Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100183
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳志鴻zh_TW
dc.contributor.advisorChih-Hung Chenen
dc.contributor.author吳浩均zh_TW
dc.contributor.authorHao-Jun Wuen
dc.date.accessioned2025-09-24T16:46:26Z-
dc.date.available2025-09-25-
dc.date.copyright2025-09-24-
dc.date.issued2025-
dc.date.submitted2025-08-13-
dc.identifier.citation[1] Thomas Waldmann, Björn-Ingo Hogg, and Margret Wohlfahrt-Mehrens. Li plating as unwanted side reaction in commercial li-ion cells–a review. Journal of Power Sources, 384:107–124, 2018.
[2] Meike Fleischhammer, Thomas Waldmann, Gunther Bisle, Björn-Ingo Hogg, and Margret Wohlfahrt-Mehrens. Interaction of cyclic ageing at high-rate and low temperatures and safety in lithium-ion batteries. Journal of Power Sources, 274:432–439, 2015.
[3] Thomas Waldmann, Michael Kasper, and Margret Wohlfahrt-Mehrens. Optimization of charging strategy by prevention of lithium deposition on anodes in high-energy lithium-ion batteries–electrochemical experiments. Electrochimica Acta, 178:525–532, 2015.
[4] Thomas Waldmann, Björn-Ingo Hogg, Michael Kasper, Sébastien Grolleau,César Gutiérrez Couceiro, Khiem Trad, Bramy Pilipili Matadi, and Margret Wohlfahrt-Mehrens. Interplay of operational parameters on lithium deposition in lithium-ion cells: systematic measurements with reconstructed 3-electrode pouch full cells. Journal of The Electrochemical Society, 163(7):A1232, 2016.
[5] Bernhard Rieger, Simon F Schuster, Simon V Erhard, Patrick J Osswald, Alexan-der Rheinfeld, Christopher Willmann, and Andreas Jossen. Multi-directional laser scanning as innovative method to detect local cell damage during fast charging of lithium-ion cells. Journal of Energy Storage, 8:1–5, 2016.
[6] C Uhlmann, J Illig, M Ender, R Schuster, and E Ivers-Tiffée. In situ detection of lithium metal plating on graphite in experimental cells. Journal of Power Sources, 279:428–438, 2015.
[7] JC Burns, DA Stevens, and JR Dahn. In-situ detection of lithium plating using high precision coulometry. Journal of the Electrochemical Society, 162(6):A959, 2015.
[8] Umamaheswari Janakiraman, Taylor R Garrick, and Mary E Fortier. Lithium plating detection methods in li-ion batteries. Journal of the Electrochemical society,167(16):160552, 2020.
[9] Yuanli Ding, Zachary P Cano, Aiping Yu, Jun Lu, and Zhongwei Chen. Automo-tive li-ion batteries: current status and future perspectives. Electrochemical Energy Reviews, 2:1–28, 2019.
[10] Bruno Scrosati and Jürgen Garche. Lithium batteries: Status, prospects and future.Journal of power sources, 195(9):2419–2430, 2010.
[11] Mahmoud Madian, Alexander Eychmüller, and Lars Giebeler. Current advances in tio2-based nanostructure electrodes for high performance lithium ion batteries.Batteries, 4(1):7, 2018.
[12] Pankaj Arora, Ralph E White, and Marc Doyle. Capacity fade mechanisms and side reactions in lithium-ion batteries. Journal of the Electrochemical Society,145(10):3647, 1998.
[13] Jens Vetter, Petr Novák, Markus Robert Wagner, Claudia Veit, K-C Möller, JO Besenhard, Martin Winter, Margret Wohlfahrt-Mehrens, Christoph Vogler, and Abderrezak Hammouche. Ageing mechanisms in lithium-ion batteries. Journal of power sources, 147(1-2):269–281, 2005.
[14] Xuebing Han, Languang Lu, Yuejiu Zheng, Xuning Feng, Zhe Li, Jianqiu Li, and Minggao Ouyang. A review on the key issues of the lithium ion battery degradation among the whole life cycle. ETransportation, 1:100005, 2019.
[15] Simon EJ O’Kane, Weilong Ai, Ganesh Madabattula, Diego Alonso-Alvarez, Robert Timms, Valentin Sulzer, Jacqueline Sophie Edge, Billy Wu, Gregory J Offer, and Monica Marinescu. Lithium-ion battery degradation: how to model it. Physical Chemistry Chemical Physics, 24(13):7909–7922, 2022.
[16] Sourav Das and Pranav Shrotriya. Electrochemical mechanism underlying lithium plating in batteries: Non-invasive detection and mitigation. Energies,17(23):5930,2024.
[17] Qianqian Liu, Chunyu Du, Bin Shen, Pengjian Zuo, Xinqun Cheng, Yulin Ma,Geping Yin, and Yunzhi Gao. Understanding undesirable anode lithium plating is- sues in lithium-ion batteries. RSC advances, 6(91):88683–88700, 2016.
[18] Yue Yin and Xiaoli Dong. Electrolyte engineering and material modification forgraphite-based lithium-ion batteries operated at low temperature.InterdisciplinaryMaterials, 2(4):569–588, 2023.
[19] Jiang Fan and Steven Tan. Studies on charging lithium-ion cells at low temperatures.Journal of The Electrochemical Society, 153(6):A1081, 2006.
[20] Minggao Ouyang, Zhengyu Chu, Languang Lu, Jianqiu Li, Xuebing Han, Xun-ing Feng, and Guangming Liu. Low temperature aging mechanism identificationand lithium deposition in a large format lithium iron phosphate battery for different charge profiles. Journal of Power Sources, 286:309–320, 2015.
[21] Simon Tippmann, Daniel Walper, Luis Balboa, Bernd Spier, and Wolfgang G Bessler. Low-temperature charging of lithium-ion cells part i: Electrochemical modeling and experimental investigation of degradation behavior. Journal of Power Sources, 252:305–316, 2014.
[22] Zhenhai Gao, Haicheng Xie, Xianbin Yang, Wanfa Niu, Shen Li, and Siyan Chen.The dilemma of c-rate and cycle life for lithium-ion batteries under low temperature fast charging. Batteries, 8(11):234, 2022.
[23] Tao Gao, Yu Han, Dimitrios Fraggedakis, Supratim Das, Tingtao Zhou, Che-Ning Yeh, Shengming Xu, William C Chueh, Ju Li, and Martin Z Bazant. Interplay of lithium intercalation and plating on a single graphite particle. Joule, 5(2):393–414,2021.
[24] Alvin J Salkind, Craig Fennie, Pritpal Singh, Terrill Atwater, and David E Reisner. Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology. Journal of Power sources, 80(1-2):293–300, 1999.
[25] Mark W Verbrugge and Robert S Conell. Electrochemical and thermal characterization of battery modules commensurate with electric vehicle integration. Journal of the Electrochemical Society, 149(1):A45, 2001.
[26] Aden Seaman, Thanh-Son Dao, and John McPhee. A survey of mathematics-based equivalent-circuit and electrochemical battery models for hybrid and electric vehicle simulation. Journal of Power Sources, 256:410–423, 2014
[27] Paul WC Northrop, Bharatkumar Suthar, Venkatasailanathan Ramadesigan, Shriram Santhanagopalan, Richard D Braatz, and Venkat R Subramanian. Efficient simulation and reformulation of lithium-ion battery models for enabling electric transportation. Journal of The Electrochemical Society, 161(8):E3149, 2014.
[28] Adrien M Bizeray, Shi Zhao, Stephen R Duncan, and David A Howey. Lithium-ion battery thermal-electrochemical model-based state estimation using orthogonal collocation and a modified extended kalman filter. Journal of Power Sources, 296:400–412, 2015.
[29] Venkatasailanathan Ramadesigan, Paul WC Northrop, Sumitava De, Shriram San-thanagopalan, Richard D Braatz, and Venkat R Subramanian. Modeling and simulation of lithium-ion batteries from a systems engineering perspective. Journal of the electrochemical society, 159(3):R31, 2012.
[30] Marc Doyle, John Newman, Antoni S Gozdz, Caroline N Schmutz, and Jean-Marie Tarascon. Comparison of modeling predictions with experimental data from plastic lithium ion cells. Journal of the electrochemical society, 143(6):1890, 1996.
[31] Karthikeyan Kumaresan, Godfrey Sikha, and Ralph E White. Thermal model for a li-ion cell. Journal of the Electrochemical Society, 155(2):A164, 2007.
[32] Pouya Hashemzadeh, Martin Désilets, Marcel Lacroix, and Ali Jokar. Investigation of the p2d and of the modified single-particle models for predicting the nonlinear behavior of li-ion batteries. Journal of Energy Storage, 52:104909, 2022.
[33] Ali Jokar, Barzin Rajabloo, Martin Désilets, and Marcel Lacroix. Review of simplified pseudo-two-dimensional models of lithium-ion batteries. Journal of Power Sources, 327:44–55, 2016.
[34] John Newman and William Tiedemann. Porous-electrode theory with battery applications. AIChE Journal, 21(1):25–41, 1975.
[35] John Newman and Nitash P Balsara. Electrochemical systems. John Wiley & Sons,2021.
[36] Marc Doyle, Thomas F Fuller, and John Newman. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. Journal of the Electrochemical society, 140(6):1526, 1993.
[37] Tanvir R Tanim, Christopher D Rahn, and Chao-Yang Wang. A temperature dependent, single particle, lithium ion cell model including electrolyte diffusion. Journal of Dynamic Systems, Measurement, and Control, 137(1):011005, 2015.
[38] Sangwoo Han, Yifan Tang, and Saeed Khaleghi Rahimian. A numerically efficient method of solving the full-order pseudo-2-dimensional (p2d) li-ion cell model. Journal of Power Sources, 490:229571, 2021.
[39] Dongsheng Ren, Kandler Smith, Dongxu Guo, Xuebing Han, Xuning Feng, Lan-guang Lu, Minggao Ouyang, and Jianqiu Li. Investigation of lithium plating-stripping process in li-ion batteries at low temperature using an electrochemicalmodel. Journal of The Electrochemical Society, 165(10):A2167, 2018.
[40] Arif Hussain, Zhiyu Mao, Mei Li, Moin Ahmed, Wenting Xu, Jing Zhang, and Zhongwei Chen. A comprehensive review of the pseudo-two-dimensional (p2d) model: Model development, solutions methods, and applications. Advanced Theory and Simulations, 8(5):2401016, 2025.
[41] Kudakwashe Chayambuka, Grietus Mulder, Dmitri L Danilov, and Peter HL Notten.Determination of state-of-charge dependent diffusion coefficients and kinetic rate constants of phase changing electrode materials using physics-based models. Journal of Power Sources Advances, 9:100056, 2021.
[42] Andrea Lamorgese, Roberto Mauri, and Bernardo Tellini. Electrochemical-thermal p2d aging model of a licoo2/graphite cell: Capacity fade simulations. Journal of Energy Storage, 20:289–297, 2018.
[43] Vincent Laue, Fridolin Röder, and Ulrike Krewer. Practical identifiability of electrochemical p2d models for lithium-ion batteries. Journal of Applied Electrochemistry,51(9):1253–1265, 2021.
[44] WRAH Weppner and Robert A Huggins. Determination of the kinetic parameters of mixed-conducting electrodes and application to the system li3sb. Journal of The Electrochemical Society, 124(10):1569, 1977.
[45] Chang-Hui Chen, Ferran Brosa Planella, Kieran O'regan, Dominika Gastol,W Dhammika Widanage, and Emma Kendrick. Development of experimental techniques for parameterization of multi-scale lithium-ion battery models. Journal of The Electrochemical Society, 167(8):080534, 2020.
[46] Christian von Lüders, Jonas Keil, Markus Webersberger, and Andreas Jossen. Modeling of lithium plating and lithium stripping in lithium-ion batteries. Journal of Power Sources, 414:41–47, 2019.
[47] Hao Ge, Tetsuya Aoki, Nobuhisa Ikeda, Sohei Suga, Takuma Isobe, Zhe Li, Yuichiro Tabuchi, and Jianbo Zhang. Investigating lithium plating in lithium-ion batteries at low temperatures using electrochemical model with nmr assisted parameterization.Journal of The Electrochemical Society, 164(6):A1050, 2017.
[48] Jonas Keil and Andreas Jossen. Electrochemical modeling of linear and nonlinear aging of lithium-ion cells. Journal of The Electrochemical Society, 167(11):110535,2020.
[49] Kenneth C Nwanoro, Michael P Mercer, and Harry E Hoster. Assessment and comparative study of free and commercial numerical software packages for lithium-ion battery modeling. Advanced Theory and Simulations, page e00302, 2025.
[50] Valentin Sulzer, Scott G Marquis, Robert Timms, Martin Robinson, and S Jon Chapman. Python battery mathematical modelling (pybamm). Journal of Open Research Software, 9(1), 2021.
[51] Mukundh Balabhadra and Yogith Madha. Estimation of degradation modes for lithium-ion batteries estimation of degradation modes of an aged battery using opencircuit voltage curves. 2024.
[52] Kieran O’Regan, Ferran Brosa Planella, W Dhammika Widanage, and EmmaKendrick. Thermal-electrochemical parameters of a high energy lithium-ion cylindrical battery. Electrochimica Acta, 425:140700, 2022.
[53] Madeleine Ecker, Thi Kim Dung Tran, Philipp Dechent, Stefan Käbitz, Alexander Warnecke, and Dirk Uwe Sauer. Parameterization of a physico-chemical model of a lithium-ion battery: I. determination of parameters. Journal of The Electrochemical Society, 162(9):A1836, 2015.
[54] Peyman Mohtat, Suhak Lee, Valentin Sulzer, Jason B Siegel, and Anna G Ste-fanopoulou. Differential expansion and voltage model for li-ion batteries at practical charging rates. Journal of The Electrochemical Society, 167(11):110561, 2020.
[55] Eric Prada, D Di Domenico, Y Creff, J Bernard, Valérie Sauvant-Moynot, and François Huet. A simplified electrochemical and thermal aging model of lifepo4-graphite li-ion batteries: power and capacity fade simulations. Journal of The Electrochemical Society, 160(4):A616, 2013.
[56] Valentin Sulzer, Peyman Mohtat, Sravan Pannala, Jason B Siegel, and Anna G Stefanopoulou. Accelerated battery lifetime simulations using adaptive inter-cycle extrapolation algorithm. Journal of The Electrochemical Society, 168(12):120531,2021.
[57] Ian D Campbell, Mohamed Marzook, Monica Marinescu, and Gregory J Offer. How observable is lithium plating? differential voltage analysis to identify and quantify lithium plating following fast charging of cold lithium-ion batteries. Journal of the electrochemical society, 166(4):A725–A739, 2019.
[58] Simon EJ O'Kane, Ian D Campbell, Mohamed WJ Marzook, Gregory J Offer,and Monica Marinescu. Physical origin of the differential voltage minimum associated with lithium plating in li-ion batteries. Journal of The Electrochemical Society,167(9):090540, 2020.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100183-
dc.description.abstract鋰離子電池在儲能應用中佔有重要地位,然而在低溫或快速充電條件下,容易發生鋰鍍覆反應 (即鋰金屬沉積),進而導致容量衰退與短路風險增加。因此,了鋰鍍覆機制及其安全操作區域,對於設計兼具效率與安全性的充電策略至關重要。
本研究基於 PyBaMM 電池模擬平台,建構具備鋰鍍覆反應計算能力之 P2D電化學模型,並以過電位變化作為鋰鍍覆與剝離行為轉換的判斷依據,定義過電位轉為負值之時間點為鋰鍍覆反應啟動的臨界時間點。研究針對不同充電倍率(C-rate)與溫度條件,分別分析兩段時間區間:其一為充電至商用電池電壓上限4.2 V 的「全程充電階段」,其二為「鋰鍍覆發生前充電階段」。
分析結果顯示,鋰鍍覆量並非單純隨溫度降低及充電速率提高而增加,而是會受到截止電壓限制的影響,在低溫高倍率條件下,由於系統過早達到截止電壓,鋰鍍覆無足夠時間持續發生,因而呈現非線性的變化趨勢。在−10◦C / 0.2 C至 25◦C / 1.0 C 以上形成無鋰鍍覆的操作區域,為安全充電範圍。鋰鍍覆最嚴重的條件出現在 −10◦C / 1.8 C,鍍覆量佔比最高。在效率評估中,25◦C / 1.2 C 為一小時內充至 SOC 50%,的效率最佳條件;相對地,−10◦C / 1.8 C 為效率最低條件。
綜上所述,本研究透過電化學模型模擬結果建立了一套評估鋰鍍覆反應發生區域及其嚴重度的方法,可以作為未來充電策略設計的參考。
zh_TW
dc.description.abstractLithium-ion batteries play a crucial role in energy storage applications. However, under low-temperature or fast-charging conditions, they are prone to lithium metal deposition (i.e., lithium plating), which leads to capacity degradation and increased risk of internal short circuits. Understanding the mechanism of lithium plating and identifying its safe operating region is essential for developing charging strategies that balance efficiency and safety.
In this study, a pseudo-two-dimensional (P2D) electrochemical model incorporating lithium plating reactions was developed based on the PyBaMM simulation platform. The model uses overpotential behavior to determine the onset and reversal of lithium plating and stripping. The onset of lithium plating is defined as the moment when the overpotential becomes negative. Two time intervals were analyzed under various C-rates and temperature conditions: (1) the full charging stage, defined as the charging period up to the commercial voltage limit of 4.2 V, and (2) the pre-plating charging stage, defined as the charging duration before lithium plating begins.
The analysis shows that the amount of lithium plating does not simply increase with lower temperatures and higher charging rates, but is instead affected by the cutoff voltage.Under low-temperature and high-rate conditions, the system reaches the cutoff voltage prematurely, leaving insufficient time for continuous lithium plating, resulting in a nonlinear plating trend. An operating range from −10 ◦C / 0.2 C to 25 ◦C / 1.0 C and above forms a safe charging window with virtually no lithium plating. The most severe plating occurs at −10 ◦C / 1.8 C, where the proportion of plated lithium reaches its maximum. In terms of efficiency evaluation, 25 ◦C / 1.2 C is identified as the optimal condition, achieving 50% SOC within one hour, whereas −10 ◦C / 1.8 C shows the lowest efficiency.
In summary, this study used electrochemical model simulations to establish a method for evaluating the occurrence and severity of lithium plating. These results can serve as a reference for future charging strategy design.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-24T16:46:26Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-24T16:46:26Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 ....................................................... i
摘要 ....................................................... ii
Abstract ................................................... iv
目次 ....................................................... vi
圖次 ..................................................... ix
表次 ..................................................... xi
符號列表 ................................................... xii
第一章 緒論 .............................................. 1
1.1 研究背景與動機 ....................................... 1
1.2 鋰離子電池 ........................................... 2
1.3 鋰鍍覆機制與反應行為 ................................. 3
1.3.1 鋰金屬鍍覆之電化學行為 ........................... 4
1.3.2 低溫與高速率充電效應 ............................. 5
1.3.3 鋰鍍覆觸發機制 ................................... 7
第二章 研究方法 ......................................... 10
2.1 鋰離子電池模型 ....................................... 10
2.2 偽二維模型(P2D) ................................... 11
2.2.1 鋰離子質量傳輸方程 ............................... 13
2.2.2 歐姆定律 ......................................... 15
2.2.3 電荷轉移方程 ..................................... 17
2.2.4 熱能平衡與產熱方程 ............................... 19
2.3 鋰鍍覆反應模型架構 ................................. 20
2.4 PyBaMM .............................................. 26
2.5 PyBaMM 模擬設置 ..................................... 27
2.6 實驗設置 ............................................ 28
2.6.1 實驗設計與流程 ................................... 29
2.6.2 電池活化階段 ..................................... 29
2.6.3 鋰鍍覆行為測試 ................................... 30
2.6.4 數據平滑處理 ..................................... 30
第三章 系統設置與結果 ................................. 31
3.1 電壓曲線 ............................................ 31
3.2 電流密度曲線 ........................................ 33
3.3 全程充電階段 ........................................ 37
3.3.1 鋰嵌入量趨勢分析 .................................. 37
3.3.2 鋰鍍覆量趨勢分析 .................................. 38
3.3.3 鋰鍍覆反應區域 .................................... 40
3.3.4 鋰鍍覆嚴重程度分析 ................................ 42
3.3.5 鋰鍍覆實驗驗證 .................................... 44
3.4 鋰鍍覆前充電階段 .................................... 45
3.4.1 鋰鍍覆起始電壓 .................................... 46
3.4.2 SOC 趨勢分析 ..................................... 46
第四章 結論與未來展望 ................................. 50
4.1 結論 ................................................ 50
4.2 未來展望 ............................................ 51
參考文獻 .................................................. 53
-
dc.language.isozh_TW-
dc.subject鋰鍍覆反應zh_TW
dc.subject鋰離子電池zh_TW
dc.subjectPyBaMMzh_TW
dc.subject副反應機制zh_TW
dc.subject電化學模擬zh_TW
dc.subjectElectrochemical simulationen
dc.subjectPyBaMMen
dc.subjectLithium platingen
dc.subjectLithium-ion batteriesen
dc.subjectSide reaction mechanismsen
dc.title應用 PyBaMM 之偽二維模型評估鋰鍍覆反應zh_TW
dc.titleAssessment of lithium plating using a pseudo-two-dimensional model in PyBaMMen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳國慶;陳柏端;蔡秉均zh_TW
dc.contributor.oralexamcommitteeKuo-Ching Chen;Po-Tuan Chen;Ping-Chun Tsaien
dc.subject.keyword鋰離子電池,鋰鍍覆反應,電化學模擬,副反應機制,PyBaMM,zh_TW
dc.subject.keywordLithium-ion batteries,Lithium plating,Electrochemical simulation,Side reaction mechanisms,PyBaMM,en
dc.relation.page61-
dc.identifier.doi10.6342/NTU202502924-
dc.rights.note未授權-
dc.date.accepted2025-08-14-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
15.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved