Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 重點科技研究學院
  3. 元件材料與異質整合學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100180
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張子璿zh_TW
dc.contributor.advisorTzu-Hsuan Changen
dc.contributor.author洪睿哲zh_TW
dc.contributor.authorRuei-Jhe Hongen
dc.date.accessioned2025-09-24T16:45:51Z-
dc.date.available2025-09-25-
dc.date.copyright2025-09-24-
dc.date.issued2025-
dc.date.submitted2025-08-13-
dc.identifier.citation1. Wei, T., et al., Two dimensional semiconducting materials for ultimately scaled transistors. IScience, 2022. 25(10).
2. Zhao, G., C. Song, and B. Wu, 3D Integrated Circuit (3D IC) Technology and Its Applications. Journal of Industrial Engineering and Applied Science, 2024. 2(4): p. 60–65.
3. Medhat, D., M. Dessouky, and D. Khalil, A programmable checker for automated 2.5 D/3D IC latch-up verification and hot junctions detection. Microelectronics Reliability, 2021. 124: p. 114310.
4. Tavakkoli, F., et al., Analysis of critical thermal issues in 3D integrated circuits. International Journal of Heat and Mass Transfer, 2016. 97: p. 337–352.
5. Sakthivel, R., et al., Heterostructures of 2D materials and their applications in biosensing. Progress in Materials Science, 2023. 132: p. 101024.
6. Wang, Q., et al., Retracted Article: Graphene–SnO 2 nanocomposites decorated with quantum tunneling junctions: preparation strategies, microstructures and formation mechanism. Physical Chemistry Chemical Physics, 2014. 16(36): p. 19351–19357.
7. Mas-Balleste, R., et al., 2D materials: to graphene and beyond. Nanoscale, 2011. 3(1): p. 20–30.
8. Nayak, L., et al., A review on inkjet printing of nanoparticle inks for flexible electronics. Journal of Materials Chemistry C, 2019. 7(29): p. 8771–8795.
9. Manzeli, S., et al., 2D transition metal dichalcogenides. Nature Reviews Materials, 2017. 2(8): p. 1–15.
10. Nazari, B., et al., Dispersing graphene in aqueous media: Investigating the effect of different surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019. 582: p. 123870.
11. Hou, F., et al., Review of packaging schemes for power module. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019. 8(1): p. 223–238.
12. Zhang, S., et al., Challenges and recent prospectives of 3D heterogeneous integration. e-Prime-Advances in Electrical Engineering, Electronics and Energy, 2022. 2: p. 100052.
13. Wang, H., et al., A review of system-in-package technologies: application and reliability of advanced packaging. Micromachines, 2023. 14(6): p. 1149.
14. Balandin, A.A., et al., Superior thermal conductivity of single-layer graphene. Nano letters, 2008. 8(3): p. 902–907.
15. Yuan, F., et al., Surface modification and magnetic alignment of hexagonal boron nitride nanosheets for highly thermally conductive composites. RSC advances, 2017. 7(69): p. 43380–43389.
16. Wang, T., et al., Enhanced thermal conductivity of polyimide composites with boron nitride nanosheets. Scientific reports, 2018. 8(1): p. 1557.
17. Wang, F., et al., Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites. Journal of materials science, 2015. 50(3): p. 1082–1093.
18. Akhtar, M.W., et al., Alumina-graphene hybrid filled epoxy composite: Quantitative validation and enhanced thermal conductivity. Composites Part B: Engineering, 2017. 131: p. 184–195.
19. Roh, M.-H., et al., Pressureless bonding by micro-sized silver particle paste for high-temperature electronic packaging. Materials Transactions, 2016. 57(7): p. 1209–1214.
20. Wen, Y., et al., Advances on thermally conductive epoxy‐based composites as electronic packaging underfill materials—A review. Advanced Materials, 2022. 34(52): p. 2201023.
21. Standardization, I.O.f., Determination of Thermal Conductivity and Thermal Diffusivity—Part 2, in Transient Plane Heat Source (Hot Disc) Method. 2015, ISO Copyright Office: Geneva, Switzerland.
22. Sundar, R. and C. Sudha, Thermal Transport and Thermal Diffusivity by Laser Flash Technique: A Review. International Journal of Thermophysics, 2025. 46(1): p. 13.
