Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100204
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林沛群zh_TW
dc.contributor.advisorPei-Chun Linen
dc.contributor.author賴彥澧zh_TW
dc.contributor.authorYen-Li Laien
dc.date.accessioned2025-09-24T16:50:38Z-
dc.date.available2025-09-25-
dc.date.copyright2025-09-24-
dc.date.issued2025-
dc.date.submitted2025-08-01-
dc.identifier.citation[1] Satoshi Kitano, Shigeo Hirose, Atsushi Horigome, and Gen Endo. Titan-xiii: sprawling-type quadruped robot with ability of fast and energy-efficient walking. Robomech Journal, 3:1–16, 2016.
[2] M. Buehler, R. Battaglia, A. Cocosco, G. Hawker, J. Sarkis, and K. Yamazaki. Scout: a simple quadruped that walks, climbs, and runs. In Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146), volume 2, pages 1707–1712 vol.2, 1998.
[3] Claudio Semini, Nikos G Tsagarakis, Emanuele Guglielmino, Michele Focchi, Ferdinando Cannella, and Darwin G Caldwell. Design of hyq–a hydraulically and electrically actuated quadruped robot. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 225(6):831–849, 2011.
[4] GerardoBledt, MatthewJ.Powell, BenjaminKatz, Jared DiCarlo, Patrick M. Wensing, and Sangbae Kim. Mit cheetah 3: Design and control of a robust, dynamic quadruped robot. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 2245–2252, 2018.
[5] Marco Hutter, Christian Gehring, Dominic Jud, Andreas Lauber, C. Dario Bellicoso, Vassilios Tsounis, Jemin Hwangbo, Karen Bodie, Peter Fankhauser, Michael Bloesch, Remo Diethelm, Samuel Bachmann, Amir Melzer, and Mark Hoepflinger. Anymal- a highly mobile and dynamic quadrupedal robot. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 38–44, 2016.
[6] Gen Endo and Shigeo Hirose. Study on roller-walker- energy efficiency of rollerwalk-. In 2011 IEEE International Conference on Robotics and Automation, pages 5050–5055, 2011.
[7] Takahiro Tanaka and Shigeo Hirose. Development of leg-wheel hybrid quadruped “airhopper"design of powerful light-weight leg with wheel. In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 3890–3895, 2008.
[8] Marko Bjelonic, C. Dario Bellicoso, Yvain de Viragh, Dhionis Sako, F. Dante Tresoldi, Fabian Jenelten, and Marco Hutter. Keep rollin'—whole-body motion control and planning for wheeled quadrupedal robots. IEEE Robotics and Automation Letters, 4(2):2116–2123, 2019.
[9] Dongping Lu, Erbao Dong, Chunshan Liu, Min Xu, and Jie Yang. Design and development of a leg-wheel hybrid robot“hytro-i". In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 6031–6036, 2013.
[10] Dandan Zhang and Dangxiao Wang. Wals-robot: A compact and transformable wheel-arm-leg-sucker hybrid robot. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 2584–2589, 2016.
[11] ZhongWei,GuangmingSong,YingZhang,HuiyuSun,andGuifangQiao. Transleg: Awire-driven leg-wheel robot with a compliant spine. In 2016 IEEE International Conference on Information and Automation (ICIA), pages 7–12, 2016.
[12] Ruixiang Cao, Jun Gu, Chen Yu, and Andre Rosendo. Omniwheg: An omnidirectional wheel-leg transformable robot. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 5626–5631, 2022.
[13] Kenjiro Tadakuma, Riichiro Tadakuma, Akira Maruyama, Eric Rohmer, Keiji Nagatani, Kazuya Yoshida, Aigo Ming, Makoto Shimojo, Mitsuru Higashimori, and Makoto Kaneko. Mechanical design of the wheel-leg hybrid mobile robot to realize a large wheel diameter. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 3358–3365, 2010.
[14] Xiang Zhang, Faliang Zhou, Xiaojun Xu, Teng'an Zou, and Hu Chen. Configuration design and analysis of a multimodal wheel with deformable rim. In 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pages 772–777, 2019.
[15] Shen-Chiang Chen, Ke-Jung Huang, Wei-Hsi Chen, Shuan-Yu Shen, Cheng-Hsin Li, and Pei-Chun Lin. Quattroped: A leg–wheel transformable robot. IEEE/ASME Transactions on Mechatronics, 19(2):730–742, 2014.
[16] Wei-Hsi Chen, Hung-Sheng Lin, Yun-Meng Lin, and Pei-Chun Lin. Turboquad: A novel leg–wheel transformable robot with smooth and fast behavioral transitions. IEEE Transactions on Robotics, 33(5):1025–1040, 2017.
[17] 陳宣妤. 具快速變換與跳躍能力之輪腳模組開發. 碩士論文,國立臺灣大學,2020.
[18] Mohsen M Dalvand and Majid M Moghadam. Stair climber smart mobile robot (msrox). Autonomous robots, 20:3–14, 2006.
[19] ByungHoon Seo, HyunGyu Kim, MinHyeok Kim, Kyungmin Jeong, and TaeWon Seo. Flipbot: a new field robotic platform for fast stair climbing. International Journal of Precision Engineering and Manufacturing, 14:1909–1914, 2013.
[20] Geono Kim, Hoon Chung, and Baek-Kyu Cho. Mobinn: Stair-climbing mobile robot with novel flexible wheels. IEEE Transactions on Industrial Electronics, 71(8):9182–9191, 2024.
[21] Sungjun Park, Jeongpil Shin, Younghwan Kim, and Taewon Seo. Waves: Softmaterial based adaptable walking-type stair-climbing robot for various step sizes. IEEE Access, 12:13100–13111, 2024.
[22] Priyaranjan Biswal and Prases K. Mohanty. Development of quadruped walking robots: A review. Ain Shams Engineering Journal, 12(2):2017–2031, 2021.
[23] ClaudioSemini, NikosG.Tsagarakis, BramVanderborght, YoushengYang,andDarwin G. Caldwell. Hyq- hydraulically actuated quadruped robot: Hopping leg prototype. In 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, pages 593–599, 2008.
[24] Claudio Semini, Victor Barasuol, Jake Goldsmith, Marco Frigerio, Michele Focchi, Yifu Gao, and Darwin G. Caldwell. Design of the hydraulically actuated, torquecontrolled quadruped robot hyq2max. IEEE/ASME Transactions on Mechatronics, 22(2):635–646, 2017.
[25] Claudio Semini, Victor Barasuol, Michele Focchi, Chundri Boelens, Mohamed Emara, Salvatore Casella, Octavio Villarreal, Romeo Orsolino, Geoff Fink, Shamel Fahmi, et al. Brief introduction to the quadruped robot hyqreal. In International Conference on Robotics and Intelligent Machines (I-RIM). IRIM, 2019.
[26] Sangok Seok, Albert Wang, Meng YeeChuah, David Otten, Jeffrey Lang, and Sangbae Kim. Design principles for highly efficient quadrupeds and implementation on the mit cheetah robot. In 2013 IEEE International Conference on Robotics and Automation, pages 3307–3312. IEEE, 2013.
[27] Hae-WonPark,PatrickWensing,andSangbaeKim. Onlineplanningforautonomous running jumps over obstacles in high-speed quadrupeds. In Proceedings of Robotics: Science and Systems, Rome, Italy, July 2015.
[28] QuanNguyen,MatthewJ.Powell,BenjaminKatz,JaredDiCarlo,andSangbaeKim. Optimized jumping on the mit cheetah 3 robot. In 2019 International Conference on Robotics and Automation (ICRA), pages 7448–7454, 2019.
[29] Benjamin Katz, Jared Di Carlo, and Sangbae Kim. Mini cheetah: A platform for pushing the limits of dynamic quadruped control. In 2019 International Conference on Robotics and Automation (ICRA), pages 6295–6301, 2019.
[30] Peter Fankhauser, Marko Bjelonic, C. Dario Bellicoso, Takahiro Miki, and Marco Hutter. Robust rough-terrain locomotion with a quadrupedal robot. In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages 5761–5768, 2018.
[31] C. Dario Bellicoso, Koen Krämer, Markus Stäuble, Dhionis Sako, Fabian Jenelten, Marko Bjelonic, and Marco Hutter. Alma- articulated locomotion and manipulation for a torque-controllable robot. In 2019 International Conference on Robotics and Automation (ICRA), pages 8477–8483, 2019.
[32] Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter. Learning quadrupedal locomotion over challenging terrain. Science Robotics, 5(47):eabc5986, 2020.
[33] David Hoeller, Nikita Rudin, Dhionis Sako, and Marco Hutter. Anymal parkour: Learningagile navigation for quadrupedalrobots. ScienceRobotics, 9(88):eadi7566, 2024.
[34] Boston Dynamics. Spot®- agile mobile robot. https://bostondynamics.com/ products/spot. (accessed 2025).
[35] Unitree Robotics. https://www.unitree.com. (accessed 2025).
[36] Marko Bjelonic, Prajish K. Sankar, C. Dario Bellicoso, Heike Vallery, and Marco Hutter. Rolling in the deep–hybrid locomotion for wheeled-legged robots using online trajectory optimization. IEEE Robotics and Automation Letters, 5(2):36263633, 2020.
[37] Marko Bjelonic, Ruben Grandia, Oliver Harley, Cla Galliard, Samuel Zimmermann, and Marco Hutter. Whole-body mpc and online gait sequence generation for wheeled-legged robots. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 8388–8395, 2021.
[38] Young Hun Lee, Yoon Haeng Lee, Hyunyong Lee, Hansol Kang, Yong Bum Kim, Jun HyukLee, LuongTinPhan, SungmoonJin, Hyungpil Moon, JaChoonKoo, and Hyouk Ryeol Choi. Whole-body motion and landing force control for quadrupedal stair climbing. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 4746–4751, 2019.
[39] Shuhao Qi, Wenchun Lin, Zejun Hong, Hua Chen, and Wei Zhang. Perceptive autonomous stair climbing for quadrupedal robots. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 2313–2320, 2021.
[40] Daekeun Yoon, Baekchul Kim, Ikhee Jo, and Woong Jeong. A dynamic locomotion strategy for stair walking of a quadruped robot. In 2021 18th International Conference on Ubiquitous Robots (UR), pages 223–227, 2021.
[41] Ali Zamani, Mahdi Khorram, and S Ali A Moosavian. Stable stair-climbing of a quadruped robot. arXiv preprint arXiv:1809.02891, 2018.
[42] Linqi Ye, Yaqi Wang, Xueqian Wang, Houde Liu, and Bin Liang. Optimized static gait for quadruped robots walking on stairs. In 2021 IEEE 17th International Conference on Automation Science and Engineering (CASE), pages 921–927, 2021.
[43] Simon Chamorro, Victor Klemm, Miguel de La Iglesia Valls, Christopher Pal, and Roland Siegwart. Reinforcement learning for blind stair climbing with legged and wheeled-legged robots. In 2024 IEEE International Conference on Robotics and Automation (ICRA), pages 8081–8087, 2024.
[44] Byeong-Sang Kim, Quy-Hung Vu, Jae-Bok Song, and Chung-Hyuk Yim. Novel design of a small field robot with multi-active crawlers capable of autonomous stair climbing. Journal of mechanical science and technology, 24:343–350, 2010.
[45] Yugang Liu and Guangjun Liu. Track–stair interaction analysis and online tipover prediction for a self-reconfigurable tracked mobile robot climbing stairs. IEEE/ASME Transactions on Mechatronics, 14(5):528–538, 2009.
[46] Kijung Kim, Youngsoo Kim, Jongwon Kim, Hwa Soo Kim, and Taewon Seo. Optimal trajectory planning for 2-dof adaptive transformable wheel. IEEE Access, 8:14452–14459, 2020.
[47] Huayang Li, Chenkun Qi, Liheng Mao, Yue Zhao, Xianbao Chen, and Feng Gao. Staircase-climbing capability-based dimension design of a hexapod robot. Mechanism and Machine Theory, 164:104400, 2021.
[48] Victor Barasuol, Sinan Emre, and Claudio Semini. Stair-climbing charts: On the optimal body height for quadruped robots to walk on stairs. In Ebrahim Samer El Youssef, Mohammad Osman Tokhi, Manuel F. Silva, and Leonardo Mejia Rincon, editors, Synergetic Cooperation Between Robots and Humans, pages 251–262, Cham, 2024. Springer Nature Switzerland.
[49] Taewon Seo, Sijun Ryu, Jee Ho Won, Youngsoo Kim, and Hwa Soo Kim. Stairclimbing robots: A review on mechanism, sensing, and performance evaluation. IEEE Access, 11:60539–60561, 2023.
[50] 柯致中. 四足機器人穩定爬升樓梯步態之軌跡規劃. 碩士論文,國立臺灣大學,2010.
[51] 陳慎強. 輪腳複合式移動平台運動模式開發. 碩士論文,國立臺灣大學,2011.
[52] 莊源誠. 結合雙自由度輪足模組之四足機器人及其足部混合控制與全身力補償控制之開發. 碩士論文,國立臺灣大學,2023.
[53] 王華豫. 輪腳複合機器人之穩定輪腳轉換策略.碩士論文,國立臺灣大學,2023.
[54] 盧冠綸. 基於足部力追蹤控制之輪足複合式四足機器人全機控制架構開發. 碩士論文,國立臺灣大學,2024.
[55] 黃培郡. 應用於輪足複合平台之狀態估測器. 碩士論文,國立臺灣大學,2024.
[56] 陳致仁. 輪足複合機器人在軟性地表跳躍軌跡規劃. 碩士論文,國立臺灣大學,2024.
[57] 沈意軒. 輪腳複合機器人上可變多觸地點之全機力控制架構開發. 碩士論文,國立臺灣大學,2025.
[58] Ren C. Luo, Ming Hsiao, and Che-Wei Liu. Multisensor integrated stair recognition and parameters measurement system for dynamic stair climbing robots. In 2013 IEEE International Conference on Automation Science and Engineering (CASE), pages 318–323, 2013.
[59] Dirk Holz, Stefan Holzer, Radu Bogdan Rusu, and Sven Behnke. Real-time plane segmentation using rgb-d cameras. In Thomas Röfer, N. Michael Mayer, Jesus Savage, and Uluc̨ Saranlı, editors, RoboCup 2011: Robot Soccer World Cup XV, pages 306–317, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100204-
dc.description.abstract輪腳複合機器人兼具輪式高速移動與足式地形適應的優點,但由於其特殊的腳部構型,會面臨模式切換複雜、觸地點不易判定和無法快速靈活揮腳等諸多挑戰。而在爬樓梯時因高低落差大與空間受限,更需要確保機器人的穩定性並避免與地形碰撞。為解決上述問題,本研究針對實驗室所開發之第三代輪腳複合機器人,提出一套結合視覺資訊與考慮多輪腳觸地點的爬樓梯策略,以提升機器人在非連續地形中垂直移動的穩定性與自主性。
由於輪腳機構的複雜性與特殊性,本研究首先實現輪腳模組的逆向運動學並提出可變觸地點的計算方法,建立考慮輪框滾動的運動學規劃方式。接著,從工作空間分析、穩定性調整、踏點選擇與揮腳軌跡等面向,建立系統化的爬樓梯策略規劃流程。最後,利用深度相機獲取環境之點雲資訊,進行平面位置估測得到樓梯尺寸,以實現即時軌跡規劃的需求。
在實驗部分,於室內外多種不同尺寸的樓梯上進行測試,驗證所提出之策略的可行性與適應性,並分析過程中的控制與估測誤差,探討策略成功與失敗時的原因,以及比較室內外不同環境對策略表現造成的差異與影響。結果顯示,雖然於室外環境的估測誤差較室內環境大,但在能維持一定估測精度的情況下,所提出之爬樓梯策略於室內與室外樓梯環境皆能穩定完成爬升。
綜上所述,本研究驗證了在輪腳複合機器人上具視覺回授的爬樓梯策略的應用潛力,為此類機器人的運動行為開發以及未來多地形自主導航奠定良好基礎。
zh_TW
dc.description.abstractLeg-wheel robots combine the advantages of high-speed mobility in wheeled mode and adaptability to complex terrains in legged mode. However, their unique leg structures pose several challenges, including complex mode transitions, difficulty in calculating contact points, and limited ability for fast and flexible leg swings. When climbing stairs, the large height differences and spatial constraints further demand enhanced stability and collision avoidance. To address these challenges, this study proposes a stair-climbing strategy for the third-generation leg-wheel robot developed in our laboratory, integrating visual information and considering varying contact points to improve the robot's stability and autonomy during vertical movements on discontinuous terrains.
Given the complexity and special characteristics of the leg-wheel mechanism, this research first implements the inverse kinematics of the leg-wheel module and proposes a computation method for varying contact points, establishing a kinematic planning approach that accounts for wheel rolling. Subsequently, a systematic stair-climbing strategy planning framework is developed, covering workspace analysis, stability adjustment, foothold planning, and swing trajectory design. Finally, a depth camera is utilized to acquire point cloud data of the environment, enabling planar position estimation for stair dimension measurement to support real-time trajectory planning.
For experimental validation, tests were conducted on indoor and outdoor stairs of various sizes to verify the feasibility and adaptability of the proposed strategy. Control and estimation errors during the climbing process were analyzed to investigate the causes of success and failure, and differences in strategy performance between indoor and outdoor environments were discussed. The results indicate that, although estimation errors are larger in outdoor environments compared to indoor ones, the proposed strategy can still achieve stable stair climbing in both conditions when a certain extent of estimation accuracy is maintained.
In summary, this study demonstrates the potential of a stair-climbing strategy using visual feedback for the leg-wheel robot, providing a solid foundation for the development of locomotion behaviors and future autonomous navigation across diverse terrains.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-24T16:50:38Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-24T16:50:38Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
ABSTRACT iv
目次 vi
圖次 ix
表次 xii
符號列表 xiii
第一章 緒論 1
1.1 前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.1 四足機器人. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.2 輪腳複合機器人. . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.3 爬樓梯相關研究. . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 研究貢獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
第二章 實驗平台 12
2.1 輪腳複合機構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 輪腳複合機器人. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 通訊架構更新. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 輪腳機構之運動學. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 觸地點計算. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 考慮滾動之運動學. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
第三章 爬樓梯策略 31
3.1 髖關節工作空間分析. . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 機身穩定性調整. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 踏點選擇. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 揮腳軌跡設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5 適用樓梯尺寸範圍分析. . . . . . . . . . . . . . . . . . . . . . . . . 62
第四章 即時軌跡規劃與步態轉換 64
4.1 行走步態優化. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.1.1 步態穩定性改良. . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.1.2 步態參數即時調整. . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 深度視覺資訊整合. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3 步態轉換策略. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
第五章 實驗驗證與結果討論 82
5.1 實驗環境. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2 行走步態穩定性優化驗證. . . . . . . . . . . . . . . . . . . . . . . . 83
5.3 偏航角誤差改善驗證. . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4 整合視覺回授之爬樓梯策略可行性驗證. . . . . . . . . . . . . . . . 89
5.4.1 室內實驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4.2 室外實驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
第六章 結論與未來展望 103
6.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
參考文獻 105
-
dc.language.isozh_TW-
dc.subject輪腳複合機器人zh_TW
dc.subject爬樓梯策略zh_TW
dc.subject運動規劃zh_TW
dc.subject踏點規劃zh_TW
dc.subject步態規劃zh_TW
dc.subject視覺回授zh_TW
dc.subjectvisual feedbacken
dc.subjectleg-wheel transformable roboten
dc.subjectstair climbing strategyen
dc.subjectmotion planningen
dc.subjectfoothold planningen
dc.subjectgait planningen
dc.title輪腳複合機器人上具視覺回授與多輪腳觸地點之爬樓梯策略zh_TW
dc.titleStair Climbing Strategy of a Leg-Wheel Transformable Robot Using Visual Feedback and Varying Leg-Wheel Contact Pointsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee連豊力;顏炳郎zh_TW
dc.contributor.oralexamcommitteeFeng-Li Lian;Ping-Lang Yenen
dc.subject.keyword輪腳複合機器人,爬樓梯策略,運動規劃,踏點規劃,步態規劃,視覺回授,zh_TW
dc.subject.keywordleg-wheel transformable robot,stair climbing strategy,motion planning,foothold planning,gait planning,visual feedback,en
dc.relation.page113-
dc.identifier.doi10.6342/NTU202502600-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-06-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2030-07-26-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2030-07-26
13.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved