Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10017
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張建成,崔博翔
dc.contributor.authorSheng-Hsiang Chuangen
dc.contributor.author莊勝翔zh_TW
dc.date.accessioned2021-05-20T20:56:01Z-
dc.date.available2016-08-02
dc.date.available2021-05-20T20:56:01Z-
dc.date.copyright2011-08-02
dc.date.issued2011
dc.date.submitted2011-07-29
dc.identifier.citationAfdhal, N. H., & Nunes, D. (2004). Evaluation of liver fibrosis: A concise review. American Journal of Gastroenterology, 99(6), 1160-1174.
Agrawal, R., & Karmeshu. (2007). Ultrasonic backscattering in tissue: characterization through Nakagami-generalized inverse Gaussian distribution. Computers in Biology and Medicine, 37(2), 166-172.
Arsham, H. (1994). Dr. Arsham's Statistic Site. 9th. from http://home.ubalt.edu/ntsbarsh/Business-stat/opre504.htm
Arthur, M. J. P. (2002). Reversibility of liver fibrosis and cirrhosis following treatment for hepatitis C. Gastroenterology, 122(5), 1525-1528.
Azhari, H., Levy, Y., & Agnon, Y. (2007). Ultrasonic speed of sound dispersion imaging. Ultrasound in Medicine and Biology, 33(5), 762-767.
Bataller, R., & Brenner, D. A. (2005). Liver fibrosis. Journal of Clinical Investigation, 115(2), 209-218.
Bedossa, P., Dargere, D., & Paradis, V. (2003). Sampling variability of liver fibrosis in chronic hepatitis C. Hepatology, 38(6), 1449-1457.
Bedossa, P., & Poynard, T. (1996). An algorithm for the grading of activity in chronic hepatitis C. Hepatology, 24(2), 289-293.
Bercoff, J., Tanter, M., & Fink, M. (2004). Supersonic shear imaging: A new technique for soft tissue elasticity mapping. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 51(4), 396-409.
Braun, W. R., & Dersch, U. (1991). A Physical Mobile Radio Channel Model. IEEE Transactions on Vehicular Technology, 40(2), 472-482.
Bridal, S. L., Fornes, P., Bruneval, P., & Berger, G. (1997). Parametric (integrated backscatter and attenuation) images constructed using backscattered radio frequency signals (25-56 MHz) from human aortae in vitro. Ultrasound in Medicine and Biology, 23(2), 215-229.
Brunt, E. M. (2000). Grading and staging the histopathological lesions of chronic hepatitis. The Knodell histology activity index and beyond. Hepatology, 31(1), 241-246.
Burckhardt, C. B. (1978). Speckle in Ultrasound B-Mode Scans. IEEE Transactions on Sonics and Ultrasonics, 25(1), 1-6.
Cardillo, G. (2008). ROC curve: compute a Receiver Operating Characteristics curve.
Chapra, S. C. (2008). Applied numerical methods with MATLAB for engineers and scientists (2nd ed.). Boston: McGraw-Hill Higher Education.
Cheng, J., & Beaulieu, N. C. (2002). Generalized moment estimators for the Nakagami fading parameter. IEEE Communications Letters, 6(4), 144-146.
Cloutier, G., & Destrempes, F. (2011). Response to the Letter to the Editor-in-Chief on Manuscript Entitled: 'a Critical Review and Uniformized Representation of Statistical Distributions Modeling the Ultrasound Echo Envelope'. Ultrasound in Medicine and Biology, 37(4), 675-676.
Destrempes, F., & Cloutier, G. (2010). A Critical Review and Uniformized Representation of Statistical Distributions Modeling the Ultrasound Echo Envelope. Ultrasound in Medicine and Biology, 36(7), 1037-1051.
Dumane, V. A. (2002). Diversity and Compounding for Enhanced Discrimination of Breast Masses in Ultrasonic B-Scan Images. Drexel University.
Dutt, V. (1995). Statistical Analysis Of Ultrasound Echo Envelope. Unpublished Doctoral Dissertation, Mayo Graduate School.
Erdem, U. (2010). Intersections of line segments.
Fahey, B. J., Nightingale, K. R., Nelson, R. C., Palmeri, M. L., & Trahey, G. E. (2005). Acoustic radiation force impulse imaging of the abdomen: Demonstration of feasibility and utility. Ultrasound in Medicine and Biology, 31(9), 1185-1198.
Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861-874.
Fierbinteanu-Braticevici, C., Andronescu, D., Usvat, R., Cretoiu, D., Baicus, C., & Marinoschi, G. (2009). Acoustic radiation force imaging sonoelastography for noninvasive staging of liver fibrosis. World Journal of Gastroenterology, 15(44), 5525-5532.
Fish, P. (1990). Physics and instrumentation of diagnostic medical ultrasound. Chichester ; New York: Wiley.
Foucher, J., Chanteloup, E., Vergniol, J., Castera, L., Le Bail, B., Adhoute, X., et al. (2006). Diagnosis of cirrhosis by transient elastography (FibroScan): a prospective study. Gut, 55(3), 403-408.
Ichino, N., Osakabe, K., Nishikawa, T., Sugiyama, H., Kato, M., Kitahara, S., et al. (2010). A new index for non-invasive assessment of liver fibrosis. World Journal of Gastroenterology, 16(38), 4809-4816.
Jakeman, E., & Tough, R. J. A. (1987). Generalized K-Distribution - a Statistical-Model for Weak Scattering. Journal of the Optical Society of America a-Optics Image Science and Vision, 4(9), 1764-1772.
Jhguch. (2009). Boxplot and a probability density function of a Normal N Population.
KOLÁŘ, R., JIŘÍK, R., & JAN, J. (2004). Estimator Comparison of the Nakagami-m Parameter and Its Application in Echocardiography. Radioengineering, 13, 8-12.
Liu, W., Zagzebski, J. A., Hall, T. J., Madsen, E. L., Varghese, T., Kliewer, M. A., et al. (2008). Acoustic backscatter and effective scatterer size estimates using a 2D CMUT transducer. Physics in Medicine and Biology, 53(15), 4169-4183.
Massart, D. L., Smeyers-Verbeke, J., Capron, X., & Schlesier, K. (2005). Visual presentation of data by means of box plots. Lc Gc Europe, 18(4), 215-218.
MathWorks. MATLAB (Version R2008a). Natick, MA: The MathWorks Inc.
MedCalc. (1993). MedCalc. from http://www.medcalc.org/
Metz, C. E. (1978). Basic Principles of Roc Analysis. Seminars in Nuclear Medicine, 8(4), 283-298.
Nakagami, M. (1960). The m-Distribution, a general formula of intensity distribution of rapid fading. In W. C. Hoffman (Ed.), Statistical Methods in Radio Wave Propagation (pp. 3-36). New York: Permagon Press.
Nightingale, K., Soo, M. S., Nightingale, R., & Trahey, G. (2002). Acoustic radiation force impulse imaging: In vivo demonstration of clinical feasibility. Ultrasound in Medicine and Biology, 28(2), 227-235.
Nishiura, T., Watanabe, H., Ito, M., Matsuoka, Y., Yano, K., Daikoku, M., et al. (2005). Ultrasound evaluation of the fibrosis stage in chronic liver disease by the simultaneous use of low and high frequency probes. British Journal of Radiology, 78(927), 189-197.
Noble, J. A. (2010). Ultrasound image segmentation and tissue characterization. Proceedings of the Institution of Mechanical Engineers Part H-Journal of Engineering in Medicine, 224(H2), 307-316.
Ophir, J., Cespedes, I., Ponnekanti, H., Yazdi, Y., & Li, X. (1991). Elastography - a Quantitative Method for Imaging the Elasticity of Biological Tissues. Ultrasonic Imaging, 13(2), 111-134.
Orlacchio, A., Bolacchi, F., Petrella, M. C., Pastorelli, D., Bazzocchi, G., Angelico, M., et al. (2011). Liver Contrast Enhanced Ultrasound Perfusion Imaging in the Evaluation of Chronic Hepatitis C Fibrosis: Preliminary Results. Ultrasound in Medicine and Biology, 37(1), 1-6.
Palmentieri, B., de Sio, I., La Mura, V., Masarone, M., Vecchione, R., Bruno, S., et al. (2006). The role of bright liver echo pattern on ultrasound B-mode examination in the diagnosis of liver steatosis. Digestive and Liver Disease, 38(7), 485-489.
Papoulis, A., & Pillai, S. U. (2002). Probability, random variables, and stochastic processes (4th ed.). Boston: McGraw-Hill.
Pascal, G. (2009). Writing Fast MATLAB Code.
Raftery, H. (2010). Rough diagram of sound frequency scale.
Rice, S. O. (1945). Mathematical Analysis of Random Noise. Bell System Technical Journal, 24(1), 46-156.
Sagi, S., Guturu, P., Soloway, R., Snyder, N., & Xiao, S. Y. (2008). Standard ultrasound examination of the liver does not correlate with APRI score or histological level of fibrosis in a population with hepatitis C. American Journal of Gastroenterology, 103, S130-S130.
Sandrin, L., Fourquet, B., Hasquenoph, J. M., Yon, S., Fournier, C., Mal, F., et al. (2003). Transient elastography: A new noninvasive method for assessment of hepatic fibrosis. Ultrasound in Medicine and Biology, 29(12), 1705-1713.
Saverymuttu, S. H., Joseph, A. E. A., & Maxwell, J. D. (1986). Ultrasound Scanning in the Detection of Hepatic-Fibrosis and Steatosis. British Medical Journal, 292(6512), 13-15.
Shankar, P. M. (2000). A general statistical model for ultrasonic backscattering from tissues. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 47(3), 727-736.
Shankar, P. M. (2001). Ultrasonic tissue characterization using a generalized Nakagami model. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 48(6), 1716-1720.
Shankar, P. M. (2003). A compound scattering pdf for the ultrasonic echo envelope and its relationship to K and Nakagami distributions. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 50(3), 339-343.
Shankar, P. M. (2004). The use of the compound probability density function in ultrasonic tissue characterization. Physics in Medicine and Biology, 49(6), 1007-1015.
Shankar, P. M., Dumane, V. A., George, T., Piccoli, C. W., Reid, J. M., Forsberg, F., et al. (2003). Classification of breast masses in ultrasonic B scans using Nakagami and K distributions. Physics in Medicine and Biology, 48(14), 2229-2240.
Shankar, P. M., Dumane, V. A., Piccoli, C. W., Reid, J. M., Forsberg, F., & Goldberg, B. B. (2002). Classification of breast masses in ultrasonic B-MODE images using a compounding technique in the Nakagami distribution domain. Ultrasound in Medicine and Biology, 28(10), 1295-1300.
Shankar, P. M., Dumane, V. A., Piccoli, C. W., Reid, J. M., Forsberg, F., & Goldberg, B. B. (2003). Computer-aided classification of breast masses in ultrasonic B-scans using a multiparameter approach. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 50(8), 1002-1009.
Shankar, P. M., Dumane, V. A., Reid, J. M., Genis, V., Forsberg, F., Piccoli, C. W., et al. (2001). Classification of ultrasonic B-mode images of breast masses using Nakagami distribution. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 48(2), 569-580.
Shankar, P. M., Piccoli, C. W., Reid, J. M., Forsberg, J., & Goldberg, B. B. (2005). Application of the compound probability density function for characterization of breast masses in ultrasound B scans. Physics in Medicine and Biology, 50(10), 2241-2248.
Shankar, P. M., Reid, J. M., Ortega, H., Piccoli, C. W., & Goldberg, B. B. (1993). Use of Non-Rayleigh Statistics for the Identification of Tumors in Ultrasonic B-Scans of the Breast. IEEE Transactions on Medical Imaging, 12(4), 687-692.
Shung, K. K., Smith, M. B., & Tsui, B. M. W. (1992). Principles of medical imaging. San Diego: Academic Press.
Skbkekas. (2009). Normal quantile plot of a sample of 100 independent data values following a standard normal distribution.
Stibbe, K. J., Verveer, C., Francke, J., Hansen, B. E., Zondervan, P. E., Kuipers, E. J., et al. (2011). Comparison of non-invasive assessment to diagnose liver fibrosis in chronic hepatitis B and C patients. Scand J Gastroenterol.
Suzuki, H. (1977). A Statistical Model for Urban Radio Propogation. Communications, IEEE Transactions on, 25(7), 673-680.
Szabo, T. L. (2004). Diagnostic ultrasound imaging : inside out. Amsterdam ; Boston: Elsevier Academic Press.
Teratech. (2010). Terason t3000 Data Sheet. In T. Division (Ed.) (16-3161 Rev 3 ed.). Burlington MA.
Thijssen, J. M., & Oosterveld, B. J. (1987). Speckle and Texture in Echography - Artifact or Clinical Information. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 34(3), 387-387.
Tina, M. L., S. (2008). Hepatitis C Choices: Caring Ambassadors Program, Inc.
Tsui, P. H., & Chang, C. C. (2007). Imaging local scatterer concentrations by the Nakagami statistical model. Ultrasound in Medicine and Biology, 33(4), 608-619.
Tsui, P. H., Chang, C. C., Ho, M. C., Lee, Y. H., Chen, Y. S., Chang, C. C., et al. (2009). Use of Nakagami Statistics and Empirical Mode Decomposition for Ultrasound Tissue Characterization by a Nonfocused Transducer. Ultrasound in Medicine and Biology, 35(12), 2055-2068.
Tsui, P. H., Huang, C. C., Chang, C. C., Wang, S. H., & Shung, K. K. (2007). Feasibility study of using high-frequency ultrasonic Nakagami imaging for characterizing the cataract lens in vitro. Physics in Medicine and Biology, 52(21), 6413-6425.
Tsui, P. H., & Wang, S. H. (2004). The effect of transducer characteristics on the estimation of Nakagami paramater as a function of scatterer concentration. Ultrasound in Medicine and Biology, 30(10), 1345-1353.
Tsui, P. H., Yeh, C. K., & Chang, C. C. (2008). Noise Effect on the Performance of Nakagami Image in Ultrasound Tissue Characterization. Journal of Medical and Biological Engineering, 28(4), 197-202.
Tsui, P. H., Yeh, C. K., Chang, C. C., & Chen, W. S. (2008). Performance evaluation of ultrasonic Nakagami image in tissue characterization. Ultrasonic Imaging, 30(2), 78-94.
Tsui, P. H., Yeh, C. K., Chang, C. C., & Liao, Y. Y. (2008). Classification of breast masses by ultrasonic Nakagami imaging: a feasibility study. Physics in Medicine and Biology, 53(21), 6027-6044.
Tsui, P. H., Yeh, C. K., Liao, Y. Y., Chang, C. C., Kuo, W. H., Chang, K. J., et al. (2010). Ultrasonic Nakagami Imaging: A Strategy to Visualize the Scatterer Properties of Benign and Malignant Breast Tumors. Ultrasound in Medicine and Biology, 36(2), 209-217.
Tuthill, T. A., Sperry, R. H., & Parker, K. J. (1988). Deviations from Rayleigh Statistics in Ultrasonic Speckle. Ultrasonic Imaging, 10(2), 81-89.
Vecchi, V. L., Soresi, M., Colomba, C., Mazzola, G., Colletti, P., Mineo, M., et al. (2010). Transient elastography: A non-invasive tool for assessing liver fibrosis in HIV/HCV patients. World Journal of Gastroenterology, 16(41), 5225-5232.
Vered, Z., Mohr, G. A., Barzilai, B., Gessler, C. J., Wickline, S. A., Wear, K. A., et al. (1989). Ultrasound Integrated Backscatter Tissue Characterization of Remote Myocardial-Infarction in Human-Subjects. Journal of the American College of Cardiology, 13(1), 84-91.
Waag, R. C. (1984). A Review of Tissue Characterization from Ultrasonic Scattering. IEEE Transactions on Biomedical Engineering, 31(12), 884-893.
Wang, M. H., Palmeri, M. L., Guy, C. D., Yang, L., Hedlund, L. W., Diehl, A. M., et al. (2009). In Vivo Quantification of Liver Stiffness in a Rat Model of Hepatic Fibrosis with Acoustic Radiation Force. Ultrasound in Medicine and Biology, 35(10), 1709-1721.
Wells, P. N. T., & Halliwell, M. (1981). Speckle in Ultrasonic-Imaging. Ultrasonics, 19(5), 225-229.
Weng, L., Reid, J. M., Shankar, P. M., & Soetanto, K. (1991). Ultrasound Speckle Analysis Based on the K-Distribution. Journal of the Acoustical Society of America, 89(6), 2992-2995.
Wilk, M. B., & Gnanades.R. (1968). Probability Plotting Methods for Analysis of Data. Biometrika, 55(1), 1-&.
Yamada, H., Ebara, M., Yamaguchi, T., Okabe, S., Fukuda, H., Yoshikawa, M., et al. (2006). A pilot approach for quantitative assessment of liver fibrosis using ultrasound: preliminary results in 79 cases. Journal of Hepatology, 44(1), 68-75.
Yamaguchi, T., & Hachiya, H. (1998). Estimation of the scatterer distribution of the cirrhotic liver using ultrasonic image. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 37(5B), 3093-3096.
Yamaguchi, T., & Hachiya, H. (1999). Modeling of the cirrhotic liver considering the liver lobule structure. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 38(5B), 3388-3392.
Yamaguchi, T., & Hachiya, H. (2010). Proposal of a parametric imaging method for quantitative diagnosis of liver fibrosis. Journal of Medical Ultrasonics, 37(4), 155-166.
Yamaguchi, T., Hachiya, H., Kamiyama, N., Ikeda, K., & Moriyasu, N. (2001). Estimation of characteristics of echo envelope using RF echo signal from the liver. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 40(5B), 3900-3904.
Yeh, W. C., Huang, S. W., & Li, P. C. (2003). Liver fibrosis grade classification with B-mode ultrasound. Ultrasound in Medicine and Biology, 29(9), 1229-1235.
Yeh, W. C., Jeng, Y. M., Li, C. H., Lee, P. H., & Li, P. C. (2005). Liver steatosis classification using high-frequency ultrasound. Ultrasound in Medicine and Biology, 31(5), 599-605.
Yeh, W. C., Li, P. C., Jeng, Y. M., Hsu, H. C., Kuo, P. L., Li, M. L., et al. (2002). Elastic modulus measurements of human liver and correlation with pathology. Ultrasound in Medicine and Biology, 28(4), 467-474.
Zhang, Q. T. (2002). A note on the estimation of Nakagami-m fading parameter. IEEE Communications Letters, 6(6), 237-238.
Zhou, X.-h., McClish, D. K., & Obuchowski, N. A. (2011). Statistical methods in diagnostic medicine (2nd ed.). Hoboken, N.J.: Wiley.
余承霏. (2008). 使用超音波訊息理論熵定量生物組織特性. 國立臺灣大學.
崔博翔. (2005). 研發超音波逆散射統計參數以應用於組織特性識別的相關考量. 中原大學, 桃園縣.
張家瑋. (2009). 使用超音波參數影像與紋理分析評分肝臟纖維化程度. 國立臺灣大學.
楊偉業. (2010). 以超音波Nakagami影像與組織基頻諧波能量比定量生物組織散射子與介質特性. 國立臺灣大學.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10017-
dc.description.abstract本研究致力於探討超音波影像於臨床肝纖維化診斷的應用,主要針對超音波RF訊號轉換後的包絡線訊號,探究其正常組織與病變組織統計分佈上的差異。肝硬化幾乎是一個不可逆的過程,且目前尚無有效的方法對已經硬化的肝進行復原。肝硬化形成的機制是肝細胞受到傷害後引發一系列慢性的、長期性的退化,結果導致肝臟內部結構重組。通常肝纖維化與脂肪肝的演發,都有可能促使肝硬化的加劇。侵入式診斷例如肝穿刺切片,會造成病人的痛苦且帶有些微機率的後遺症。所以現在臨床上希望建立起一套有效且可靠的非侵入式評分方法,期望能預測到早期的肝硬化現象。
超音波B-Mode影像存在斑紋現象,屬於一種逆散射訊號隨機干涉造成的結果。文獻中提到,這種斑紋現象在肝臟纖維化或脂肪肝的情況中,且具有某種程度的鑑別程度。斑紋現象的RF訊號特性,與該組織散射粒子密度有一定關係,且斑紋所呈現的樣式在健康與疾病組織中也會有所差異。三種分析方法在本研究中被使用:Nakagami-m參數分析、Yamaguchi方法分析、ACRA(adaptive criteria-referenced assessment)方法分析。Nakagami-m參數分析使用m值來描述分析區域的訊號分佈情形(m<1: pre-Rayleigh, m=1: Rayleigh, m>1: post- Rayleigh),從文獻中已經證實對乳房腫瘤與眼球白內障有著很好的判斷效果。Yamaguchi方法分析使用仿體實驗得到的結果所做的參數假設,去判斷該分析區域是否為纖維化組織。ACRA方法則是本實驗室的原創方法,其特點是能適應各種不同的實驗條件,與自身正常組的標準常模進行差異比較,得到的差異程度可有效反映到肝臟纖維化的病變。
實驗結果顯示,在老鼠肝臟離體實驗中,Nakagami-m參數與ACRA方法在老鼠肝臟離體實驗有效地將正常組與纖維化組老鼠區分開來。本研究利用接受者操作特徵曲線下面積(AUC)來判別評分效果的好壞。在臨床線性陣列探頭實驗中,三種方法在初期纖維化F≥1分類中的AUC表現良好(Nakagami-m: 0.86、Yamaguchi: 0.98、ACRA: 0.95)。在臨床弧形陣列探頭實驗中,三種方法在F≥1與F≥2分類中的AUC表現良好(Nakagami-m: 0.96, 0.82、Yamaguchi: 0.93, 0.92、ACRA: 0.99, 0.93)。臨床術後肝臟離體掃描實驗中,只有ACRA方法能有效區分出F≥2與F=4的分類情形(0.87、0.93)。ACRA方法的運作概念還可以延伸到其他的領域,它能適應不同的實驗條件,透過訊號區域性的統計特性,觀察其正常與病變組織的差異程度,反映到病變組織的異常程度,此方法非常具有潛力以及臨床應用價值。
zh_TW
dc.description.abstractThis study is dedicated to the application of liver fibrosis assessment using ultrasound imaging, focusing on the envelope signal converted from RF signal to investigate the differences of the statistical distributions between healthy and disease livers. Liver cirrhosis is considered as an irreversible process that there is almost no effective course of treatment to recover the fibrosis liver. Fibrosis is marked by the gradual replacement of hepatocytes by extracellular collagen, which is a chronic and long-term degeneration of the liver function. Invasive assessment like liver biopsy often accompanied with sequela and is prone to sampling error when small biopsy samples are analyzed. Therefore, there is a clinical need to establish an effective and reliable method for the noninvasive assessment, espesically the prediction of early stage liver fibrosis.
Ultrasound speckle in B-mode images, which is the result of a wave interference phenomenon of backscattering signal, has been used for clinical liver fibrosis and steatosis diagnosis. The characteristic of speckle is associated with the density of scatterers in tissue, indicating different patterns among various tissue properties. To analyze the RF signal derived from liver ultrasound, three methods were implemented: Nakagami-m parameter method, Yamaguchi method and ACRA (adaptive criteria-referenced assessment) method. Nakagami-m parameter method uses m-value to describe the distribution within the ROI (region of interest), proved to be a valid approach characterizing breast tumors and cataract lens. Yamaguchi method determines whether the ROI is a fiber area or not based on the assumptive parameters derived from the phantom experiment. ACRA is a method, which was originally developed by our lab and could be adapted to various system conditions; it reflects the degree of fibrosis liver via the unassessed tissues in comparison with a criteria-reference constructed by healthy tissues.
Results showed that Nakagami-m and ACRA method were able to discriminate the degree of fibrosis from livers in vitro rat experiment. Area under receiver operating characteristic curve (AUC) was used to judge the performence. In the in vivo linear array experiment, three methods performed well in the early stage F≥1 fibrosis (Nakagami-m: 0.86, Yamaguchi: 0.98, ACRA: 0.95). In the in vivo convex array experiment, three methods performed well in the stage F≥1 and F≥2 fibrosis (Nakagami-m: 0.96, 0.82, Yamaguchi: 0.93, 0.92, ACRA: 0.99, 0.93). In the in vitro operation linear array experiment, only ACRA successfully identified stage F≥2 and F=4. It is concluded that the concept of ACRA could exend to other domains, observing the degree of the difference between tissues to indicate the abnormity. This method possesses clinical potential and application value.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:56:01Z (GMT). No. of bitstreams: 1
ntu-100-R98543034-1.pdf: 3350719 bytes, checksum: 045b7c9add15698b5945137dd721cbe9 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents致謝 i
中文摘要 iii
Abstract v
目錄 vii
圖引索 xi
表引索 xv
1.緒論 1
1.1前言 1
1.2研究背景 3
1.3文獻回顧 4
1.3.1超音波組織特性辨別方法 4
1.3.2超音波逆散射統計模型 7
1.3.3超音波Q-Q圖判讀法 8
1.4研究目的 10
2.基礎理論 11
2.1超音波原理 11
2.1.1聲波傳遞的基本原理 11
2.1.2反射、折射 12
2.1.3衰減與吸收 14
2.1.4超音波探頭構造與聲場 15
2.2超音波成像 18
2.2.1成像方式 18
2.2.2超音波影像之軸向解析度 20
2.2.3超音波影像之側向解析度 20
2.2.4超音波散射現象 23
2.2.5斑紋現象 26
2.3統計方法與模型 29
2.3.1 Rayleigh統計分佈 29
2.3.2 Rician統計分佈 30
2.3.3 K統計分佈 31
2.3.4 Nakagami統計分佈 32
2.3.5累積分佈與機率密度函數 34
2.3.6分位數、四分位數與 Q-Q圖 36
2.3.7 ROC曲線 39
2.4肝纖維化的病理機制 41
2.4.1肝纖維化成因 41
2.4.2肝纖維化組織結構 42
2.4.3臨床檢測方法 44
3.實驗方法 47
3.1老鼠肝臟離體實驗 47
3.1.1老鼠實驗與注射藥物方式 47
3.1.2超音波系統架構 48
3.1.3實驗流程 52
3.1.4病理切片評分 54
3.2臨床肝臟超音波影像 55
3.2.1病人資訊與收案方式 55
3.2.2 Terason t3000超音波設備 56
3.2.3 病理切片評分 57
3.3 RF訊號視窗大小分析 58
3.3.1 DCDF分析 58
3.3.2最適直方圖柱數分析 59
3.3.3感興趣區域大小分析 65
3.4 Nakagami-m參數分析 68
3.5 Yamaguchi方法分析 70
3.6 ACRA方法分析 73
4.實驗結果與討論 77
4.1老鼠肝臟離體實驗結果 78
4.2臨床線性陣列探頭實驗結果 82
4.3臨床弧形陣列探頭實驗結果 87
4.4 臨床術後肝臟離體掃描實驗結果 92
4.5討論 97
5.結論與未來展望 103
5.1結論 103
5.2未來展望 107
參考文獻 109
dc.language.isozh-TW
dc.title使用超音波力學散射統計參數影像指標定量肝纖維化程度zh_TW
dc.titleLiver Fibrosis Assessment Using Ultrasound Backscattering Dynamics Statistical Parametric Imaging Indexen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林真真,黃執中,舒宇辰
dc.subject.keyword非侵入式評分,Nakagami-m參數,Yamaguchi分析方法,ACRA方法,zh_TW
dc.subject.keywordNoninvasive assessment,Nakagami-m,Yamaguchi method,ACRA method,en
dc.relation.page115
dc.rights.note同意授權(全球公開)
dc.date.accepted2011-07-29
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf3.27 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved