請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100207完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許家維 | zh_TW |
| dc.contributor.advisor | Jia-Wei Hsu | en |
| dc.contributor.author | 張乃心 | zh_TW |
| dc.contributor.author | Nai-Hsin Chang | en |
| dc.date.accessioned | 2025-09-24T16:51:15Z | - |
| dc.date.available | 2025-09-25 | - |
| dc.date.copyright | 2025-09-24 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-05 | - |
| dc.identifier.citation | 1. Abdelfattah, F., A. Kariminejad, A. K. Kahlert, P. J. Morrison, E. Gumus, K. D. Mathews, B. W. Darbro, D. J. Amor, M. Walsh, Y. Sznajer, L. Weiß, S. Weidensee, D. Chitayat, P. Shannon, E. Bermejo-Sánchez, I. Riaño-Galán, I. Hayes, G. Poke, C. Rooryck, P. Pennamen, S. Khung-Savatovsky, A. Toutain, M. L. Vuillaume, S. Ghaderi-Sohi, M. H. Kariminejad, S. Weinert, H. Sticht, M. Zenker and D. Schanze (2020). "Expanding the genotypic and phenotypic spectrum of severe serine biosynthesis disorders." Hum Mutat 41(9): 1615-1628.
2. Bouhamdani, N., D. Comeau and S. Turcotte (2021). "A Compendium of Information on the Lysosome." Front Cell Dev Biol 9: 798262. 3. De Cegli, R., D. Carrella, D. Siciliano, G. Gambardella, G. Napolitano, C. Di Malta, A. Ballabio and D. di Bernardo (2022). "TFEBexplorer: An integrated tool to study genes regulated by the stress-responsive Transcription Factor EB." Autophagy Rep 1(1): 295-305. 4. de Koning, T. J. (2017). "Amino acid synthesis deficiencies." J Inherit Metab Dis 40(4): 609-620. 5. Eriksson, I., L. Vainikka, H. L. Persson and K. Öllinger (2023). "Real-Time Monitoring of Lysosomal Membrane Permeabilization Using Acridine Orange." Methods Protoc 6(4). 6. Gahlot, P., B. Kravic, G. Rota, J. van den Boom, S. Levantovsky, N. Schulze, E. Maspero, S. Polo, C. Behrends and H. Meyer (2024). "Lysosomal damage sensing and lysophagy initiation by SPG20-ITCH." Mol Cell 84(8): 1556-1569.e1510. 7. Grant, G. A. (2018). "D-3-Phosphoglycerate Dehydrogenase." Front Mol Biosci 5: 110. 8. Klomp, L. W., T. J. de Koning, H. E. Malingré, E. A. van Beurden, M. Brink, F. L. Opdam, M. Duran, J. Jaeken, M. Pineda, L. Van Maldergem, B. T. Poll-The, I. E. van den Berg and R. Berger (2000). "Molecular characterization of 3-phosphoglycerate dehydrogenase deficiency--a neurometabolic disorder associated with reduced L-serine biosynthesis." Am J Hum Genet 67(6): 1389-1399. 9. Kuiper, R. P., M. Schepens, J. Thijssen, E. F. Schoenmakers and A. G. van Kessel (2004). "Regulation of the MiTF/TFE bHLH-LZ transcription factors through restricted spatial expression and alternative splicing of functional domains." Nucleic Acids Res 32(8): 2315-2322. 10. Locasale, J. W. (2013). "Serine, glycine and one-carbon units: cancer metabolism in full circle." Nat Rev Cancer 13(8): 572-583. 11. Locasale, J. W., A. R. Grassian, T. Melman, C. A. Lyssiotis, K. R. Mattaini, A. J. Bass, G. Heffron, C. M. Metallo, T. Muranen, H. Sharfi, A. T. Sasaki, D. Anastasiou, E. Mullarky, N. I. Vokes, M. Sasaki, R. Beroukhim, G. Stephanopoulos, A. H. Ligon, M. Meyerson, A. L. Richardson, L. Chin, G. Wagner, J. M. Asara, J. S. Brugge, L. C. Cantley and M. G. Vander Heiden (2011). "Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis." Nat Genet 43(9): 869-874. 12. Ma, C., K. Zheng, K. Jiang, Q. Zhao, N. Sha, W. Wang, M. Yan, T. Chen, Y. Zhao and Y. Jiang (2021). "The alternative activity of nuclear PHGDH contributes to tumour growth under nutrient stress." Nat Metab 3(10): 1357-1371. 13. Martina, J. A., Y. Chen, M. Gucek and R. Puertollano (2012). "MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB." Autophagy 8(6): 903-914. 14. Martina, J. A. and R. Puertollano (2013). "Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes." J Cell Biol 200(4): 475-491. 15. Mayers, J. R., I. Fyfe, A. L. Schuh, E. R. Chapman, J. M. Edwardson and A. Audhya (2011). "ESCRT-0 assembles as a heterotetrameric complex on membranes and binds multiple ubiquitinylated cargoes simultaneously." J Biol Chem 286(11): 9636-9645. 16. Miller, A. J., C. Levy, I. J. Davis, E. Razin and D. E. Fisher (2005). "Sumoylation of MITF and its related family members TFE3 and TFEB." J Biol Chem 280(1): 146-155. 17. Mäntyselkä, S., K. Kolari, P. Baumert, L. Ylä-Outinen, L. Kuikka, S. Lahtonen, P. Permi, H. Wackerhage, E. Kalenius, R. Kivelä and J. J. Hulmi (2024). "Serine synthesis pathway enzyme PHGDH is critical for muscle cell biomass, anabolic metabolism, and mTORC1 signaling." Am J Physiol Endocrinol Metab 326(1): E73-e91. 18. Mullarky, E., K. R. Mattaini, M. G. Vander Heiden, L. C. Cantley and J. W. Locasale (2011). "PHGDH amplification and altered glucose metabolism in human melanoma." Pigment Cell Melanoma Res 24(6): 1112-1115. 19. Nakamura, S., S. Shigeyama, S. Minami, T. Shima, S. Akayama, T. Matsuda, A. Esposito, G. Napolitano, A. Kuma, T. Namba-Hamano, J. Nakamura, K. Yamamoto, M. Sasai, A. Tokumura, M. Miyamoto, Y. Oe, T. Fujita, S. Terawaki, A. Takahashi, M. Hamasaki, M. Yamamoto, Y. Okada, M. Komatsu, T. Nagai, Y. Takabatake, H. Xu, Y. Isaka, A. Ballabio and T. Yoshimori (2020). "LC3 lipidation is essential for TFEB activation during the lysosomal damage response to kidney injury." Nat Cell Biol 22(10): 1252-1263. 20. Napolitano, G. and A. Ballabio (2016). "TFEB at a glance." J Cell Sci 129(13): 2475-2481. 21. Ng, C. S. C., A. Liu, B. Cui and S. M. Banik (2024). "Targeted protein relocalization via protein transport coupling." Nature 633(8031): 941-951. 22. Palmieri, M., S. Impey, H. Kang, A. di Ronza, C. Pelz, M. Sardiello and A. Ballabio (2011). "Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways." Hum Mol Genet 20(19): 3852-3866. 23. Pollari, S., S. M. Käkönen, H. Edgren, M. Wolf, P. Kohonen, H. Sara, T. Guise, M. Nees and O. Kallioniemi (2011). "Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis." Breast Cancer Res Treat 125(2): 421-430. 24. Possemato, R., K. M. Marks, Y. D. Shaul, M. E. Pacold, D. Kim, K. Birsoy, S. Sethumadhavan, H. K. Woo, H. G. Jang, A. K. Jha, W. W. Chen, F. G. Barrett, N. Stransky, Z. Y. Tsun, G. S. Cowley, J. Barretina, N. Y. Kalaany, P. P. Hsu, K. Ottina, A. M. Chan, B. Yuan, L. A. Garraway, D. E. Root, M. Mino-Kenudson, E. F. Brachtel, E. M. Driggers and D. M. Sabatini (2011). "Functional genomics reveal that the serine synthesis pathway is essential in breast cancer." Nature 476(7360): 346-350. 25. Radulovic, M., K. O. Schink, E. M. Wenzel, V. Nähse, A. Bongiovanni, F. Lafont and H. Stenmark (2018). "ESCRT-mediated lysosome repair precedes lysophagy and promotes cell survival." Embo j 37(21). 26. Ratto, E., S. R. Chowdhury, N. S. Siefert, M. Schneider, M. Wittmann, D. Helm and W. Palm (2022). "Direct control of lysosomal catabolic activity by mTORC1 through regulation of V-ATPase assembly." Nat Commun 13(1): 4848. 27. Repnik, U., M. Borg Distefano, M. T. Speth, M. Y. W. Ng, C. Progida, B. Hoflack, J. Gruenberg and G. Griffiths (2017). "L-leucyl-L-leucine methyl ester does not release cysteine cathepsins to the cytosol but inactivates them in transiently permeabilized lysosomes." J Cell Sci 130(18): 3124-3140. 28. Roczniak-Ferguson, A., C. S. Petit, F. Froehlich, S. Qian, J. Ky, B. Angarola, T. C. Walther and S. M. Ferguson (2012). "The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis." Sci Signal 5(228): ra42. 29. Sardiello, M., M. Palmieri, A. di Ronza, D. L. Medina, M. Valenza, V. A. Gennarino, C. Di Malta, F. Donaudy, V. Embrione, R. S. Polishchuk, S. Banfi, G. Parenti, E. Cattaneo and A. Ballabio (2009). "A gene network regulating lysosomal biogenesis and function." Science 325(5939): 473-477. 30. Settembre, C., C. Di Malta, V. A. Polito, M. Garcia Arencibia, F. Vetrini, S. Erdin, S. U. Erdin, T. Huynh, D. Medina, P. Colella, M. Sardiello, D. C. Rubinsztein and A. Ballabio (2011). "TFEB links autophagy to lysosomal biogenesis." Science 332(6036): 1429-1433. 31. Shen, L., P. Hu, Y. Zhang, Z. Ji, X. Shan, L. Ni, N. Ning, J. Wang, H. Tian, G. Shui, Y. Yuan, G. Li, H. Zheng, X. P. Yang, D. Huang, X. Feng, M. J. Li, Z. Liu, T. Wang and Q. Yu (2021). "Serine metabolism antagonizes antiviral innate immunity by preventing ATP6V0d2-mediated YAP lysosomal degradation." Cell Metab 33(5): 971-987.e976. 32. Shu, Y., Y. Hao, J. Feng, H. Liu, S. T. Li, J. Feng, Z. Jiang, L. Ye, Y. Zhou, Y. Sun, Z. Zhou, H. Wei, P. Gao, H. Zhang and L. Sun (2022). "Non-canonical phosphoglycerate dehydrogenase activity promotes liver cancer growth via mitochondrial translation and respiratory metabolism." Embo j 41(23): e111550. 33. Steingrímsson, E., N. G. Copeland and N. A. Jenkins (2004). "Melanocytes and the microphthalmia transcription factor network." Annu Rev Genet 38: 365-411. 34. van der Crabben, S. N., N. M. Verhoeven-Duif, E. H. Brilstra, L. Van Maldergem, T. Coskun, E. Rubio-Gozalbo, R. Berger and T. J. de Koning (2013). "An update on serine deficiency disorders." J Inherit Metab Dis 36(4): 613-619. 35. Vest, R. T., C. C. Chou, H. Zhang, M. S. Haney, L. Li, N. N. Laqtom, B. Chang, S. Shuken, A. Nguyen, L. Yerra, A. C. Yang, C. Green, M. Tanga, M. Abu-Remaileh, M. C. Bassik, J. Frydman, J. Luo and T. Wyss-Coray (2022). "Small molecule C381 targets the lysosome to reduce inflammation and ameliorate disease in models of neurodegeneration." Proc Natl Acad Sci U S A 119(11): e2121609119. 36. Wang, H., M. Fan, S. Liu, M. Qu, X. Hou, J. Hou, Y. Xu, X. Shang, C. Liu, M. He, J. Gao, J. Chen and X. Li (2024). "Redox homeostasis of one-carbon metabolism-dependent reprogramming is critical for RCC progression under exogenous serine/glycine-deprived conditions." BMC Cancer 24(1): 1515. 37. Wilden, A. R., J. A. Molina, M. Feuerborn, D. Boyle and S. Y. Lee (2018). "Glutamine-dependent lysosome homeostatic changes induced by starvation and lysosome inhibition." Biochim Biophys Acta Mol Cell Res 1865(9): 1356-1367. 38. Xu, H., X. Qing, Q. Wang, C. Li and L. Lai (2021). "Dimerization of PHGDH via the catalytic unit is essential for its enzymatic function." J Biol Chem 296: 100572. 39. Yabuki, A., M. Miyara, K. Umeda-Miyara, S. Takao, S. Sanoh and Y. Kotake (2021). "MiT/TFE family members suppress L-leucyl-L-leucine methyl ester-induced cell death." J Toxicol Sci 46(3): 143-156. 40. Yang, M. and K. H. Vousden (2016). "Serine and one-carbon metabolism in cancer." Nat Rev Cancer 16(10): 650-662. 41. Zhang, W., X. Yang, L. Chen, Y. Y. Liu, V. Venkatarangan, L. Reist, P. Hanson, H. Xu, Y. Wang and M. Li (2021). "A conserved ubiquitin- and ESCRT-dependent pathway internalizes human lysosomal membrane proteins for degradation." PLoS Biol 19(7): e3001361. 42. Zhu, H., H. Yu, H. Zhou, W. Zhu and X. Wang (2023). "Elevated Nuclear PHGDH Synergistically Functions with cMyc to Reshape the Immune Microenvironment of Liver Cancer." Adv Sci (Weinh) 10(17): e2205818. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100207 | - |
| dc.description.abstract | 磷酸甘油酸脫氫酶(PHGDH)在傳統上被視為一種參與絲胺酸(serine)新生合成的代謝酵素,且已有研究指出其透過典型與非典型功能參與癌症調控。在本研究中,我們發現PHGDH具有一項先前未被揭示的非典型功能,即在不依賴其代謝活性的情況下,參與溶酶體(lysosome)生合成的調控。當PHGDH被剔除時,轉錄因子EB(TFEB)與轉錄因子E3(TFE3)發生核移位(nuclear translocation),進而促使溶酶體與自噬相關基因表現上升、蛋白質表現量增加,並導致溶酶體體積膨大。這些變化無法透過補充絲胺酸逆轉,卻可由失去酵素活性的PHGDH突變體所挽救,進一步支持此作用為一種與代謝功能無關的非典型機制。此外,PHGDH的剔除亦會降低mTOR活性,顯示在正常情況下,PHGDH可能透過維持mTOR訊號傳導,使TFEB與TFE3滯留於細胞質中。為進一步釐清其功能機制,我們進行蛋白質結構域的鑑定,並透過結構域剔除實驗發現,SUB2與REG結構域對於PHGDH調控溶酶體生合成至關重要。缺失任一結構域皆會損害PHGDH的溶酶體定位能力,並導致TFEB與TFE3進入細胞核,以及溶酶體膨大等表徵。本研究揭示了PHGDH在溶酶體生合成中的一項新穎且非典型的功能,該功能獨立於其代謝活性,拓展了我們對PHGDH生理角色的理解。 | zh_TW |
| dc.description.abstract | Phosphoglycerate dehydrogenase (PHGDH) is traditionally known for its metabolic role in de novo serine biosynthesis and has been implicated in cancer regulation through both canonical and non-canonical functions. In this study, we identify a novel role of PHGDH in regulating lysosome biogenesis independently of its metabolic activity. PHGDH depletion induces nuclear translocation of the transcription factors TFEB and TFE3, resulting in elevated expression of lysosome- and autophagy-related genes, increased protein levels, and lysosomal enlargement. These changes are not reversed by serine supplementation and are rescued by catalytically inactive PHGDH mutants, supporting a non-metabolic mechanism. Additionally, PHGDH depletion reduces mTOR activity, suggesting that PHGDH may sustain mTOR signaling to retain TFEB and TEF3 in the cytoplasm under normal conditions. Further analysis using domain-deletion mutants reveals that the SUB2 and REG domains are critical for PHGDH’s function in lysosome biogenesis. Specifically, loss of either domain impairs PHDGH’s lysosomal localization and its ability to prevent TFEB and TFE3 nuclear translocation and lysosomal enlargement. These findings uncover a previously unrecognized role for PHGDH in the regulation of lysosome biogenesis independent of its canonical metabolic function. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-24T16:51:15Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-24T16:51:15Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 摘要 III Abstract IV Table of contents V Chapter 1 Introduction 1 1.1 Canonical and non-canonical functions of phosphoglycerate dehydrogenase (PHGDH) 1 1.2 Amino acid deprivation induces lysosomal acidification and enlargement 4 1.3 TFEB and TFE3-mediated transcriptional regulation of lysosome biogenesis 5 1.4 Study background 6 Chapter 2 Materials and Methods 9 2.1 Cell line and cell culture 9 2.2 siRNA transfection (knockdown) 9 2.3 Plasmid transfection 9 2.4 Plasmid construct 10 2.5 Immunofluorescence 10 2.6 Western Blotting 11 2.6.1 Sample preparation 11 2.6.2 SDS-PAGE and immunoblotting 12 2.7 Nuclear fractionation 12 2.8 qPCR 13 2.9 Membrane fractionation 13 2.10 Confocal microscopy 14 2.11 Analysis 14 2.12 Chemicals 15 2.12.1 Reagents 15 2.12.2 siRNA sequence 16 2.12.3 Antibodies 16 2.12.4 Primers 18 Chapter 3 Results 22 3.1 TFEB and TFE3 translocate to the nucleus and regulate gene expression upon PHGDH depletion 22 3.2 PHGDH depletion enlarges lysosomes and enhances lysosomal function 27 3.3 The PHGDH-caused lysosome enlargement is independent of PHGDH's canonical function 28 3.4 The PHGDH SUB2 domain is dominantly involved in the lysosome biogenesis pathway 30 Chapter 4 Discussion 32 4.1 The effects of PHGDH depletion 32 4.2 PHGDH deficiency leads to a decrease in mTOR activity 33 4.3 The lysosomal surface localization of PHGDH depends on its REG domain 34 4.4 The possible mechanism of PHGDH in the regulation of lysosome biogenesis 35 4.5 PHGDH depletion impairs cell viability in a way independent of serine-biosynthesis function 36 Chapter 5 Figures 38 Figure 1. Knocking down PHGDH leads to lysosome enlargement 38 Figure 2. PHGDH deprivation causes TFEB nuclear translocation 39 Figure 3. TFE3-GFP is enriched in the nuclear fraction when PHGDH is knocked down. 41 Figure 4. The TFEB-related genes are upregulated when PHGDH is knocked out 42 Figure 5. The protein levels of TFEB-target genes are increased 43 Figure 6. The upregulations of lysosome-related genes expression and LysoTracker content are mediated by TFEB and TFE3 44 Figure 7. The LAMP1-and LAMP2-positive compartments are enlarged when PHGDH is knocked out 46 Figure 8. The enlarged lysosomes also have a function when PHGDH is knocked out 47 Figure 9. Knocking down PHGDH decreases HeLa cell viability 48 Figure 10. Extracellular serine- and glycine-deprivation does not affect lysosome sizes in control cells 49 Figure 11. The increase in lysosome sizes is independent of serine deprivation when PHGDH is knocked out 50 Figure 12. The increase in LysoTracker content in PHGDH knockout cells is independent of serine deprivation 51 Figure 13. The decrease in cell viability caused by PHGDH knockdown is independent of serine deprivation 52 Figure 14. The TFEB nuclear translocation is independent of PHGDH enzyme activity. 53 Figure 15. The SUB2 and REG domains of PHGDH play a critical role in retaining TFEB in the cytoplasm. 54 Figure 16. The REG domain of PHGDH plays a more important role in regulating lysosome size 56 Figure 17. The SUB2 and REG domains of PHGDH are required for PHGDH lysosomal localization. 58 Figure 18. PHGDH is involved in the regulation of lysosome biogenesis 59 Figure 19. Loss of the SUB2 domain affects the conformation of the REG domain 60 Reference 62 | - |
| dc.language.iso | en | - |
| dc.subject | 磷酸甘油酸脫氫酶 | zh_TW |
| dc.subject | 溶酶體生合成 | zh_TW |
| dc.subject | 轉錄因子E3 | zh_TW |
| dc.subject | 轉錄因子EB | zh_TW |
| dc.subject | 非典型功能 | zh_TW |
| dc.subject | Non-canonical function | en |
| dc.subject | TFEB | en |
| dc.subject | TFE3 | en |
| dc.subject | PHGDH | en |
| dc.subject | Lysosome biogenesis | en |
| dc.title | 非典型磷酸甘油酸脫氫酶調控溶酶體的生合成 | zh_TW |
| dc.title | Non-canonical Phosphoglycerate Dehydrogenase Regulates Lysosome Biogenesis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 劉雅雯;詹智強;李家瑋 | zh_TW |
| dc.contributor.oralexamcommittee | Ya-Wen Liu;Chih-Chiang Chan;Chia-Wei Lee | en |
| dc.subject.keyword | 溶酶體生合成,磷酸甘油酸脫氫酶,非典型功能,轉錄因子EB,轉錄因子E3, | zh_TW |
| dc.subject.keyword | Lysosome biogenesis,PHGDH,Non-canonical function,TFEB,TFE3, | en |
| dc.relation.page | 69 | - |
| dc.identifier.doi | 10.6342/NTU202503977 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-11 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生化科學研究所 | - |
| dc.date.embargo-lift | 2030-08-05 | - |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 3.17 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
