseph Polden, Huijun Li, Yanling Xu, and Shanben Chen. Modelling and prediction of surface roughness in wire arc additive manufacturing using machine learning. Journal of Intelligent Manufacturing, 33(5):1467–1482, 2022. [64] El-Ghazali Talbi. Metaheuristics: From Design to Implementation. Wiley, Hoboken, NJ, 2009. [65] C.K.H. Lee. A review of applications of genetic algorithms in operations management. Engineering Applications of Artificial Intelligence, 76:1–12, 2018. [66] Longhua Xu, Chuanzhen Huang, Chengwu Li, Jun Wang, Hanlian Liu, and Xiao-dan Wang. Estimation of tool wear and optimization of cutting parameters based on novel anfis–pso method toward intelligent machining. Journal of Intelligent Manufacturing, 32(1):77–90, 2021. [67] Gopal Kumar Saxenaa, Anjaneyulu Kamepalli, Venkatesh Gudipadu, Satish Kumar Injeti, and Ramalingaswamy Cheruku. Parametric optimization of magnetic abrasive finishing process using genetic algorithm and particle swarm optimization. In TENCON 2023 - 2023 IEEE Region 10 Conference (TENCON), pages 651–656, 2023. [68] Ramón Quiza, Marcelino Rivas, and Eleno Alfonso Brindis. Genetic algorithm‐based multi‐ objective optimization of cutting parameters in turning processes. Engineering Applications of Artificial Intelligence, 19(3):271–284, 2006. [69] S. H. Yang and U. Natarajan. Multi-objective optimization of cutting parameters in turning process using differential evolution and non-dominated sorting genetic algorithm-ii approaches. The International Journal of Advanced Manufacturing Technology, 49(5-8):773–784, 2010. [70] Bo Li and Xitian Tian. An effective pso–lssvm–based approach for surface roughness prediction in high-speed precision milling. IEEE Access, 9:80006–80014, 2021. [71] Arivazhagan Selvam, Suresh Mayilswamy, Ruban Whenish, K Naresh, Vignesh waran Shanmugam, and Oisik Das. Multi-objective optimization and prediction of surface roughness and printing time in fff printed abs polymer. Scientific Reports, 12:16887, 2022. [72] S. O. Sada and S. C. Ikpeseni. Evaluation of ANN and ANFIS modeling ability in the prediction of AISI 1050 steel machining performance. Heliyon, 7(2):e06136, 2021. [73] Seyedali Mirjalili and Antony Lewis. The multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Computing and Applications, 27(2):495–513, 2016. [74] Laith Abualigah, Hossam Faris, Ali Asghar Heidari, Emmanuel Osaba, and Seyedali Mirjalili. Multi-verse optimizer algorithm: A comprehensive survey of its results, variants, and applications. Neural Computing & Applications, 32(16):12381–12401, 2020. [75] Hengxin Ni, Chunping Yan, and Yifan Liu. Multi‐verse optimizer based parameters decision with considering tool life in dry hobbing process. Chinese Journal of Mechanical Engineering, 34(1):1–12, 2021. [76] Kalyanmoy Deb. Optimization for Engineering Design: Algorithms and Examples. Prentice Hall, Upper Saddle River, NJ, 2nd edition, 2011. [77] Xin-She Yang, Suash Deb, and Simon Fong. Swarm intelligence: past, present and future. Soft Computing, 22(2):555–590, 2018. [78] TM-Robots. Tm5-700 規格表, 2023. Downloaded PDF. Accessed: March 5, 2025. [79] AcePillar. Tm5 hardware installation manual, 2024. Downloaded PDF. Accessed: March 5, 2025. [80] 劉民偉. 自動化拋光研磨系統之路徑生成、表面瑕疵檢測及回拋回磨修補. 碩士論文, 國立臺灣大學, 2021. [81] 林郁衡. 高動態多控制模式研磨工具開發. 碩士論文, 國立臺灣大學, 2021. [82] 陳予和. 工業回授控制系統受攻異常的偵測. 碩士論文, 國立臺灣大學, 2022. [83] 蕭尚亞. 應用於高動態研磨工具之研磨力控制系統開發. 碩士論文, 國立臺灣大學, 2023. [84] 游崴舜. 可側傾雙輪機器人之運動控制與其內部機器人泛用機電系統架構. 碩士論文, 國立臺灣大學, 2012. [85] Moticont, Inc. Hvcm-095-038-051-01 voice coil motor datasheet, 2025. Accessed: 2025-06-23. [86] Philippe Pierrot, Olivier Paillet, Jean Centonze, and Pierre-Yves Berthou. An ultra-sound robotic system using the commercial robot ur5. Frontiers in Robotics and AI, 3:1–12, 1999. [87] Endre Erős, Martin Dahl, Kristofer Bengtsson, Atieh Hanna, and Petter Falkman. A ros2 based communication architecture for control in collaborative and intelligent automation systems. Procedia Manufacturing, 38:349–357, 2019. [88] Valeria Villani, Federico Pini, Federico Leali, and Cesare Secchi. Survey on human–robot collaboration in industrial settings: Safety, intuitive interfaces and applications. Mechatronics, 55:248–266, 2018. Accessed: 24 Jun. 2025. [89] S. Malkin and C. Guo. Grinding Technology: Theory and Application of Machining with Abrasives. Industrial Press Inc., 2001. [90] J. F. Archard. Contact and rubbing of flat surfaces. Journal of Applied Physics, 24:981–988, 1953. [91] I. Inasaki, H.K. Tonshoff, and T.D. Howes. Abrasive machining in the future. International Journal of Machine Tools and Manufacture, 33(1):1–12, 1993. [92] S. Malkin and C. Guo. Grinding Technology: Theory and Application of Machining with Abrasives. Industrial Press Inc., 2001. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100209 | - |
| dc.description.abstract | 本論文針對協作型機械手臂於金屬研磨作業之表面粗糙度預測問題,提出結合物理建模與機器學習之預測與補償架構。考慮到協作型機器人回饋性能不足,常導致表面品質不穩定,尤其在無法即時控制研磨力與軌跡重疊區域的情境下,易產生紋理不均與品質偏差,提出了軌跡優化與殘差迭代補償來進行改善。現有文獻多聚焦於傳統加工機或單一品質指標(如 Ra 或 MRR)建模,對於協作型機械手臂尚缺乏能同時兼顧表面粗糙度預測、物理一致性與參數補償的完整方法。
本研究首先以達明協作型機械手臂(TM5-700)與研磨平台,建立金屬片表面多條軌跡的均勻去除策略,並提出結合截面效率因子與增益的材料去除率(MRR)混合模型。進一步將此物理建模所得之 MRR 嵌入機器學習回歸模型,並提出物理引導機器學習(Physics-Informed Machine Learning, PIML)架構:一方面將 MRR 作為額外特徵提升模型可解釋性,另一方面設計物理一致性損失函數(Penalty),於多宇宙優化(MVO)超參數尋優過程中,同時最小化預測誤差與物理趨勢違反率,在提高物理可解釋性的情況下也能提升模型的穩健性。 於多種研磨條件下進行系統性實驗與交叉驗證,結果顯示:PIML 架構可在預測精度(RMSE/ MAPE)與外插穩健性間取得更佳平衡,明顯降低模型違反物理趨勢的比率,並透過 SHAP 可解釋性分析驗證模型對物理主控因子(如 MRR)之合理性。比較不同模型(決策樹、SVR、XGBoost)結果,證實所提出之整合式PIML 方法,具備兼顧高精度、物理一致性與可應用於補償的優勢。 | zh_TW |
| dc.description.abstract | This study presents a hybrid prediction and compensation framework that integrates physical modeling with machine learning to address surface roughness prediction in automated metal grinding using collaborative robots. As collaborative arms increasingly replace manual labor in hazardous and repetitive finishing tasks, challenges such as unstable surface quality—especially when real-time force feedback and trajectory overlap control are limited—remain unsolved by most existing methods, which focus on conventional machining or single-quality metrics.
This research uses a Techman TM5-700 collaborative robot and a custom grinding platform to develop a uniform multi-path removal strategy for metal plate surfaces. A hybrid material removal rate (MRR) model is established, combining theoretical and experimental calibration. The resulting dimensionless MRR feature is incorporated into machine learning regressors, and a physics-informed loss function (Penalty) is introduced to guide training via Multi-Verse Optimizer (MVO) hyperparameter tuning, enhancing both interpretability and model robustness. Experimental results across various grinding conditions show that the proposed PIML approach achieves a superior balance between predictive accuracy and physical consistency, significantly reducing physical trend violations. SHAP-based analysis confirms that dominant physical factors, such as MRR, are captured correctly. Overall, the integrated PIML method provides a robust solution for automated surface quality prediction and compensation in collaborative robotic metal grinding. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-24T16:51:40Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-24T16:51:40Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii ABSTRACT iv 目次 vi 圖次 x 表次 xii 第一章緒論 1 1.1 前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 研究貢獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 第二章實驗平台 14 2.1 前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 硬體與機電系統介紹. . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.1 達明機械手臂. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.2 TMflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.3 研磨平台. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.4 音圈馬達調適. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3 ROS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3.1 點位到達判斷. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3.2 軌跡初步校正. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.4 通訊架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 第三章材料均勻去除策略 39 3.1 前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2 材料去除率控制理論. . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2.1 理論背景與假設條件. . . . . . . . . . . . . . . . . . . . . . . . 40 3.2.2 材料去除率控制策略與實務考量. . . . . . . . . . . . . . . . . . 42 3.3 軌跡規劃方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.3.1 軌跡生成策略. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.3.2 均勻去除軌跡規劃方法. . . . . . . . . . . . . . . . . . . . . . . 47 3.4 材料去除率估計模型. . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.4.1 理論公式推導與選用. . . . . . . . . . . . . . . . . . . . . . . . 51 3.5 實際量測與驗證. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.5.1 量測方法介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.5.2 量測數據分析與估算模型建立. . . . . . . . . . . . . . . . . . . 57 3.6 實驗驗證. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 第四章表面粗糙度預測模型建立 70 4.1 前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.2 表面粗糙度影響參數分析. . . . . . . . . . . . . . . . . . . . . . . . 71 4.2.1 參數選擇依據與範圍設定. . . . . . . . . . . . . . . . . . . . . . 71 4.2.2 實驗數據收集方法與處理. . . . . . . . . . . . . . . . . . . . . . 71 4.2.3 參數關聯性分析與討論. . . . . . . . . . . . . . . . . . . . . . . 74 4.3 機器學習預測模型建立. . . . . . . . . . . . . . . . . . . . . . . . . 75 4.3.1 模型選擇與介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.3.2 模型建構與初步驗證. . . . . . . . . . . . . . . . . . . . . . . . 77 4.4 超參數最佳化方法論. . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.4.1 遺傳演算法(GA) . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.4.2 粒子群最佳化(PSO) . . . . . . . . . . . . . . . . . . . . . . . 81 4.4.3 MVO 演算法優化. . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.5 實驗驗證與分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.5.1 驗證實驗設計與方法. . . . . . . . . . . . . . . . . . . . . . . . 84 4.5.2 預測模型效能分析與優化結果討論. . . . . . . . . . . . . . . . 87 第五章物理引導機器學習 93 5.1 前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.2 物理特徵設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.2.1 MRR 推導回顧與正規化. . . . . . . . . . . . . . . . . . . . . . . 94 5.3 PIML 模型架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.3.1 MRR 特徵嵌入與預處理. . . . . . . . . . . . . . . . . . . . . . . 95 5.3.2 純ML 與PIML(loss only)流程對照. . . . . . . . . . . . . . . 95 5.3.3 物理懲罰(Penalty)設計與判斷邏輯. . . . . . . . . . . . . . . 96 5.3.4 PIML 物理引導效果比較. . . . . . . . . . . . . . . . . . . . . . 99 5.3.5 區段化誤差分析. . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.3.6 特徵重要度與可解釋性. . . . . . . . . . . . . . . . . . . . . . . 102 第六章結論與未來展望 107 6.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 參考文獻 109 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 表面粗糙度 | zh_TW |
| dc.subject | 協作型機器人 | zh_TW |
| dc.subject | 物理引導機器學習 | zh_TW |
| dc.subject | 多宇宙優化演算法 | zh_TW |
| dc.subject | 材料去除率 | zh_TW |
| dc.subject | Material Removal Rate (MRR) | en |
| dc.subject | Multi-Verse Optimizer (MVO) | en |
| dc.subject | Physics-Informed Machine Learning (PIML) | en |
| dc.subject | Surface Roughness | en |
| dc.subject | Collaborative Robot | en |
| dc.title | 結合物理引導機器學習進行機械手臂金屬研磨表面粗糙度預測 | zh_TW |
| dc.title | Physics-Informed Machine Learning for Surface Roughness Prediction in Robotic Arm Metal Grinding | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 連豊力;顏炳郎 | zh_TW |
| dc.contributor.oralexamcommittee | Feng-Li Lian;Ping-Lang Yen | en |
| dc.subject.keyword | 協作型機器人,表面粗糙度,材料去除率,多宇宙優化演算法,物理引導機器學習, | zh_TW |
| dc.subject.keyword | Collaborative Robot,Surface Roughness,Material Removal Rate (MRR),Multi-Verse Optimizer (MVO),Physics-Informed Machine Learning (PIML), | en |
| dc.relation.page | 121 | - |
| dc.identifier.doi | 10.6342/NTU202502725 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-09 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2030-08-01 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2030-08-01 | 6.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
