請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100195完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許麗 | zh_TW |
| dc.contributor.advisor | Li Xu | en |
| dc.contributor.author | 温珮妤 | zh_TW |
| dc.contributor.author | Pei-Yu Wen | en |
| dc.date.accessioned | 2025-09-24T16:48:49Z | - |
| dc.date.available | 2025-09-25 | - |
| dc.date.copyright | 2025-09-24 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-22 | - |
| dc.identifier.citation | [1] T. Shimoda et al., "Solution-processed silicon films and transistors," Nature, vol. 440, no. 7085, pp. 783-786, 2006.
[2] H. Iwai and S. i. Ohmi, "Silicon integrated circuit technology from past to future," Microelectronics Reliability, vol. 42, no. 4-5, pp. 465-491, 2002. [3] L. C. Andreani, A. Bozzola, P. Kowalczewski, M. Liscidini, and L. Redorici, "Silicon solar cells: toward the efficiency limits," Advances in physics: X, vol. 4, no. 1, p. 1548305, 2019. [4] M. Di Sabatino, R. Hendawi, and A. S. Garcia, "Silicon solar cells: trends, manufacturing challenges, and AI perspectives," Crystals, vol. 14, no. 2, p. 167, 2024. [5] D. Corzo, G. Tostado-Blázquez, and D. Baran, "Flexible electronics: status, challenges and opportunities," Frontiers in Electronics, vol. 1, p. 594003, 2020. [6] W. Gao, H. Ota, D. Kiriya, K. Takei, and A. Javey, "Flexible electronics toward wearable sensing," Accounts of chemical research, vol. 52, no. 3, pp. 523-533, 2019. [7] L. Kong, C. Tang, H. J. Peng, J. Q. Huang, and Q. Zhang, "Advanced energy materials for flexible batteries in energy storage: A review," SmartMat, vol. 1, no. 1, 2020. [8] E. Balliu, H. Andersson, M. Engholm, T. Öhlund, H.-E. Nilsson, and H. Olin, "Selective laser sintering of inkjet-printed silver nanoparticle inks on paper substrates to achieve highly conductive patterns," Scientific reports, vol. 8, no. 1, p. 10408, 2018. [9] M. B. Kumar, P. Sathiya, and M. Varatharajulu, "Selective laser sintering," in Advances in additive manufacturing processes: Bentham Science Publishers, 2021, pp. 28-47. [10] Y. Kim, E. Hwang, C. Kai, K. Xu, H. Pan, and S. Hong, "Recent developments in selective laser processes for wearable devices," Bio-Design and Manufacturing, vol. 7, no. 4, pp. 517-547, 2024. [11] E. Hwang, J. Hong, J. Yoon, and S. Hong, "Direct writing of functional layer by selective laser sintering of nanoparticles for emerging applications: a review," Materials, vol. 15, no. 17, p. 6006, 2022. [12] S. Yang, P. Qiu, L. Chen, and X. Shi, "Recent developments in flexible thermoelectric devices," Small science, vol. 1, no. 7, p. 2100005, 2021. [13] T. J. Seebeck, "Magnetic polarization of metals and minerals," Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, vol. 265, pp. 1822-1823, 1822. [14] M. M. R. Al-Fartoos, A. Roy, T. K. Mallick, and A. A. Tahir, "Advancing thermoelectric materials: a comprehensive review exploring the significance of one-dimensional nano structuring," Nanomaterials, vol. 13, no. 13, p. 2011, 2023. [15] M. Shilpa, M. A. Raheman, A. Aabid, M. Baig, R. Veeresha, and N. Kudva, "A systematic review of thermoelectric peltier devices: Applications and limitations," FDMP-Fluid Dynamics & Materials Processing, vol. 19, no. 1, pp. 187-206, 2023. [16] M. A. Zoui, S. Bentouba, J. G. Stocholm, and M. Bourouis, "A review on thermoelectric generators: Progress and applications," Energies, vol. 13, no. 14, p. 3606, 2020. [17] L. E. Bell, "Cooling, heating, generating power, and recovering waste heat with thermoelectric systems," science, vol. 321, no. 5895, pp. 1457-1461, 2008. [18] T. M. Tritt, "Thermoelectric phenomena, materials, and applications," Annual review of materials research, vol. 41, no. 1, pp. 433-448, 2011. [19] M. Zebarjadi and O. Akbari, "A model for material metrics in thermoelectric Thomson coolers," Entropy, vol. 25, no. 11, p. 1540, 2023. [20] A. Dadhich, M. Saminathan, K. Kumari, S. Perumal, M. R. Rao, and K. Sethupathi, "Physics and technology of thermoelectric materials and devices," Journal of Physics D: Applied Physics, vol. 56, no. 33, p. 333001, 2023. [21] L. Wang et al., "Advances and future perspectives in thermoelectric cooling technology," Energy conversion and management, vol. 332, p. 119621, 2025. [22] A. Ojha, R. K. Sabat, and S. Bathula, "Advancement in half-Heusler thermoelectric materials and strategies to enhance the thermoelectric performance," Materials Science in Semiconductor Processing, vol. 171, p. 107996, 2024. [23] L. Wang, X. Zhang, and L.-D. Zhao, "Evolving strategies toward Seebeck coefficient enhancement," Accounts of Materials Research, vol. 4, no. 5, pp. 448-456, 2023. [24] C. Gayner and K. K. Kar, "Recent advances in thermoelectric materials," Progress in Materials Science, vol. 83, pp. 330-382, 2016. [25] P. Buffat and J. P. Borel, "Size effect on the melting temperature of gold particles," Physical review A, vol. 13, no. 6, p. 2287, 1976. [26] D. Feng, Y. Feng, S. Yuan, X. Zhang, and G. Wang, "Melting behavior of Ag nanoparticles and their clusters," Applied Thermal Engineering, vol. 111, pp. 1457-1463, 2017. [27] L. Somlyai-Sipos, D. Janovszky, A. Sycheva, and P. Baumli, "Investigation of the melting point depression of copper nanoparticles," in IOP Conference Series: Materials Science and Engineering, 2020, vol. 903, no. 1: IOP Publishing, p. 012002. [28] S. Lai, J. Carlsson, and L. Allen, "Melting point depression of Al clusters generated during the early stages of film growth: Nanocalorimetry measurements," Applied Physics Letters, vol. 72, no. 9, pp. 1098-1100, 1998. [29] L. E. Hoffenberg, A. Khrabry, Y. Barsukov, I. D. Kaganovich, and D. B. Graves, "Types of Size-Dependent Melting in Fe Nanoclusters: a Molecular Dynamics Study," arXiv preprint arXiv:2409.02293, 2024. [30] M. F. Schatz and G. P. Neitzel, "Experiments on thermocapillary instabilities," Annual review of fluid mechanics, vol. 33, no. 1, pp. 93-127, 2001. [31] J. Chung, S. Ko, N. R. Bieri, C. P. Grigoropoulos, and D. Poulikakos, "Conductor microstructures by laser curing of printed gold nanoparticle ink," Applied physics letters, vol. 84, no. 5, pp. 801-803, 2004. [32] S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. Fréchet, and D. Poulikakos, "All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperaturehigh-resolution selective laser sintering of metal nanoparticles," Nanotechnology, vol. 18, no. 34, p. 345202, 2007. [33] J. Noh, J. Ha, and D. Kim, "Femtosecond and nanosecond laser sintering of silver nanoparticles on a flexible substrate," Applied Surface Science, vol. 511, p. 145574, 2020. [34] H. Palneedi et al., "Laser irradiation of metal oxide films and nanostructures: applications and advances," Advanced Materials, vol. 30, no. 14, p. 1705148, 2018. [35] L. Ming et al., "Selective laser sintering of TiO 2 nanoparticle film on plastic conductive substrate for highly efficient flexible dye-sensitized solar cell application," Journal of Materials Chemistry A, vol. 2, no. 13, pp. 4566-4573, 2014. [36] A. Serkov, H. Snelling, S. Heusing, and T. M. Amaral, "Laser sintering of gravure printed indium tin oxide films on polyethylene terephthalate for flexible electronics," Scientific Reports, vol. 9, no. 1, p. 1773, 2019. [37] K. Xie, K. Mork, J. T. Held, K. A. Mkhoyan, U. Kortshagen, and M. C. Gupta, "Quasi continuous wave laser sintering of Si-Ge nanoparticles for thermoelectrics," Journal of Applied Physics, vol. 123, no. 9, 2018. [38] K. Xie, K. Mork, U. Kortshagen, and M. C. Gupta, "High temperature thermoelectric properties of laser sintered thin films of phosphorous-doped silicon-germanium nanoparticles," AIP Advances, vol. 9, no. 1, 2019. [39] K. Xie and M. C. Gupta, "Thermoelectric properties of SiGe thin films prepared by laser sintering of nanograin powders," Journal of Alloys and Compounds, vol. 820, p. 153182, 2020. [40] R. Schropp, "Industrialization of hot wire chemical vapor deposition for thin film applications," Thin Solid Films, vol. 595, pp. 272-283, 2015. [41] R. Saikia et al., "Fabrication of Microcrystalline Silicon Thin Film by Ionized Physical Vapor Deposition Process," Crystals, vol. 15, no. 2, p. 106, 2025. [42] S. Bet and A. Kar, "Thin film deposition on plastic substrates using silicon nanoparticles and laser nanoforming," Materials Science and Engineering: B, vol. 130, no. 1-3, pp. 228-236, 2006. [43] E. Drahi, A. Gupta, S. Blayac, S. Saunier, and P. Benaben, "Characterization of sintered inkjet‐printed silicon nanoparticle thin films for thermoelectric devices," physica status solidi (a), vol. 211, no. 6, pp. 1301-1307, 2014. [44] J. Soeda, Y. Ikeda, and T. Shiro, "Solution-processing of flexible thin-film negative-temperature-coefficient silicon thermistors using silicon nanoparticles," Japanese Journal of Applied Physics, vol. 56, no. 7, p. 070310, 2017. [45] W. Shou et al., "Feasibility study of single-crystal si island manufacturing by microscale printing of nanoparticles and laser crystallization," ACS Applied Materials & Interfaces, vol. 11, no. 37, pp. 34416-34423, 2019. [46] I. Kim et al., "A photonic sintering derived Ag flake/nanoparticle-based highly sensitive stretchable strain sensor for human motion monitoring," Nanoscale, vol. 10, no. 17, pp. 7890-7897, 2018. [47] C.-H. Ryu, S.-J. Joo, and H.-S. Kim, "Intense pulsed light sintering of Cu nano particles/micro particles-ink assisted with heating and vacuum holding of substrate for warpage free printed electronic circuit," Thin Solid Films, vol. 675, pp. 23-33, 2019. [48] S.-J. Joo, H.-J. Hwang, and H.-S. Kim, "Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics," Nanotechnology, vol. 25, no. 26, p. 265601, 2014. [49] Y. Apertet, H. Ouerdane, O. Glavatskaya, C. Goupil, and P. Lecoeur, "Optimal working conditions for thermoelectric generators with realistic thermal coupling," Europhysics Letters, vol. 97, no. 2, p. 28001, 2012. [50] A. Ziabari, E. Suhir, and A. Shakouri, "Minimizing thermally induced interfacial shearing stress in a thermoelectric module with low fractional area coverage," Microelectronics Journal, vol. 45, no. 5, pp. 547-553, 2014. [51] D. Ebling, K. Bartholomé, M. Bartel, and M. Jägle, "Module geometry and contact resistance of thermoelectric generators analyzed by multiphysics simulation," Journal of electronic materials, vol. 39, pp. 1376-1380, 2010. [52] R. Chavez et al., "Efficient pn junction-based thermoelectric generator that can operate at extreme temperature conditions," Journal of Physics D: Applied Physics, vol. 51, no. 1, p. 014005, 2017. [53] A. Basit et al., "A review on high-performance flexible thermoelectrics: material, device, and applications," Microstructures, 2024. [54] E. M. F. Vieira et al., "High-performance μ-thermoelectric device based on Bi2Te3/Sb2Te3 p–n junctions," ACS Applied Materials & Interfaces, vol. 11, no. 42, pp. 38946-38954, 2019. [55] 余承軒, "柔性基板上選擇性雷射燒結奈/微米混合矽顆粒," 碩士論文, 機械工程學研究所, 國立臺灣大學, 台北市, 2022. [56] 林品騰, "選擇性雷射燒結矽奈米顆粒於柔性基板之機制及其熱電PN接面元件應用," 碩士論文, 機械工程研究所, 國立臺灣大學, 台北市, 2024. [57] I. Marica, M. Stefan, S. Boca, A. Falamaş, and C. Farcău, "A simple approach for coffee-ring suppression yielding homogeneous drying patterns of ZnO and TiO2 nanoparticles," Journal of Colloid and Interface Science, vol. 635, pp. 117-127, 2023. [58] A. Grohe, A. Knorz, J. Nekarda, U. Jäger, N. Mingirulli, and R. Preu, "Novel laser technologies for crystalline silicon solar cell production," in Laser-based Micro-and Nanopackaging and Assembly III, 2009, vol. 7202: SPIE, pp. 239-250. [59] A. Soltani, B. K. Vahed, A. Mardoukhi, and M. Mäntysalo, "Laser sintering of copper nanoparticles on top of silicon substrates," Nanotechnology, vol. 27, no. 3, p. 035203, 2015. [60] B. Demirel, A. Yaraş, and H. Elçiçek, "Crystallization behavior of PET materials," 2011. [61] M. Zhao, J. Zhang, W. Wang, and Q. Zhang, "High effective preparation of amorphous-like si nanoparticles using spark erosion followed by bead milling," Nanomaterials, vol. 11, no. 3, p. 594, 2021. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100195 | - |
| dc.description.abstract | 矽基材料在半導體中佔有舉足輕重的地位。近年來,隨著穿戴式電子裝置的興起,如何將半導體材料整合至可撓式基板,成為柔性電子技術發展中的重要課題。然而,傳統矽薄膜製程多需倚賴高溫與高真空環境,不利於應用在柔性基板之中。本研究中採用波長532 nm之奈秒脈衝雷射將矽顆粒燒結於柔性基板上,提供一個於大氣環境下快速加工且可圖形化的低溫製程方式,並探討樣品的燒結品質以及應用。
於PET基板上分別燒結P型矽奈米顆粒、P型矽奈/微米顆粒以及N型矽奈米顆粒,針對不同材料與雷射參數,分別評估其表面形貌、厚度、電阻率與熱電性質。比較P型矽奈米顆粒與P型矽奈/微米混合顆粒之薄膜,經雷射燒結後,P型奈/微米混合顆粒薄膜展現良好連續性與結晶性,最低電阻率為4.8 Ω-cm,明顯優於P型矽奈米顆粒薄膜的11.9 Ω-cm。我們進一步提出二次沉積與燒結於P型矽/奈微米顆粒薄膜,欲提升薄膜中大顆粒間的連結性以及改善薄膜厚度均勻性。最終使薄膜電阻率下降至2.2 Ω-cm,厚度均勻性亦改善,厚度標準差由1.0 μm降至0.4 μm。 在熱電性能方面,一次燒結之P型矽奈/微米混合顆粒薄膜於330 K下測得的席貝克係數為71.2 μV/K,明顯高於僅含奈米顆粒之P型薄膜,顯示混合顆粒結構有助於提升熱電表現。最後,製作出結合P型與N型矽薄膜之柔性PN接面熱電元件,並進行彎曲測試。該元件於330 K下之最大席貝克係數可達145.0 μV/K,優於P型、N型薄膜個別絕對值相加結果,且經彎曲測試後仍保有良好的元件性能,證實其可撓性。 本研究展示以雷射燒結技術於柔性基板上製備矽奈/微米混合顆粒薄膜之可行性,並證實二次燒結製程有助於提升薄膜品質。此技術兼具低成本、短製程時間及常壓環境操作等優勢,對於未來應用於可撓式熱電元件與穿戴式能源回收系統具有良好潛力。 | zh_TW |
| dc.description.abstract | Silicon-based materials play a pivotal role in the semiconductor industry. With the recent rise of wearable electronic devices, integrating semiconductor materials onto flexible substrates has become a critical challenge in the advancement of flexible electronics. However, conventional silicon thin-film fabrication often relies on high-temperature and high-vacuum environments, which are unsuitable for flexible substrates. In this study, we employed a 532 nm nanosecond pulsed laser to sinter silicon particles onto flexible substrates, offering a rapid, patternable, and low-temperature processing approach under ambient conditions. The quality of the sintered films and their application potential were thoroughly investigated.
P-type silicon nanoparticles (P-SiNPs), P-type silicon nano/microparticles (P-Si NPs/MPs), and N-type silicon nanoparticles (N-SiNPs) were respectively sintered on PET substrates. Based on material type and laser parameters, we evaluated their surface morphology, thickness, resistivity, and thermoelectric properties. Compared to the P SiNPs films, the P-Si NPs/MPs films exhibited superior continuity and crystallinity after laser sintering, achieving a minimum resistivity of 4.8 Ω-cm, which is significantly lower than the 11.9 Ω-cm observed in the nanoparticle-only films. To further enhance interparticle connectivity and improve thickness uniformity, a secondary deposition and sintering process was applied. This method successfully reduced the resistivity to 2.2 Ω cm and improved thickness uniformity, decreasing the standard deviation from 1.0 μm to 0.4 μm. In terms of thermoelectric performance, the once-sintered P-Si NPs/MPs film exhibited a Seebeck coefficient of 71.2 μV/K at 330 K, which is notably higher than that of the nanoparticle-only film, demonstrating the positive impact of the mixed-particle structure in reducing porosity and carrier scattering.A flexible PN junction thermoelectric device was subsequently fabricated by combining the secondary-sintered P-Si NPs/MPs film with an N-SiNPs film. At 330 K, the device achieved a maximum Seebeck coefficient of 145.0 μV/K, which exceeded the sum of the absolute Seebeck coefficients of the individual P-type and N-type films. Bending tests further validated the device’s flexibility, with performance retained after mechanical deformation. This work demonstrates the feasibility of using laser sintering to fabricate silicon nano/microparticles films on flexible substrates and confirms that secondary sintering can effectively improve film quality. The proposed method offers advantages such as low cost, short processing time, and operation in ambient conditions, showing strong potential for future applications in flexible thermoelectric devices and wearable energy harvesting systems. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-24T16:48:49Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-24T16:48:49Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv 目次 vi 圖次 x 表次 xvii Chapter 1 緒論 1 1.1 前言 1 1.2 熱電原理介紹 2 1.2.1 席貝克效應 (Seebeck effect) 2 1.2.2 帕爾帖效應 (Peltier effect) 3 1.2.3 湯姆森效應 (Thomson effect) 4 1.2.4 無因次熱電參數 5 Chapter 2 文獻回顧與研究動機 9 2.1 奈米材料之熔點變化 9 2.2 金屬奈米材料燒結 11 2.3 金屬氧化物奈米材料燒結 17 2.4 半導體奈米材料燒結 19 2.5 矽奈米材料燒結 22 2.6 奈米組合材料燒結 27 2.7 柔性熱電元件 30 2.8 實驗動機與目的 33 Chapter 3 實驗流程與方法 35 3.1 矽顆粒的塗層製備 35 3.1.1 P-SiNPs塗層製備 35 3.1.2 N-SiNPs塗層製備 37 3.1.3 P型矽奈/微米混合顆粒塗層製備 38 3.1.4 二次沉積塗層製備 39 3.2 元件製備 40 3.2.1 單型 (P型或N型) 元件製備 40 3.2.2 熱電PN接面元件製備 42 3.3 雷射製程 43 3.3.1 雷射燒結實驗 43 3.3.2 脈衝雷射光路架構 44 Chapter 4 結果與討論 47 4.1 脈衝雷射系統參數 47 4.1.1 脈衝雷射功率 47 4.1.2 點重疊率與線段重疊率 48 4.1.3 光斑大小 49 4.2 矽顆粒塗層分析 50 4.2.1 微米顆粒之粒徑分布 50 4.2.2 P-SiNPs初始厚度 51 4.2.3 P-Si NPs/MPs初始厚度 52 4.2.4 N-SiNPs初始厚度 52 4.3 雷射燒結機制 53 4.3.1 光吸收係數 53 4.3.2 一次燒結矽奈/微米混合顆粒之機制探討 55 4.3.3 二次燒結之機制探討 57 4.4 雷射燒結P-SiNPs薄膜分析 59 4.4.1 雷射燒結P-SiNPs的線段分析 59 4.4.2 薄膜表面型態分析 60 4.4.3 薄膜厚度分析 64 4.4.4 電性分析 65 4.4.5 P-SiNPs 小結 67 4.5 一次燒結P-Si NPs/MPs薄膜分析 67 4.5.1 雷射燒結P-Si NPs/MPs之線段分析 67 4.5.2 薄膜表面型態分析 69 4.5.3 薄膜厚度分析 74 4.5.4 電性分析 76 4.5.5 P-SiNPs/MPs一次燒結之小節 77 4.6 二次燒結P-Si NPs/MPs薄膜分析 77 4.6.1 二次沉積之P-Si NPs/MPs薄膜 77 4.6.2 薄膜表面型態分析 78 4.6.3 薄膜厚度分析 79 4.6.4 電性分析 81 4.6.5 P-SiNPs/MPs薄膜二次燒結之小節 83 4.7 雷射燒結N-SiNPs薄膜分析 83 4.7.1 雷射燒結N-SiNPs的線段分析 83 4.7.2 薄膜表面型態分析 85 4.7.3 薄膜厚度分析 89 4.7.4 電性分析 91 4.7.5 N-SiNPs小節 91 4.8 熱電性質量測 92 4.8.1 P-SiNPs與一次燒結P-Si NPs/MPs 92 4.8.2 P-Si NPs/MPs一次燒結與二次燒結 94 4.8.3 N-SiNPs 96 4.9 柔性熱電PN接面元件 96 4.10 彎曲測試 98 Chapter 5 結論與未來展望 100 5.1 結論 100 5.2 未來展望 100 參考文獻 102 附錄 110 附錄一 雷射光路系統 110 附錄二 冷鑲埋製作方法 114 附錄三 ImageJ 軟體計算顆粒粒徑分布 114 附錄四 ImageJ 軟體計算平均薄膜厚度 115 附錄五 薄膜孔隙率 116 附錄六 實驗分析設備之原理與介紹 116 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 選擇性雷射燒結 | zh_TW |
| dc.subject | 矽奈米顆粒 | zh_TW |
| dc.subject | 矽微米顆粒 | zh_TW |
| dc.subject | 奈米組合材料 | zh_TW |
| dc.subject | PN接面 | zh_TW |
| dc.subject | 柔性熱電元件 | zh_TW |
| dc.subject | PN junction | en |
| dc.subject | Silicon microparticles | en |
| dc.subject | Nanocomposite materials | en |
| dc.subject | Flexible thermoelectric devices | en |
| dc.subject | Selective laser sintering | en |
| dc.subject | Silicon nanoparticles | en |
| dc.title | 雷射燒結矽奈/微米顆粒於柔性基板之機制及其熱電元件應用 | zh_TW |
| dc.title | Laser Sintering of Silicon Nano/Microparticles on Flexible Substrate: Mechanism and Application on Thermoelectric Device | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 孫珍理;黃振康 | zh_TW |
| dc.contributor.oralexamcommittee | Chen-Li Sun;Chen-Kang Huang | en |
| dc.subject.keyword | 選擇性雷射燒結,矽奈米顆粒,矽微米顆粒,奈米組合材料,PN接面,柔性熱電元件, | zh_TW |
| dc.subject.keyword | Selective laser sintering,Silicon nanoparticles,Silicon microparticles,Nanocomposite materials,PN junction,Flexible thermoelectric devices, | en |
| dc.relation.page | 120 | - |
| dc.identifier.doi | 10.6342/NTU202502230 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-23 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2028-07-31 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 11.48 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
