請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100199完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周呈霙 | zh_TW |
| dc.contributor.advisor | Cheng-Ying Chou | en |
| dc.contributor.author | 謝欣妤 | zh_TW |
| dc.contributor.author | Hsin-Yu Hsieh | en |
| dc.date.accessioned | 2025-09-24T16:49:37Z | - |
| dc.date.available | 2025-09-25 | - |
| dc.date.copyright | 2025-09-24 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-02 | - |
| dc.identifier.citation | Aizen, M. A. and Harder, L. D. (2009). The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Current biology, 19(11):915–918.
Beling, I. (1929). Über das zeitgedächtnis der bienen. Zeitschrift für vergleichende Physiologie, 9:259-338. Bilik, S., Janakova, I., Ligocki, A., and Horak, D. F. K. (2024). Computer vision approaches for automated bee counting application. IFAC-PapersOnLine, 58(9):43–48. Brittain, W. (1935). Section of apiculture: Studies in bee activity during apple bloom. Journal of Economic Entomology, 28(3):553–559. Brodschneider, R. and Crailsheim, K. (2010). Nutrition and health in honey bees. Apidologie, 41(3):278–294. Buckley, G., Davies, L., and Spindley, D. (1978). A bee counter for monitoring bee activity and bee behaviour [proceedings]. British Journal of Pharmacology, 64(3):475P. Campbell, J., Mummert, L., and Sukthankar, R. (2008). Video monitoring of honey bee colonies at the hive entrance. Visual observation & analysis of animal & insect behavior, ICPR, 8:1–4. Carreck, N. and Williams, I. (1998). The economic value of bees in the uk. Bee world, 79(3):115–123. Chen, C., Yang, E.-C., Jiang, J.-A., and Lin, T.-T. (2012). An imaging system for monitoring the in-and-out activity of honey bees. Computers and electronics in agriculture, 89:100–109. Chiron, G., Gomez-Krämer, P., and Ménard, M. (2013). Detecting and tracking honeybees in 3d at the beehive entrance using stereo vision. EURASIP Journal on Image and Video Processing, 2013:1–17. Dolezal, A. G., Carrillo-Tripp, J., Judd, T. M., Allen Miller, W., Bonning, B. C., and Toth, A. L. (2019). Interacting stressors matter: diet quality and virus infection in honeybee health. Royal Society open science, 6(2):181803. Dyer, F. C. (1996). Spatial memory and navigation by honeybees on the scale of the foraging range. Journal of Experimental Biology, 199(1):147–154. Erickson, E., Miller, H., and Sikkema, D. (1975). A method of separating and monitoring honeybee flight activity at the hive entrance. Journal of Apicultural Research, 14(3-4):119–125. Evangelista, C., Kraft, P., Dacke, M., Labhart, T., and Srinivasan, M. (2014). Honeybee navigation: critically examining the role of the polarization compass. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1636):20130037. Fabergé, A. (1943). Apparatus for recording the number of bees leaving and entering a hive. Journal of Scientific Instruments, 20(2):28. Fewell, J. and Page, R. (1993). Genotypic variation in foraging responses to environmental stimuli by honey bees, apis mellifera. Experientia, 49:1106–1112. Fine, J. D., Shpigler, H. Y., Ray, A. M., Beach, N. J., Sankey, A. L., Cash-Ahmed, A., Huang, Z. Y., Astrauskaite, I., Chao, R., Zhao, H., et al. (2018). Quantifying the effects of pollen nutrition on honey bee queen egg laying with a new laboratory system. PloS one, 13(9):e0203444. Frias, B. E. D., Barbosa, C. D., and Lourenço, A. P. (2016). Pollen nutrition in honey bees (apis mellifera): impact on adult health. Apidologie, 47:15–25. Gemeda, T. K., Li, J., Luo, S., Yang, H., Jin, T., Huang, J., and Wu, J. (2018). Pollen trapping and sugar syrup feeding of honey bee (hymenoptera: Apidae) enhance pollen collection of less preferred flowers. PLoS One, 13(9):e0203648. Haydak, M. H. (1970). Honey bee nutrition. Annual review of entomology, 15(1):143–156. Holldobler, B. and Wilson, E. O. (2009). The superorganism: the beauty elegance and strangeness of insect societies. WW Norton & Company. Hoover, S. E. and Ovinge, L. P. (2018). Pollen collection, honey production, and pollination services: managing honey bees in an agricultural setting. Journal of economic Entomology, 111(4):1509–1516. Hrassnigg, N. and Crailsheim, K. (1998). Adaptation of hypopharyngeal gland development to the brood status of honeybee (apis mellifera l.) colonies. Journal of insect Physiology, 44(10):929–939. Jocher, G. and Qiu, J. (2024). Ultralytics yolo11. 2024. URL https://github.com/ultralytics/ultralytics. Johnson, B. R. (2003). Organization of work in the honeybee: a compromise between division of labour and behavioural flexibility. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1511):147–152. Johnson, B. R. (2008a). Global information sampling in the honey bee. Naturwissenschaften, 95(6):523–530. Johnson, B. R. (2008b). Within-nest temporal polyethism in the honey bee. Behavioral Ecology and Sociobiology, 62:777–784. Johnson, B. R. (2010). Division of labor in honeybees: form, function, and proximate mechanisms. Behavioral ecology and sociobiology, 64:305–316. Kaiser, W. (1988). Busy bees need rest, too: behavioural and electromyographical sleep signs in honeybees. Journal of Comparative physiology A, 163:565–584. Kaiser, W. and Steiner-Kaiser, J. (1983). Neuronal correlates of sleep, wakefulness and arousal in a diurnal insect. Nature, 301(5902):707–709. Keller, I., Fluri, P., and Imdorf, A. (2005). Pollen nutrition and colony development in honey bees: part 1. Bee world, 86(1):3–10. Kerfoot, W. B. (1966). A photoelectric activity recorder for studies of insect behavior. Journal of the Kansas Entomological Society, pages 629–633. Kheradmand, B. and Nieh, J. C. (2019). The role of landscapes and landmarks in bee navigation: a review. Insects, 10(10):342. Lin, Y.-C. (2024). Overcoming the challenge of passion fruit pollination in net-house cultivation: Farmers identify an optimal honeybee-based pollination strategy that reduces both labor and costs. https://www.newsmarket.com.tw/blog/202272/. Accessed:2025-05-23. Lundie, A. E. (1925). The flight activities of the honeybee. Number 1328. United States Department of Agriculture. Moore, D. and Rankin, M. A. (1983). Diurnal changes in the accuracy of the honeybee foraging rhythm. The Biological Bulletin, 164(3):471–482. Ngo, T. N., Wu, K.-C., Yang, E.-C., and Lin, T.-T. (2019). A real-time imaging system for multiple honey bee tracking and activity monitoring. Computers and Electronics in Agriculture, 163:104841. Odemer, R. (2022). Approaches, challenges and recent advances in automated bee counting devices: A review. Annals of Applied Biology, 180(1):73–89. Patterson, J. (1935). A new type of bee counter. Scientific Agriculture, 15(5):311–313. Peng, J., Liu, Y., Tang, S., Hao, Y., Chu, L., Chen, G., Wu, Z., Chen, Z., Yu, Z., Du, Y., et al. (2022). Pp-liteseg: A superior real-time semantic segmentation model. arXiv preprint arXiv:2204.02681. Percival, M. (1950). Pollen presentation and pollen collection. The new phytologist, 49(1):40–63. Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., and Kunin, W. E. (2010a). Global pollinator declines: trends, impacts and drivers. Trends in ecology & evolution, 25(6):345–353. Potts, S. G., Roberts, S. P., Dean, R., Marris, G., Brown, M. A., Jones, R., Neumann, P., and Settele, J. (2010b). Declines of managed honey bees and beekeepers in europe. Journal of apicultural research, 49(1):15–22. Renner, M. (1957). Neue versuche über den zeitsinn der honigbiene. Zeitschrift für vergleichende Physiologie, 40:85–118. Roboflow (2020). Roboflow: Give your computer vision model the edge. https://roboflow.com/. Accessed: 2025-04-30. Sahbani, B. and Adiprawita, W. (2016). Kalman filter and iterative-hungarian algorithm implementation for low complexity point tracking as part of fast multiple object tracking system. In 2016 6th international conference on system engineering and technology (ICSET), pages 109–115. IEEE. Seeley, T. D. (1982). Adaptive significance of the age polyethism schedule in honeybee colonies. Behavioral ecology and sociobiology, 11:287–293. Seeley, T. D. (2009). The wisdom of the hive: the social physiology of honey bee colonies. Harvard University Press. Spangler, H. G. (1969). Photoelectrical counting of outgoing and incoming honey bees. Journal of Economic Entomology, 62(5):1183–1184. Stiemer, L. N., Thoma, A., and Braun, C. (2023). Mbt3d: Deep learning based multiobject tracker for bumblebee 3d flight path estimation. Plos one, 18(9):e0291415. Strye, M., Borremans, G., and Jacobs, F. (1991). Monitoring honey bees the design of a computer operated bee counter. Nederlandse Entomologische Vereniging. Sunkara, R. and Luo, T. (2022). No more strided convolutions or pooling: A new cnn building block for low-resolution images and small objects. In Joint European conference on machine learning and knowledge discovery in databases, pages 443–459. Springer. Tarsha-Kurdi, F., Landes, T., and Grussenmeyer, P. (2007). Hough-transform and extended ransac algorithms for automatic detection of 3d building roof planes from lidar data. In ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, volume 36, pages 407–412. Tenczar, P., Lutz, C. C., Rao, V. D., Goldenfeld, N., and Robinson, G. E. (2014). Automated monitoring reveals extreme interindividual variation and plasticity in honeybee foraging activity levels. Animal Behaviour, 95:41–48. Trumbo, S. T., Huang, Z.-Y., and Robinson, G. E. (1997). Division of labor between undertaker specialists and other middle-aged workers in honey bee colonies. Behavioral Ecology and Sociobiology, 41:151–163. VanEngelsdorp, D., Hayes Jr, J., Underwood, R. M., and Pettis, J. (2008). A survey of honey bee colony losses in the us, fall 2007 to spring 2008. PloS one, 3(12):e4071. Wahl, O. (1932). Neue untersuchungen über das zeitgedächtnis der bienen. Zeitschrift für vergleichende Physiologie. Wang, X., Wang, A., Yi, J., Song, Y., and Chehri, A. (2023). Small object detection based on deep learning for remote sensing: A comprehensive review. Remote Sensing, 15(13):3265. Winston, M. L. (1987). The biology of the honey bee. harvard university press. Wojke, N., Bewley, A., and Paulus, D. (2017). Simple online and realtime tracking with a deep association metric. In 2017 IEEE international conference on image processing (ICIP), pages 3645–3649. IEEE. Wu, T.-C. (1996). Techniques for pollination by honeybees. Silkworm and Apiculture Bulletin. Article No. 15. Zhang, Y., Sun, P., Jiang, Y., Yu, D., Weng, F., Yuan, Z., Luo, P., Liu, W., and Wang, X. (2022). Bytetrack: Multi-object tracking by associating every detection box. In European conference on computer vision, pages 1–21. Springer. Zhang, Z. (1999). Flexible camera calibration by viewing a plane from unknown orientations. In Proceedings of the seventh ieee international conference on computer vision, volume 1, pages 666–673. Ieee. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100199 | - |
| dc.description.abstract | 西方蜜蜂(Apis mellifera)在設施農業中是最主要的授粉者,約貢獻全球八成的農業授粉量。然而蜂群健康的好壞很大的決定了蜜蜂授粉的效果,尤其在食物較於單一的設施農業當中,農夫需要花費較多的資源去觀察蜜蜂。因此,本研究提出一套非侵入式影像監測系統,同時追蹤蜜蜂進出蜂巢行為以及收集蜜蜂攜帶花粉回巢之數據。(1) 利用 YOLO11 物件偵測模型偵測蜜蜂位置、大小與類別資訊。而 YOLO11 模型於兩種蜜蜂的偵測上達到了 90.08% 的 mAP@50-95。(2) 利用 PP-LiteSeg 語意分割模型分割影片中蜜蜂後腳上的花粉,並計算花粉面積。而PP-LiteSeg 模型在花粉分割方面的表現達到 61.65% 的 IoU。(3) 結合前兩個模型的結果、ByteSort 與計數演算法,獲得蜜蜂進出巢數量與蜜蜂帶回巢之花粉總面積。並且得出花粉面積與花粉重量之相關性。最後,本研究將監測系統應用於台灣南部的屏東縣萬巒鄉的百香果設施農業中,分析在有無花粉篩孔、蜂王與幼蟲的情況下,蜜蜂進出巢數量與採集花粉的積極度變化,並提供更進一步的蜜蜂活動與覓食的相關資訊,協助農民調整設施內蜂群的授粉與健康狀況。 | zh_TW |
| dc.description.abstract | The western honeybee (Apis mellifera) serves as the main pollinator in protected agriculture, contributing almost 80\\% of global agricultural pollination. However, colony health remains a critical determinant of pollination effectiveness. This issue is particularly pronounced in controlled environments such as greenhouse agriculture, where floral diversity is limited. Under such conditions, farmers must allocate additional resources to monitor honeybee activity. To address this challenge, this study introduces a non-invasive, image-based monitoring system that concurrently tracks entry and exit activities at the hive entrance and quantifies pollen loads carried by returning bees. (1) A YOLO11 object detection model was employed to identify the position, size, and category of individual bees, achieving an mAP@50-95 of 90.08% for two bee categories. (2) A PP-LiteSeg semantic segmentation model was used to segment hind leg pollen from honeybees in video frames, generating an IoU of 61.65% for pollen segmentation. (3) The outputs of both models were integrated using ByteSort and a custom counting algorithm to estimate the entry and exit numbers of the honeybees and the total pollen area carried back to the beehive. Subsequently, a correlation was established between pollen area and pollen weight. The correlation coefficient was 0.9735, indicating a strong positive correlation.Finally, the system was deployed in a passion fruit greenhouse in Wanluan Township, Pingtung County, southern Taiwan, in order to evaluate variations in foraging activity under different colony conditions, including the presence or absence of pollen trap, a queen bee, and larvae. The system provides valuable information on the foraging behavior of honeybees and colony performance within facility agricultural systems, thereby assisting farmers in managing pollination efficiency and colony health. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-24T16:49:37Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-24T16:49:37Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 iii Abstract v Contents vii List of Figures xi List of Tables xvii Chapter 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Research Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Chapter 2 Literature Review 5 2.1 Ecology and Composition of Honeybee Colonies . . . . . . . . . . . 5 2.2 Pollen and Its Impact on Honeybee Health and Foraging Behavior . . 7 2.3 Honeybee Tracking and Counting . . . . . . . . . . . . . . . . . . . 8 2.3.1 Electromechanical honeybee counting . . . . . . . . . . . . . . . . 8 2.3.2 Sensor-based honeybee counting . . . . . . . . . . . . . . . . . . . 9 2.3.3 Image-based honeybee counting . . . . . . . . . . . . . . . . . . . 10 2.4 Comparison of Related Research . . . . . . . . . . . . . . . . . . . . 11 Chapter 3 Materials and Methods 15 3.1 Entry-and-Exit Observation System . . . . . . . . . . . . . . . . . . 16 3.1.1 Observation box design . . . . . . . . . . . . . . . . . . . . . . . . 16 3.1.2 Power supply system . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 Dataset Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3 Entry-and-Exit Counting Algorithm . . . . . . . . . . . . . . . . . . 26 3.3.1 Honeybee detection . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3.2 Pollen segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.3 Tracking and counting . . . . . . . . . . . . . . . . . . . . . . . . 34 3.4 Pollen Collection and Measurement Experiment . . . . . . . . . . . 37 3.5 Factor Experiment in the Passion Fruit Facility Farm . . . . . . . . . 37 3.5.1 Pollen trap factor . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.5.2 Queen bee factor . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.5.3 Larvae factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.6 Model Training and Testing . . . . . . . . . . . . . . . . . . . . . . 42 Chapter 4 Results and Discussion 45 4.1 Model Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.1.1 Honeybee detection . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.1.2 Pollen segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.2 Entry and Exit Counting Accuracy . . . . . . . . . . . . . . . . . . . 60 4.3 Correlation Analysis between Pollen Weight and Image Area . . . . . 63 4.4 Analysis of Activity and Pollen-Bearing Behavior of Honeybee under Different Factor Conditions . . . . . . . . . . . . . . . . . . . . . . 64 4.4.1 Pollen trap factor . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.4.2 Queen bee factor . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.4.3 Larva factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Chapter 5 Conclusion 79 References 83 | - |
| dc.language.iso | en | - |
| dc.subject | 蜜蜂覓食行為 | zh_TW |
| dc.subject | 蜜蜂計數 | zh_TW |
| dc.subject | 物件檢測 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | Bee counting | en |
| dc.subject | Object detection | en |
| dc.subject | Honeybee foraging behavior | en |
| dc.subject | Deep learning | en |
| dc.title | 應用深度學習解析蜂群進出巢行為與花粉動態 | zh_TW |
| dc.title | Deep Learning-Based Analysis of Hive Traffic and Pollen-Foraging Behavior - Effects of Colony Structure and Dynamics of Pollen Storage | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 江昭皚;楊恩誠 | zh_TW |
| dc.contributor.oralexamcommittee | Joe-Air Jiang;En-Cheng Yang | en |
| dc.subject.keyword | 蜜蜂覓食行為,蜜蜂計數,物件檢測,深度學習, | zh_TW |
| dc.subject.keyword | Honeybee foraging behavior,Bee counting,Object detection,Deep learning, | en |
| dc.relation.page | 90 | - |
| dc.identifier.doi | 10.6342/NTU202501110 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-06 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物機電工程學系 | - |
| dc.date.embargo-lift | 2030-07-24 | - |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 62.7 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