23. Joshi, C., Effects of Thermal Interface Materials on Thermal Conductivity Measurement Using a Modified ASTM D5470 Thermal Resistance Tester. 2025.
24. Hu, Y., et al., Novel micro-nano epoxy composites for electronic packaging application: Balance of thermal conductivity and processability. Composites Science and Technology, 2021. 209: p. 108760.
25. Isarn, I., et al., New BN-epoxy composites obtained by thermal latent cationic curing with enhanced thermal conductivity. Composites Part A: Applied Science and Manufacturing, 2017. 103: p. 35–47.
26. Chung, M.-H., et al., Silane modification on mesoporous silica coated carbon nanotubes for improving compatibility and dispersity in epoxy matrices. Composites Part A: Applied Science and Manufacturing, 2015. 78: p. 1–9.
27. Lin, R.-T., Study of High Thermal Conductive Graphene-based Composites and Its Controllable Electrical Application on Device Packaging, in Graduate Institute of Electronics Engineering. 2022, National Taiwan University. p. 99.
28. Ma, J., et al., Solubility study on the surfactants functionalized reduced graphene oxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018. 538: p. 79–85.
29. Johnson, D.W., B.P. Dobson, and K.S. Coleman, A manufacturing perspective on graphene dispersions. Current Opinion in Colloid & Interface Science, 2015. 20(5-6): p. 367–382.
30. Zhao, H., et al., Growth and Raman spectra of single-crystal trilayer graphene with different stacking orientations. Acs Nano, 2014. 8(10): p. 10766–10773.
31. Park, S.-J. and M.-K. Seo, Intermolecular force. Interface science and technology, 2011. 18: p. 1–57.
32. Lunardi, C.N., et al., Experimental methods in chemical engineering: Zeta potential. The Canadian Journal of Chemical Engineering, 2021. 99(3): p. 627–639.
33. You, X., et al., Preparation of high concentration graphene dispersion with low boiling point solvents. Journal of Nanoparticle Research, 2019. 21(1): p. 19.
34. Mao, M., et al., Facile and economical mass production of graphene dispersions and flakes. Journal of Materials Chemistry A, 2014. 2(12): p. 4132–4135.
35. White, B., et al., Zeta-potential measurements of surfactant-wrapped individual single-walled carbon nanotubes. The Journal of Physical Chemistry C, 2007. 111(37): p. 13684–13690.
36. Ardebili, H., J. Zhang, and M.G. Pecht, Encapsulation technologies for electronic applications. 2018: William Andrew.
37. Vitiello, D., et al., Thermal conductivity of porous refractory material after aging in service with carbon pick-up. Open Ceramics, 2022. 11: p. 100294.
38. Zhang, H., Y.-M. Li, and W.-Q. Tao, Theoretical accuracy of anisotropic thermal conductivity determined by transient plane source method. International Journal of Heat and Mass Transfer, 2017. 108: p. 1634–1644.
39. Zeng, Z., C. Mueller, and B. Mihiretie, Extending the Transient Plane Source Scanning method for determining the specific heat capacity of low thermal conductivity materials through a numerical study. Thermochimica Acta, 2024. 742: p. 179883.
40. Tiwari, R., et al., Advancing sustainable practices: Transient plane source methodology for analyzing thermophysical properties and enhancement wood as a thermal insulator. Developments in the Built Environment, 2024. 20: p. 100539.
41. Bohac, V., et al., Parameter estimations for measurements of thermal transport properties with the hot disk thermal constants analyzer. Review of scientific instruments, 2000. 71(6): p. 2452–2455.
42. Pisello, A.L., et al., Multipurpose experimental characterization of smart nanocomposite cement-based materials for thermal-energy efficiency and strain-sensing capability. Solar Energy Materials and Solar Cells, 2017. 161: p. 77–88.
43. Pokharel, P., et al., Effects of titanate treatment on morphology and mechanical properties of graphene nanoplatelets/high density polyethylene nanocomposites. Journal of Applied Polymer Science, 2015. 132(23).
44. Cai, Q., et al., High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion. Science advances, 2019. 5(6): p. eaav0129.
45. Yuan, C., et al., Modulating the thermal conductivity in hexagonal boron nitride via controlled boron isotope concentration. Communications physics, 2019. 2(1): p. 43.
46. Yang, M., et al., Glucose-assisted exfoliation of hexagonal boron nitride nanosheets and modification with hyperbranched polymers for thermally conductive epoxy composites: implications for thermal management. ACS Applied Nano Materials, 2022. 5(11): p. 16315–16324.
47. Ng, F.C. and M.A. Abas, Underfill Flow in Flip-Chip Encapsulation Process: A Review. Journal of Electronic Packaging, 2021. 144(1).
48. Morokov, E. and V. Levin, Spatial resolution of acoustic microscopy in the visualization of interfaces inside a solid. Acoustical Physics, 2019. 65(2): p. 165–170.
49. Sheppard, C.J., Scanning optical microscopy, in Advances in Imaging and Electron Physics. 2020, Elsevier. p. 227–325.
50. Zhu, Y., et al., Metal pitting corrosion characterized by scanning acoustic microscopy and binary image processing. Corrosion Science, 2020. 170: p. 108685.
51. Brand, S., et al., Scanning acoustic gigahertz microscopy for metrology applications in three-dimensional integration technologies. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2014. 13(1): p. 011207–011207.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100180-
dc.description.abstract三維積體電路 (3DIC)可大幅提升元件密度,突破傳統製程的限制,然而其垂直堆疊架構亦導致嚴重的熱集中問題。本篇研究提出透過結合二維石墨烯與一維奈米碳纖維 (CNFs),有效地提升封裝材料之熱導率。本研究採用兩階段分散策略,將填料導入環氧樹脂中形成連續的熱傳導網絡,而預混製程 (Pre-mixed process) 能夠有效的分散一維/二維材料避免石墨烯回疊 (Re-stacking)。研究中亦探討溶劑選擇的重要性,選擇適當溶劑可確保填料均勻分散並與環氧樹酯基材具有良好介面結合與分散特性。此外製程的應用不限於石墨烯,研究中實現以電絕緣特性佳的氮化硼 (h-BN)進行製備,進一步拓展製程的適配性,研究針對預混填料/環氧樹脂(Premix/Epoxy) 系統提出多項提升垂直熱導的策略,例如引入不同尺度的材料(零維/一維/二維材料)、提升填料分散性、建構微觀垂直熱導網絡,並透過多種量測方法 (例如Hot Disk、雷射閃光法及 ASTM D5470規範) 進行驗證。
為驗證其實用性,研究於微米級銅柱結構的覆晶封裝晶片 (flip-chip) 封裝中進行測試,掃描式超聲波分析 (Scanning Acoustic Tomography, SAT) 結果顯示,材料可實現幾乎完全填充且空洞生成極少。總結來說,本研究建立了一套可擴展的製程策略並證實能夠有效提升垂直熱導,適用於高性能之封裝材料,應用於下個世代 3DIC 及異質整合平台之需求。
zh_TW
dc.description.abstractThree-dimensional IC (3DIC) integration pushes device density far beyond conventional limits, but the vertical architecture concentrates heat seriously. This work outlines an integrated approach to boost underfill thermal conductivity by pairing two-dimensional graphene with one-dimensional carbon nanofibers (CNFs). A two-stage dispersion route incorporates these fillers into an epoxy, knitting a continuous heat-spreading network. Careful solvent selection, most effectively N-methyl-2-pyrrolidone (NMP), secures uniform dispersion and strong filler–matrix adhesion, while the same premix protocol proves adaptable to electrically insulating h-BN systems, widening the design palette. In the work, strategies are performed to improve the thermal conductivity of the filler/epoxy system. For instance, introducing materials with different dimensions (zero-, one-, two-dimensional material), improving filler dispersion quality, and constructing the thermal dissipation network. Several axial thermal conductivity measurements (Hot Disk, laser-flash, ASTM D5470) provided thermal conductivity evidence, with the graphene/CNF premix outperforming the other cases.
Practical relevance was tested on a flip-chip assembly featuring micron-scale copper pillars. Capillary flow trials and Scanning Acoustic Tomography verified near-complete cavity fill with few voids. Collectively, the results establish a scalable strategy for manufacturing high-performance, thermally conductive underfills compatible with next-generation 3DIC and heterogeneous-integration platforms.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-24T16:45:51Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-24T16:45:51Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
目次 v
圖次 ix
表次 xiv
Chapter 1 1
Introduction and Moore’s Law 1
1.1 Introduction to IC technology and Moore’s law 1
1.2 The impact of 3DIC and its role toward miniaturization 3
1.3 Thermal conductivity issues in 3DIC 5
1.4 Introduction of two-dimensional (2D) material 7
Chapter 2 11
Challenges in 3DIC 11
2.1 IC Packaging: A Foundational Introduction 11
2.2 Importance of IC packaging in Modern Electronics 13
2.3 3D packaging and Heterogeneous Integration 15
2.4 Common solutions to 3DIC thermal conductivity issues 19
2.4.1 2D Materials for Thermal Conductivity Boost 20
2.5 Thermal conductivity measurement approaches 24
2.5.1 Hot disk method 26
2.5.2 Laser Flash Analysis 29
2.5.3 ASTM D5470 31
2.6 Recent advances in underfill material 34
Chapter 3 39
Improving Thermal Conductivity Using Graphene-Based Composite Material (GBCM) 39
3.1 Two-step process to fabricate well-dispersed underfill material 39
3.1.1 Fabrication of Graphene-based Composite Material (GBCM) 39
3.1.2 Fabrication of GBCM/epoxy composite 43
3.2 Eco-friendly premix fabrication process: water as medium 44
3.3 Material characterization of pre-mixed film made by different processes 46
3.3.1 Raman spectroscopy 46
3.3.2 Scanning Electron Microscopy 50
3.3.3 Zeta potential verification 52
3.4 Dissolution issues with epoxy 58
3.5 Surface bonding properties and Specific surface area verification 61
3.5.1 FTIR spectroscopy 61
3.5.2 Brunauer–Emmett–Teller (BET) analysis 63
Chapter 4 66
Further study of proposed underfill system 66
4.1 Anisotropic thermal conductivity measurement 66
4.2 Enhancement of underfill thermal conductivity 68
4.2.1 Parameters and requirements of the Hot disk method 68
4.2.2 Underfill κz measured through the Hot disk method 76
4.2.3 LFA measurement results 79
4.2.4 ASTM D5470 steady-state TC Measurement 81
4.3 Filler/Epoxy Interface Engineering via Titanate Coupling Agents 82
4.4 Adoptability of pre-mixed film process in h-BN system 85
4.4.1 Process flow to fabricate h-BN/CNF pre-mixed thin film 86
4.4.2 IPA residue and true density correction 87
4.4.3 Incorporation of CNT with BN/CNF 89
4.5 Flip chip bonding with underfill 91
4.5.1 Scanning Acoustic Tomography measurement 94
4.5.2 Results of underfill coverage quality 96
Chapter 5 99
Conclusion and Future Works 99
Reference 101
-
dc.language.isoen-
dc.subject三維積體電路zh_TW
dc.subject積體電路封裝zh_TW
dc.subject石墨烯zh_TW
dc.subject二維材料zh_TW
dc.subject垂直熱導zh_TW
dc.subject3DICen
dc.subjectIC Packagingen
dc.subjectThermal managementen
dc.subjectGrapheneen
dc.subjectAxial thermal conductivityen
dc.subject2D materialen
dc.title石墨烯基高熱導複合材料用於三維積體電路封裝之研究zh_TW
dc.titleHigh-Thermal-Conductivity Underfill for 3DIC Based on Graphene-based Compositesen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林致廷;吳肇欣;鄭宇翔;劉建豪zh_TW
dc.contributor.oralexamcommitteeChih-Ting Lin;Chao-Hsin Wu;Yu-Hsiang Cheng;Chien-Hao Liuen
dc.subject.keyword三維積體電路,垂直熱導,二維材料,石墨烯,積體電路封裝,zh_TW
dc.subject.keywordThermal management,3DIC,Axial thermal conductivity,2D material,Graphene,IC Packaging,en
dc.relation.page106-
dc.identifier.doi10.6342/NTU202504262-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-15-
dc.contributor.author-college重點科技研究學院-
dc.contributor.author-dept元件材料與異質整合學位學程-
dc.date.embargo-lift2030-08-07-
顯示於系所單位:元件材料與異質整合學位學程

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
4.92 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved