Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100179
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor柯彥廷zh_TW
dc.contributor.advisorYen-Ting Koen
dc.contributor.author毛聖霖zh_TW
dc.contributor.authorSheng-Lin Maoen
dc.date.accessioned2025-09-24T16:45:36Z-
dc.date.available2025-09-25-
dc.date.copyright2025-09-24-
dc.date.issued2025-
dc.date.submitted2025-08-06-
dc.identifier.citationAki, K. & Richards, P.G. (1980). Quantitative Seismology: Theory and Methods, W.H. Freeman. https://doi.org/10.1002/gj.3350160110
Chapman, C.H. (2004). Fundamentals of Seismic Wave Propagation, Cambridge Univ. Press. https://doi.org/10.1017/CBO9780511616877
Chen, P. F., Huang, B. S., & Liang, W. T. (2004). Evidence of a slab of subducted lithosphere beneath central Taiwan from seismic waveforms and travel times. Earth and Planetary Science Letters, 229(1-2), 61-71. https://doi.org/10.1016/j.epsl.2004.10.031
Chu, R., Schmandt, B., & Helmberger, D. V. (2012). Juan de Fuca subduction zone from a mixture of tomography and waveform modeling. Journal of Geophysical Research: Solid Earth, 117(B3). https://doi.org/10.1029/2012JB009146
Coutant, O., Virieux, J. & Zollo, A. (1995). Numerical source implementation in a 2D finite difference scheme for wave propagation, Bull. seism. Soc. Am., 85(5), 1507–1512. https://doi.org/10.1785/BSSA0850051507
Doo, W. B., Lo, C. L., Hsu, S. K., Tsai, C. H., Huang, Y. S., Wang, H. F., ... & Liang, C. W. (2018). New gravity anomaly map of Taiwan and its surrounding regions with some tectonic interpretations. Journal of Asian Earth Sciences, 154, 93-100. https://doi.org/10.1016/j.jseaes.2017.12.010
Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the earth and planetary interiors, 25(4), 297-356. https://doi.org/10.1016/0031-9201(81)90046-7
Fan, J., & Zhao, D. (2021). P‐wave tomography and azimuthal anisotropy of the Manila‐Taiwan‐southern Ryukyu region. Tectonics, 40(2), e2020TC006262. https://doi.org/10.1029/2020TC006262
Huang, H. H., Xu, Z. J., Wu, Y. M., Song, X., Huang, B. S., & Nguyen, L. M. (2013). First local seismic tomography for Red River shear zone, northern Vietnam: Stepwise inversion employing crustal P and Pn waves. Tectonophysics, 584, 230-239. https://doi.org/10.1016/j.tecto.2012.03.030
Huang, H. H., Wu, Y. M., Song, X., Chang, C. H., Lee, S. J., Chang, T. M., & Hsieh, H. H. (2014a). Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth and Planetary Science Letters, 392, 177-191. https://doi.org/10.1016/j.epsl.2014.02.026
Huang, H. H., Wu, Y. M., Song, X., Chang, C. H., Kuo‐Chen, H., & Lee, S. J. (2014b). Investigating the lithospheric velocity structures beneath the Taiwan region by nonlinear joint inversion of local and teleseismic P wave data: Slab continuity and deflection. Geophysical Research Letters, 41(18), 6350-6357. https://doi.org/10.1002/2014GL061115
Ko, J. Y. T., Kuo, B. Y., Lin, S. C., & Hung, Y. S. (2023). Thermal ages of the Huatung Basin determined from seismic waveform modeling: insights into Southeast Asia’s evolution. Scientific Reports, 13(1), 15201. https://doi.org/10.1038/s41598-023-42454-x
Kuo‐Chen, H., Wu, F. T., & Roecker, S. W. (2012). Three‐dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets. Journal of Geophysical Research: Solid Earth, 117(B6). https://doi.org/10.1029/2011JB009108
Lallemand, S., Font, Y., Bijwaard, H., & Kao, H. (2001). New insights on 3-D plates interaction near Taiwan from tomography and tectonic implications. Tectonophysics, 335(3-4), 229-253. https://doi.org/10.1016/S0040-1951(01)00071-3
Lin, C. H. (2002). Active continental subduction and crustal exhumation: The Taiwan orogeny. Terra Nova, 14(4), 281-287. https://doi.org/10.1046/j.1365-3121.2002.00421.x
Li, D., Helmberger, D., Clayton, R. W., & Sun, D. (2014). Global synthetic seismograms using a 2-D finite-difference method. Geophysical Journal International, 197(2), 1166-1183. https://doi.org/10.1093/gji/ggu050
Lu, C., Grand, S. P., Lai, H., & Garnero, E. J. (2019). TX2019slab: A new P and S tomography model incorporating subducting slabs. Journal of Geophysical Research: Solid Earth, 124(11), 11549-11567. https://doi.org/10.1029/2019JB017448
Malavieille, J., Dominguez, S., Lu, C. Y., Chen, C. T., & Konstantinovskaya, E. (2021). Deformation partitioning in mountain belts: insights from analogue modelling experiments and the Taiwan collisional orogen. Geological Magazine, 158(1), 84-103. https://doi.org/10.1017/S0016756819000645
Müller, G. (1971). Approximate treatment of elastic body waves in media with spherical symmetry. Geophysical Journal International, 23(4), 435-449. https://doi.org/10.1111/j.1365-246X.1971.tb01835.x
Pang, G., Abers, G. A., & van Keken, P. E. (2023). Focusing effects of teleseismic wavefields by the subducting plate beneath Cascadia. Journal of Geophysical Research: Solid Earth, 128(6), e2022JB025486. https://doi.org/10.1029/2022JB025486
Quan, W., Liu, X., Zhao, D., & Li, S. (2023). Seismic evidence for slab detachment beneath the Taiwan Orogen. Earth and Planetary Science Letters, 610, 118131. https://doi.org/10.1016/j.epsl.2023.118131
Sigloch, K., & Nolet, G. (2006). Measuring finite-frequency body-wave amplitudes and traveltimes. Geophysical Journal International, 167(1), 271-287. https://doi.org/10.1111/j.1365-246X.2006.03116.x
Song, T. R. A., & Helmberger, D. V. (2007). Validating tomographic model with broad-band waveform modelling: an example from the LA RISTRA transect in the southwestern United States. Geophysical Journal International, 171(1), 244-258. https://doi.org/10.1111/j.1365-246X.2007.03508.x
Suppe, J., 1981. Mechanics of mountain building and metamorphism in Taiwan. Mem. Geol. Soc. China, 4, 67-89.
Suppe, J., 1984. Kinematics of arc–continent collision, flipping of subduction, and back-arc spreading near Taiwan. Mem. Geol. Soc. China 6, 21–33.
Teng, L. S., Lee, C. T., Tsai, Y. B., & Hsiao, L. Y. (2000). Slab breakoff as a mechanism for flipping of subduction polarity in Taiwan. Geology, 28(2), 155-158. https://doi.org/10.1130/0091-7613(2000)28%3C155:SBAAMF%3E2.0.CO;2
Vidale, J.E. & Helmberger, D.V. (1987). Path effects in strong motion seismology, in Seismic Strong Motion Synthetics, pp. 267–320, ed. Bolt, B.A., Academic Press.
Wang, Z., Zhao, D., Wang, J., & Kao, H. (2006). Tomographic evidence for the Eurasian lithosphere subducting beneath south Taiwan. Geophysical Research Letters, 33 (18). https://doi.org/10.1029/2006GL027166
Wu, F. T., Rau, R. J., & Salzberg, D. (1997). Taiwan orogeny: thin-skinned or lithospheric collision? Tectonophysics, 274 (1-3), 191-220. https://doi.org/10.1016/S0040-1951(96)00304-6
Wu, Y. M., Chang, C. H., Zhao, L., Shyu, J. B. H., Chen, Y. G., Sieh, K., & Avouac, J. P. (2007). Seismic tomography of Taiwan: Improved constraints from a dense network of strong motion stations. Journal of Geophysical Research: Solid Earth, 112 (B8). https://doi.org/10.1029/2007JB004983
Wu, F. T., Kuo-Chen, H., & McIntosh, K. D. (2014). Subsurface imaging, TAIGER experiments and tectonic models of Taiwan. Journal of Asian Earth Sciences, 90, 173-208. https://doi.org/10.1016/j.jseaes.2014.03.024
Zhan, Z., Helmberger, D. V., & Li, D. (2014). Imaging subducted slab structure beneath the Sea of Okhotsk with teleseismic waveforms. Physics of the Earth and Planetary Interiors, 232, 30-35. https://doi.org/10.1016/j.pepi.2014.03.008
洪宇陞 (2021)。藉由地震波形模擬解析臺灣東北部琉球隱沒板塊的形貌與年齡約束。國立臺灣大學海洋研究所碩士論文,共94頁。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100179-
dc.description.abstract台灣造山帶位於菲律賓海板塊與歐亞板塊之交界,板塊快速聚合與頻繁地震顯示該區域造山作用極為活躍。雖然已有眾多研究探討台灣中部與南部的板塊交互作用,但對於其最佳構造模型仍未有定論。其中一項關鍵問題,是歐亞板塊於台灣中部向東隱沒的範圍與延續性,以及其與向西北隱沒的菲律賓海板塊之間的互動關係。為了釐清此一構造特徵,SALUTE團隊佈設了密集的地震觀測網,包含29座陸地寬頻地震站與8座寬頻海底地震儀,分布於台灣南部及其東方近海地區,涵蓋由隱沒過渡至碰撞的構造帶。本研究利用來自不同方位遠震事件的P波初達波走時以及振幅比值異常進行分析,結果顯示,走時殘差除在西部平原相對較慢,皆能以區域三維速度模型之走時解釋,振幅比值在不同事件中呈一致趨勢,並能觀察到多路徑到時效應,特別是在潮州斷層與縱谷區域為低點,呈現W型振幅比值,對應班尼奧夫帶兩側之散焦效應。綜合波形、走時與振幅比值等觀測資料,推論臺灣中部至南部下方可能存在一隱沒板塊結構。
為了解可能的隱沒板塊形貌,本研究運用有限差分法進行數值模擬,結合多筆地震事件之震源參數與不同隱沒板塊幾何形貌(含傾角、長度、寬度、上邊界深度與速度變化率),建構模擬資料庫。透過與觀測資料之波形與振幅比值比較,選取最佳擬合模型以評估板塊構造對波場特性的影響,本研究所假設的伸直板塊模型能有效對應東西兩側之邊界位置與振幅比值的散焦效應,根據各事件最佳模型,東邊界位於中央山脈與花東縱谷之邊界,西邊界可能位於東經120.3-120.6度之間,惟於中央山脈下方所觀測到之振幅比值提高無法單以隱沒板塊模型解釋。進一步納入淺部速度模型後,模擬已能初步重現觀測中的W型振幅比值趨勢,差異可能與地殼中橫向速度異質性與構造界面等細節有關。結果顯示,單獨使用隱沒板塊模型或淺部速度模型皆無法完整重現觀測特徵,唯有兩者結合,方能合理解釋振幅比值之空間分布與W型趨勢。
zh_TW
dc.description.abstractThe Taiwan orogen is located at the plate boundary between the Philippine Sea Plate (PSP) and the Eurasian Plate, where a high convergence rate and frequent seismic activity indicate that the ongoing transition from subduction to collision is highly active. Despite extensive research on the complex plate interactions in central and southern Taiwan, a consensus has yet to be reached on the most appropriate tectonic models. To investigate this, the SALUTE project deployed a dense network of 29 broadband seismic stations on land and 8 broadband ocean bottom seismometers (BBOBSs) across southern Taiwan and eastern offshore regions.
In this study, we analyzed the P-wave first-arrival travel times and amplitude ratio anomalies from teleseismic events originating from various azimuths. The travel-time residuals, except for slower velocities observed in the Western Plains, can be explained by the regional 3D velocity model. The amplitude ratios exhibit consistent patterns across different events, with multipathing effects observed. Notably, low amplitude ratios are observed near the Chaozhou Fault and the Longitudinal Valley, forming a characteristic W-shaped pattern that corresponds to defocusing effects on both sides of the Benioff zone.
By comparing synthetic data generated using the 2-D finite-difference method with observations, we identified the best-fitting models to evaluate the impact of slab geometry on wavefield characteristics. The simplified slab model proposed in this study effectively matches the boundary positions on the east and west sides and reproduces the defocusing effects observed in the amplitude ratios. According to the optimal models for individual events, the eastern boundary lies between the Central Range and the Longitudinal Valley, while the western boundary likely falls between 120.3°E and 120.6°E. However, the increased amplitude ratios observed beneath the Central Range cannot be explained solely by the subducting slab model.
These results suggest that only through the integration of both the subducting slab model and the shallow velocity model can the spatial distribution and W-shaped pattern of amplitude ratios be reasonably explained.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-24T16:45:36Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-24T16:45:36Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 I
誌謝 II
摘要 III
Abstract IV
目次 V
圖次 VII
表次 XI
第一章 緒論 1
1.1 臺灣南部隱沒-碰撞系統 1
1.1.1 區域地體架構 3
1.1.2 臺灣南部板塊邊界相關證據 8
1.2 隱沒帶波形特徵相關研究 21
1.3 SALUTE計畫 27
第二章 研究方法與原理 28
2.1 二維有限差分法 28
2.1.1 震源三維擴散效應 (3-D spreading) 28
2.1.2 地震矩張量震源 30
2.1.3 透明震源盒 (transparent source box) 33
2.1.4 球面座標轉換 35
2.2隱沒板塊於波形及振幅上之特徵 37
2.2.1 多路徑到時效應 (multi-pathing) 37
2.2.2 聚焦及散焦效應 (focusing-defocusing effect) 37
第三章 資料與分析 39
3.1資料來源、測站分布及資料篩選 39
3.2東南方向之地震觀測資料 43
3.3有限差分法設置 52
第四章 結果與討論 55
4.1隱沒帶模型敏感度測試 55
4.1.1長度 (Length, L) 55
4.1.2寬度 (Width, W) 55
4.1.3傾角 (Dipping angle, A) 56
4.1.4板塊上邊界 (Upper boundary, U) 56
4.1.5速度變化率 (Velocity perturbation, V) 56
4.2模型最佳化 62
4.2.1 東西向剖面之對比 63
4.2.2 加入西北東南向觀測資料之對比 71
4.2 考量淺部速度構造模型 79
4.2.1 淺部速度構造之影響 79
4.2.2 結合隱沒板塊與淺部模型 86
第五章 結論 93
Reference 94
-
dc.language.isozh_TW-
dc.subject走時異常zh_TW
dc.subject南臺灣zh_TW
dc.subject有限差分法zh_TW
dc.subject多路徑到時效應zh_TW
dc.subject振幅異常zh_TW
dc.subjectSouthern Taiwanen
dc.subjecttravel-time anomaliesen
dc.subjectfinite difference methoden
dc.subjectmultipathing effecten
dc.subjectamplitude anomaliesen
dc.title歐亞板塊在臺灣南部之特徵分析: 來自SALUTE地震資料的觀察zh_TW
dc.titleCharacterizing Subduction of Eurasian plate underneath Southern Taiwan: Insights from SALUTE Seismic dataen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.coadvisor曾泰琳zh_TW
dc.contributor.coadvisorTai-Lin Tsengen
dc.contributor.oralexamcommittee洪淑蕙;黃信樺zh_TW
dc.contributor.oralexamcommitteeShu-Huei Hung;Hsin-Hua Huangen
dc.subject.keyword南臺灣,走時異常,振幅異常,多路徑到時效應,有限差分法,zh_TW
dc.subject.keywordSouthern Taiwan,travel-time anomalies,amplitude anomalies,multipathing effect,finite difference method,en
dc.relation.page97-
dc.identifier.doi10.6342/NTU202504053-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-12-
dc.contributor.author-college理學院-
dc.contributor.author-dept海洋研究所-
dc.date.embargo-lift2026-08-05-
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
60.89 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved