請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100205完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林沛群 | zh_TW |
| dc.contributor.advisor | Pei-Chun Lin | en |
| dc.contributor.author | 陳威廷 | zh_TW |
| dc.contributor.author | Wei-Ting Chen | en |
| dc.date.accessioned | 2025-09-24T16:50:50Z | - |
| dc.date.available | 2025-09-25 | - |
| dc.date.copyright | 2025-09-24 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-01 | - |
| dc.identifier.citation | [1] 倉庫の自動化なら物流システムエンジニアリングの株式会社 APT. 業種ごとにパレット搬送型 agv の導入事例を紹介, 2025. [Online; accessed 3-March-2025].
[2] OMRON Corporation. The new ld-250 autonomous mobile robot, 2025. [Online;accessed 3-March-2025]. [3] Hoa G. Nguyen, John Morrell, Katherine D. Mullens, Aaron B. Burmeister, Susan Miles, Nathan Farrington, Kari M. Thomas, and Douglas W. Gage. Segway robotic mobility platform. In Douglas W. Gage, editor, Mobile Robots XVII, volume 5609, pages 207 – 220. International Society for Optics and Photonics, SPIE, 2004. [4] NASA/JPL. Sojourner rover near ”the dice”. https://photojournal.jpl.nasa.gov/catalog/PIA01122, Dec. 5 1997. Online; accessed 9-Mar-2025. [5] NASA. Mars exploration rover 2. http://mediaarchive.ksc.nasa.gov/detail.cfm?mediaid=18866, Mar.22 2007. Online; accessed 9-Mar-2025. [6] NASA. A 3d model of the mars curiosity rover. https://science.nasa.gov/mission/msl-curiosity/. Online; accessed 9-Mar-2025. [7] David Monniaux. Packbot being demonstrated by the french military, 24-September2005. [Online; accessed: 7-March-2025]. [8] QinetiQ Group. Multi-mission explosive ordnance disposal robot. https://www.qinetiq.com/ en/ what-we-do/ services-and-products/ talon-medium-sizedtactical-robot, 2025. [Online; accessed 3-March-2025]. [9] J. Kim, J. Kim, and D. Lee. Mobile robot with passively articulated driving tracks for high terrainability and maneuverability on unstructured rough terrain: Design, analysis, and performance evaluation. Journal of Mechanical Science and Technology, 32:5389–5400, 2018. [10] S. Habibian, M. Dadvar, B. Peykari, et al. Design and implementation of a maxisized mobile robot (karo) for rescue missions. Robomech Journal, 8(1):1, 2021. [11] Wenzhi Guo, Jiandu Qiu, Xinrui Xu, and Juan Wu. Talbot: A track-leg transformable robot. Sensors, 22(4), 2022. [12] Yong Yang, Huihuan Qian, Xinyu Wu, Guiyun Xu, and Yangsheng Xu. A novel design of tri-star wheeled mobile robot for high obstacle climbing. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 920–925, 2012. [13] Inc Starship Technologies. Six wheels and bogie system enable them todismount and climb curbs, 2025. [Online; accessed 10-March-2025]. [14] FedEx. Roxo, 2025. [Online; accessed 10-March-2025]. [15] Shuro Nakajima. Rt-mover: a rough terrain mobile robot with a simple leg–wheel hybrid mechanism. The International Journal of Robotics Research, 30(13):1609–1626, 2011. [16] Boston Dynamics. Handle combines legs and wheels. https:// robotsguide.com/robots/handle/. [Online; accessed 10-March-2024]. [17] Victor Klemm, Alessandro Morra, Ciro Salzmann, Florian Tschopp, Karen Bodie, Lionel Gulich, Nicola Küng, Dominik Mannhart, Corentin Pfister, Marcus Vierneisel, Florian Weber, Robin Deuber, and Roland Siegwart. Ascento: A two-wheeled jumping robot. In 2019 International Conference on Robotics and Automation (ICRA), pages 7515–7521, 2019. [18] W. Du and F. Benamar. A compact form dynamics controller for a high-dof tetrapodon-wheel robot with one manipulator via null space based convex optimization and compatible impedance controllers. Multibody System Dynamics, 49:447–463, Aug 2020. [19] Marko Bjelonic, Ruben Grandia, Oliver Harley, Cla Galliard, Samuel Zimmermann, and Marco Hutter. Whole-body mpc and online gait sequence generation for wheeled-legged robots. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 8388–8395, 2021. [20] Unitree Robotics. Unitree b2-w. https:// www.unitree.com/ cn/ b2-w. [Online; accessed 10-March-2024]. [21] 沈宣諭. 輪腳雙模式運動平台之研發. Master’s thesis, 國立臺灣大學, Jan 2009. [22] 陳慎強. 輪腳複合式移動平台運動模式開發. Master’s thesis, 國立臺灣大學, Jan 2011. [23] 陳宣妤. 具快速變換與跳躍能力之輪腳模組開發. Master’s thesis, 國立臺灣大學, July 2020. [24] 陳為熙. 輪腳快速變換平台及其仿生控制架構之開發. Master’s thesis, 國立臺灣大學, Jan 2013. [25] Omnitrack LTD. Omniwheels and accessories, 2025. [Online; accessed 5-March2025]. [26] Gregg Podnar. Uranus, 1985. [Online; accessed 5-March-2025]. [27] Sergiy Novoselov, Oksana Sychova, and Serhii Tesliuk. Development of the method local navigation of mobile robot a based on the tags with qr code and wireless sensor network. In 2019 IEEE XVth International Conference on the Perspective Technologies and Methods in MEMS Design (MEMSTECH), pages 46–51, 2019. [28] R. Domínguez, E. Onieva, J. Alonso, J. Villagra, and C. González. Lidar based perception solution for autonomous vehicles. In 2011 11th International Conference on Intelligent Systems Design and Applications, pages 790–795, 2011. [29] Guangjun Ou, Dong Li, and Hanmin Li. Leg-kilo: Robust kinematic-inertiallidar odometry for dynamic legged robots. IEEE Robotics and Automation Letters, 9(10):8194–8201, 2024. [30] Jianguo Tao, Zongquan Deng, Haitao Fang, Haibo Gao, and Xinyi Yu. Development of a wheeled robotic rover in rough terrains. In 2006 6th World Congress on Intelligent Control and Automation, volume 2, pages 9272–9276, 2006. [31] Surachat Chantarachit. Development and control segway by lqr adjustable gain. In 2019 International Conference on Information and Communications Technology (ICOIACT), pages 649–653, 2019. [32] Donald B. Bickler. Articulated suspension system. Patent US4840394, NASA Pasadena Office, June 1989. [33] R.A. Lindemann and C.J. Voorhees. Mars exploration rover mobility assembly design, test and performance. In 2005 IEEE International Conference on Systems, Man and Cybernetics, volume 1, pages 450–455 Vol. 1, 2005. [34] Desmond King-Hele. Erasmus darwin’s improved design for steering carriages–and cars. Notes and Records of the Royal Society of London, 56:41–62, 2002. [35] Dongmok Kim, Heeseung Hong, Hwa Soo Kim, and Jongwon Kim. Optimal design and kinetic analysis of a stair-climbing mobile robot with rocker-bogie mechanism. Mechanism and Machine Theory, 50:90–108, 2012. [36] Baichao Chen, Rongben Wang, Yang Jia, Lie Guo, and Lu Yang. Design of a high performance suspension for lunar rover based on evolution. Acta Astronautica, 64(9):925–934, 2009. [37] Brian M Yamauchi. Packbot: a versatile platform for military robotics. In Unmanned ground vehicle technology VI, volume 5422, pages 228–237. SPIE, 2004. [38] Yugang Liu and Guangjun Liu. Track–stair interaction analysis and online tipover prediction for a self-reconfigurable tracked mobile robot climbing stairs. IEEE/ASME Transactions on Mechatronics, 14(5):528–538, 2009. [39] Dean Kamen, Robert Ambrogi, Richard Heinzmann, Christopher Langenfeld, Marc Nisbet, Stanley Smith, and Thomas Brindley. Mechanical improvements to a personal vehicle. Technical Report US20040183272A1, United States Patent and Trademark Office, September 2004. Patent, Expired - Fee Related. [40] Michael Posa, Scott Kuindersma, and Russ Tedrake. Optimization and stabilization of trajectories for constrained dynamical systems. In 2016 IEEE International Conference on Robotics and Automation (ICRA), pages 1366–1373, 2016. [41] Boston Dynamics. Spot: The Agile Mobile Robot. https://www.bostondynamics.com/spot, 2024. [Online; accessed 5-September-2024]. [42] Massachusetts Institute of Technology (MIT). Cheetah 3: The Agile, Blind, and Robust Robot. http:// news.mit.edu/ 2018/ cheetah-3-robot-darts-upstairs-backflips0711, 2018.[Online; accessed 5-September-2024]. [43] Ruben Grandia, Farbod Farshidian, René Ranftl, and Marco Hutter. Feedback mpc for torque-controlled legged robots. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 4730–4737, 2019. [44] 王華豫. 輪腳複合機器人之穩定輪腳轉換策略. Master’s thesis, 國立臺灣大學, Jan 2023. [45] Bengt Erland Ilon. Rad fuer ein laufstabiles, selbstfahrendes fahrzeug. Technical Report DE 2354404, German Patent Office, May 1974. Patent. [46] Bengt Erland Ilon. Wheels for a course stable selfpropelling vehicle movable in any desired direction on the ground or some other base. Technical Report US 3876255, United States Patent and Trademark Office, April 1975. Patent. [47] Huayang Li, Chenkun Qi, Liheng Mao, Yue Zhao, Xianbao Chen, and Feng Gao. Staircase-climbing capability-based dimension design of a hexapod robot. Mechanism and Machine Theory, 164:104400, 2021. [48] Ruixiang Zhang, Prahlad Vadakkepat, and CM Chew. Motion planning of biped robot climbing stairs. In Proceedings of the FIRA Congress, 2003. [49] 沈意軒. 輪腳複合機器人上可變多處地點之全機力控制架構開發. Master’s thesis, 國立臺灣大學, July 2025. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100205 | - |
| dc.description.abstract | 本研究提出一款新型輪腳複合機器人Kilin,針對現存輪式機器人在面對非連續性樓梯時的穩定問題,自構型與機構設計的角度為出發點,以實際樓梯尺寸來設計機器人尺寸,於機構設計中以蝸輪蝸桿齒輪箱與花鍵槽軸的機械特性,展現具備可自鎖之快速運動模式切換足模式與輪模式的模組化解決方案。本設計以實用性與控制簡化為導向,整合簡化版的四足輪腳架構與四輪獨立驅動與轉向能力,使機器人在室內外平地保持輪式機器人的優勢之外,在面對樓梯時仍能展現越階能力,穩定運行。為驗證本設計之可行性,本研究亦提出基於Kilin構型的爬樓梯策略,將複雜的爬樓梯任務階段式拆解為數個不同目的之子狀態流程,搭配馬達狀態訊息回授進行自動狀態切換,不需要提前知道樓梯階數,即可完成爬樓梯任務。透過實體實驗與分析,包括不同階高與階深組合下之多次重複測試,檢驗在簡化構型設計、機構設計下之爬樓梯策略的穩健性,並以俯仰角之減少程度與穩定度來驗證設計合理性。最終結果顯示,所提出之設計與策略具備越過多種單階台階與多階樓梯之實際應用潛力,展現良好的樓梯適應性。 | zh_TW |
| dc.description.abstract | This study proposes a novel wheel-leg hybrid robot named Kilin, addressing the stability challenges faced by conventional wheeled robots when encountering discontinuous stair environments. Starting from a design perspective focused on reconfigurability and mechanical structure, the robot's dimensions are determined based on actual stair measurements. The mechanical design incorporates a self-locking worm gear reducer and a splined shaft mechanism to enable rapid and modular transitions between legged and wheeled locomotion modes. Prioritizing practicality and control simplification, the robot integrates a streamlined quadruped wheel-leg structure with independently driven and steered wheels. This design retains the advantages of wheeled mobility on flat terrains while demonstrating stair-climbing capability and operational stability in indoor and outdoor environments.
To validate the feasibility of the design, this study also proposes a stair-climbing strategy tailored to the Kilin architecture. The complex stair-climbing task is decomposed into several sub-states, each with specific goals, forming a staged finite-state process. Automatic transitions between states are achieved through motor feedback without requiring prior knowledge of the number of stair steps. A series of physical experiments and analyses—across various step height and depth configurations—are conducted to evaluate the robustness of the climbing strategy under the simplified mechanical design. The degree of pitch angle reduction and system stability are used as key metrics to verify the effectiveness of the proposed approach. Experimental results demonstrate that the proposed robot and control strategy possess practical potential for negotiating both single and multiple stair steps, showcasing strong adaptability to stair-climbing tasks. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-24T16:50:50Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-24T16:50:50Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii ABSTRACT iv 目次 vi 圖次 x 表次 xiv 符號列表 xvi 第一章 緒論 1 1.1 前言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究動機 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 文獻回顧 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.1 可於連續型地形快速移動之純輪式機器人運動方式回顧 . . . . 4 1.3.1.1 雙主驅動輪差速驅動型 . . . . . . . . . . . . . . . . 4 1.3.1.2 多輪獨立驅動與獨立轉向型 . . . . . . . . . . . . . . 6 1.3.2 可跨越崎嶇地或樓梯等非連續型地形之機器人構型回顧 . . . . 8 1.3.2.1 搖臂-搖架懸吊系統機器人 . . . . . . . . . . . . . . . 8 1.3.2.2 履帶式機器人 . . . . . . . . . . . . . . . . . . . . . . 10 1.3.2.3 星輪式機器人 . . . . . . . . . . . . . . . . . . . . . . 12 1.3.2.4 扭腰式機器人 . . . . . . . . . . . . . . . . . . . . . . 14 1.3.2.5 雙足式輪腳複合機器人 . . . . . . . . . . . . . . . . 15 1.3.2.6 四足式輪腳複合機器人 . . . . . . . . . . . . . . . . 16 1.4 文章貢獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.5 文章架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 第二章 新型輪腳複合機器人構型設計 20 2.1 設計理念 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2 構型發想 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.1 曲柄滑塊型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.2 平行桿型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.3 單臂型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2.4 最終構型選擇 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3 設計尺寸分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3.1 定義樓梯幾何 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3.2 髖關節軸距 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.3 車輪半徑 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.3.4 腿長 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3.5 輔助設計-支撐件 . . . . . . . . . . . . . . . . . . . . . . . . . . 40 第三章 新型輪腳複合機器人系統 45 3.1 單足機構設計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.1.1 馬達配置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.1.2 髖關節模組-蝸輪蝸桿齒輪箱設計 . . . . . . . . . . . . . . . . . 47 3.1.3 輪腳模組-轉向、驅動與避震之整合設計 . . . . . . . . . . . . . 49 3.2 機電系統 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.3 定義座標系與座標轉換 . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.4 運動學 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.4.1 足模式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.4.2 輪模式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 第四章 爬樓梯策略 64 4.1 前言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.2 階段一:進入樓梯(Enter-stair) . . . . . . . . . . . . . . . . . . . . 66 4.2.1 狀態 E1:防倒姿勢 . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.2.2 狀態 E2:旋轉前腿 . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.2.3 狀態 E3:機身爬升 . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.2.4 狀態 E4:偵測階面 . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.3 階段二:樓梯中(Mid-stair) . . . . . . . . . . . . . . . . . . . . . . 73 4.3.1 狀態 M1:防倒姿勢 . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.3.2 狀態 M2:旋轉雙腿 . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.3.3 狀態 M3:機身爬升 . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.3.4 狀態 M4:偵測階面 . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.4 階段三:離開樓梯(Leave-stair) . . . . . . . . . . . . . . . . . . . 79 4.4.1 狀態 L1:防倒姿勢 . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.4.2 狀態 L2:旋轉後腿 . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.4.3 狀態 L3:機身爬升 . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.4.4 狀態 L4:偵測階面 . . . . . . . . . . . . . . . . . . . . . . . . . 82 第五章 實驗結果與分析 84 5.1 前言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.2 室內實驗 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.2.1 室內樓梯(一):階高 10 公分/階深 35 公分(H10W35) . . . . 87 5.2.2 室內樓梯(二):階高 13.5 公分/階深 33.5 公分(H13.5W33.5) 88 5.2.3 室內樓梯(三):階高 17 公分/階深 30 公分(H17W30) . . . . 90 5.2.4 室內樓梯(四):階高 10 公分/階深 40 公分(H10W40) . . . . 91 5.2.5 室內樓梯(五):階高 13.5 公分/階深 37 公分(H13.5W37) . . 93 5.2.6 室內樓梯(六):階高 17 公分/階深 33 公分(H17W33) . . . . 94 5.2.7 室內實驗小結 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.3 室外實驗 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.3.1 單階台階:階高 17 公分(H17) . . . . . . . . . . . . . . . . . . 102 5.3.2 多階樓梯(一):階高 16 公分/階深 34 公分(H16W34) . . . . 104 5.3.3 多階樓梯(二):階高 14 公分/階深 39 公分(H14W39) . . . . 105 5.4 實驗總結 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 第六章 結論與未來展望 110 6.1 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 6.2 未來展望 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 參考文獻 112 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 機構設計 | zh_TW |
| dc.subject | 爬樓梯機器人 | zh_TW |
| dc.subject | 輪腳複合機器人 | zh_TW |
| dc.subject | 爬樓梯策略 | zh_TW |
| dc.subject | 四輪獨立驅動與轉向 | zh_TW |
| dc.subject | Stair-Climbing Strategy | en |
| dc.subject | Mechanism Design | en |
| dc.subject | Stair-Climbing Robot | en |
| dc.subject | Leg-Wheel Hybrid Robot | en |
| dc.subject | Four-Wheel Independent Drive and Steering | en |
| dc.title | 新型輪腳複合機器人研發與其爬樓梯策略 | zh_TW |
| dc.title | Development of a Novel Leg-Wheel Hybrid Robot and Its Stair-Climbing Strategy | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 顏炳郎;連豊力 | zh_TW |
| dc.contributor.oralexamcommittee | Ping-Lang Yen;Feng-Li Lian | en |
| dc.subject.keyword | 爬樓梯機器人,輪腳複合機器人,爬樓梯策略,機構設計,四輪獨立驅動與轉向, | zh_TW |
| dc.subject.keyword | Stair-Climbing Robot,Leg-Wheel Hybrid Robot,Stair-Climbing Strategy,Mechanism Design,Four-Wheel Independent Drive and Steering, | en |
| dc.relation.page | 117 | - |
| dc.identifier.doi | 10.6342/NTU202502644 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-06 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2030-08-01 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2030-08-01 | 8.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
