Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100176
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周佳靚zh_TW
dc.contributor.advisorChia-Ching Chouen
dc.contributor.author林耕右zh_TW
dc.contributor.authorKeng-Yu Linen
dc.date.accessioned2025-09-24T16:44:58Z-
dc.date.available2025-09-25-
dc.date.copyright2025-09-24-
dc.date.issued2025-
dc.date.submitted2025-08-13-
dc.identifier.citation1. Ganeshan, A., D.R. Warakaulle, and R. Uberoi, Central venous access. Cardiovascular and interventional radiology, 2007. 30: p. 26-33.
2. Gershengorn, H.B., et al., Variation of arterial and central venous catheter use in United States intensive care units. Anesthesiology, 2014. 120(3): p. 650-64.
3. Hoshal, V.L., Total intravenous nutrition with peripherally inserted silicone elastomer central venous catheters. Archives of surgery, 1975. 110(5): p. 644-646.
4. Lockwood, J. and N. Desai, Central venous access. British Journal of Hospital Medicine, 2019. 80(8): p. C114-C119.
5. Merrer, J., et al., Complications of femoral and subclavian venous catheterization in critically ill patients: a randomized controlled trial. Jama, 2001. 286(6): p. 700-707.
6. Rupp, S.M., et al., Practice guidelines for central venous access: a report by the American Society of Anesthesiologists Task Force on Central Venous Access. Anesthesiology, 2012. 116(3): p. 539-573.
7. Scott, W.L., Central venous catheters. An overview of Food and Drug Administration activities. Surg Oncol Clin N Am, 1995. 4(3): p. 377-93.
8. Smith, R.N. and J.P. Nolan, Central venous catheters. BMJ : British Medical Journal, 2013. 347: p. f6570.
9. Andropoulos, D.B., et al., The optimal length of insertion of central venous catheters for pediatric patients. Anesthesia & Analgesia, 2001. 93(4): p. 883-886.
10. Basford, T.J., D. Poenaru, and M. Silva, Comparison of delayed complications of central venous catheters placed surgically or radiologically in pediatric oncology patients. Journal of pediatric surgery, 2003. 38(5): p. 788-792.
11. Bessoud, B., et al., Experience at a single institution with endovascular treatment of mechanical complications caused by implanted central venous access devices in pediatric and adult patients. American Journal of Roentgenology, 2003. 180(2): p. 527-532.
12. Westergaard, B., V. Classen, and S. Walther‐Larsen, Peripherally inserted central catheters in infants and children–indications, techniques, complications and clinical recommendations. Acta Anaesthesiologica Scandinavica, 2013. 57(3): p. 278-287.
13. de Jonge, R.C.J., K.H. Polderman, and R.J.B.J. Gemke, Central venous catheter use in the pediatric patient: Mechanical and infectious complications. Pediatric Critical Care Medicine, 2005. 6(3): p. 329-339.
14. Kornbau, C., et al., Central line complications. International journal of critical illness and injury science, 2015. 5(3): p. 170-178.
15. Pikwer, A., J. Åkeson, and S. Lindgren, Complications associated with peripheral or central routes for central venous cannulation. Anaesthesia, 2012. 67(1): p. 65-71.
16. Ruesch, S., B. Walder, and M.R. Tramèr, Complications of central venous catheters: internal jugular versus subclavian access—a systematic review. Critical care medicine, 2002. 30(2): p. 454-460.
17. Sznajder, J.I., et al., Central vein catheterization: failure and complication rates by three percutaneous approaches. Archives of internal medicine, 1986. 146(2): p. 259-261.
18. Wang, L., Z.-S. Liu, and C.-A. Wang, Malposition of central venous catheter: presentation and management. Chinese medical journal, 2016. 129(02): p. 227-234.
19. Bailey, S.H., et al., Is immediate chest radiograph necessary after central venous catheter placement in a surgical intensive care unit? The American journal of surgery, 2000. 180(6): p. 517-522.
20. Garg, M., et al., Comparison of Landmark Versus ECG-Guided Technique for Correct Insertion of Central Venous Catheter in Paediatric Patients Undergoing Cardiothoracic Surgery. Archives of Anesthesiology and Critical Care, 2023. 9(3): p. 232-237.
21. Stark, D., R. Brasch, and C. Gooding, Radiographic assessment of venous catheter position in children: Value of the lateral view. Pediatric radiology, 1984. 14(2): p. 76-80.
22. Zadeh, M.K. and A. Shirvani, The role of routine chest radiography for detecting complications after central venous catheter insertion. Saudi Journal of Kidney Diseases and Transplantation, 2014. 25(5): p. 1011-1016.
23. Roldan, C.J. and L. Paniagua, Central venous catheter intravascular malpositioning: causes, prevention, diagnosis, and correction. Western Journal of Emergency Medicine, 2015. 16(5): p. 658.
24. Boone, J.M., Radiological interpretation 2020: toward quantitative image assessment. Medical physics, 2007. 34(11): p. 4173-4179.
25. Dhillon, M., et al., Positioning errors and quality assessment in panoramic radiography. Imaging science in dentistry, 2012. 42(4): p. 207.
26. Practice Guidelines for Central Venous Access: A Report by the American Society of Anesthesiologists Task Force on Central Venous Access. Anesthesiology, 2012. 116(3): p. 539-573.
27. Bishop, L., et al., Guidelines on the insertion and management of central venous access devices in adults. Int J Lab Hematol, 2007. 29(4): p. 261-78.
28. Denton, A., et al., Standards for infusion therapy 4th Ed. 2016, Royal College of Nursing: London, UK.
29. Rosengarten, L. and C. Camara, A guide to central venous access devices in children. Br J Nurs, 2020. 29(14): p. S6-S14.
30. Taxak, S., et al., Safe placement of central venous catheters: Carina as radiological landmark. Journal of Anaesthesiology Clinical Pharmacology, 2009. 25(4): p. 483-485.
31. Sridhar, D.C., M.Y. Abou-Ismail, and S.P. Ahuja, Central venous catheter-related thrombosis in children and adults. Thrombosis research, 2020. 187: p. 103-112.
32. Stoddard, N., J.R. Heil, and D.R. Lowery, Anatomy, thorax, mediastinum, in StatPearls [Internet]. 2023, StatPearls Publishing.
33. Joshua, A., L. Shetty, and V. Pare, Variations in dimensions and shape of thoracic cage with aging: an anatomical review. Anatomy Journal of Africa, 2014. 3(2): p. 346-355.
34. Perin, G. and M.-G. Scarpa, Defining central venous line position in children: tips for the tip. The Journal of vascular access, 2015. 16(2): p. 77-86.
35. Manson, D.E., Magnetic resonance imaging of the mediastinum, chest wall and pleura in children. Pediatric radiology, 2016. 46(6): p. 902-915.
36. Kapur, S., A.S. Bhalla, and M. Jana, Pediatric chest MRI: a review. The Indian Journal of Pediatrics, 2019. 86(9): p. 842-853.
37. Yoon, S.Z., et al., Usefulness of the carina as a radiographic landmark for central venous catheter placement in paediatric patients. Br J Anaesth, 2005. 95(4): p. 514-7.
38. Albrecht, K., et al., The carina as a landmark for central venous catheter placement in small children. Eur J Pediatr, 2006. 165(4): p. 264-6.
39. Inagawa, G., et al., The carina is not a landmark for central venous catheter placement in neonates. Paediatr Anaesth, 2007. 17(10): p. 968-71.
40. Baskin, K.M., et al., Cavoatrial junction and central venous anatomy: implications for central venous access tip position. J Vasc Interv Radiol, 2008. 19(3): p. 359-65.
41. Weber, M.D., et al., Retrospective assessment of patient and catheter characteristics associated with malpositioned central venous catheters in pediatric patients. Pediatric Critical Care Medicine, 2022. 23(3): p. 192-200.
42. Abbas, M., et al., Conv-MTD: A CNN Based Multi-Label Medical Tubes Detection and Classification Model to Facilitate Resource-constrained Point-of-care Devices. IEEE J Biomed Health Inform, 2025. PP.
43. Liu, H.Y.h., et al., Guidelines for safe practice of stereotactic body (ablative) radiation therapy: RANZCR 2023 update. Journal of Medical Imaging & Radiation Oncology 2024. 68.2.
44. Kim, D.J., et al., Correction: Detection and position evaluation of chest percutaneous drainage catheter on chest radiographs using deep learning. PLoS One, 2025. 20(5): p. e0323951.
45. Yu, D., et al., Detection of peripherally inserted central catheter (PICC) in chest X-ray images: A multi-task deep learning model. Computer Methods and Programs in Biomedicine, 2020. 197: p. 105674.
46. Jung, S., et al., Classification of Central Venous Catheter Tip Position on Chest X-ray Using Artificial Intelligence. J Pers Med, 2022. 12(10).
47. Stroeder, J., et al., Optimizing catheter verification: an understandable AI model for efficient assessment of central venous catheter placement in chest radiography. Investigative Radiology, 2023: p. 10.1097.
48. Hansen, L., et al, Radiographic Assessment of CVC Malpositioning: How can AI best support clinicians?. in Medical imaging with deep learning. 2021.
49. Rueckel, J., et al., Artificial Intelligence to Assess Tracheal Tubes and Central Venous Catheters in Chest Radiographs Using an Algorithmic Approach With Adjustable Positioning Definitions. Invest Radiol, 2024. 59(4): p. 306-313.
50. Wang, Y., et al., High-resolution feature based central venous catheter tip detection network in X-ray images. Medical Image Analysis, 2023. 88: p. 102876.
51. Zuiderveld, K., Contrast Limited Adaptive Histogram Equalization. GRAPHICS GEMS ed. P.S. Heckbert. Vol. IV. 1994, United States.
52. Shamrat, F.J.M., et al., High-precision multiclass classification of lung disease through customized MobileNetV2 from chest X-ray images. Computers in Biology and Medicine, 2023. 155: p. 106646.
53. Labelimg-github. Available from: https://github.com/HumanSignal/labelImg.
54. CVAT. Available from: https://www.cvat.ai/.
55. Wang, C.-Y., I.-H. Yeh, and H.-Y.M. Liao. YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information. 2024; Available from: https://arxiv.org/pdf/2402.13616.
56. Wang, C.-Y., I.-H. Yeh, and H.-Y.M. Liao. yolov9-github. 2024; Available from: https://github.com/WongKinYiu/yolov9.
57. Ronneberger, O., Fischer, P., Brox, T., U-Net: Convolutional Networks for Biomedical Image Segmentation., in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. 2015.
58. Mansoor, A., et al., Segmentation and Image Analysis of Abnormal Lungs at CT: Current Approaches, Challenges, and Future Trends. Radiographics, 2015. 35(4): p. 1056-76.
59. Installing previous versions of PyTorch. Available from: https://pytorch.org/get-started/previous-versions/.
60. Python 3.9.21. 2024; Available from: https://www.python.org/downloads/release/python-3921/.
61. CUDA Toolkit 12.1 Downloads. Available from: https://developer.nvidia.com/cuda-12-1-0-download-archive.
62. cuDNN Archive. Available from: https://developer.nvidia.com/rdp/cudnn-archive.
63. Mader, A.O., et al. Localization and labeling of posterior ribs in chest radiographs using a CRF-regularized FCN with local refinement. in International Conference on Medical Image Computing and Computer-Assisted Intervention. 2018. Springer.
64. Wessel, J., et al., Sequential rib labeling and segmentation in chest X-ray using Mask R-CNN. arXiv preprint arXiv:1908.08329, 2019.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100176-
dc.description.abstract中央靜脈導管(Central Venous Catheter, CVC)廣泛應用於兒童重症醫療中,用於給藥、營養補充、血流動力監測與抽血等多種臨床需求。然而,導管插入後若未正確定位,可能導致心律不整、血管穿孔、栓塞、藥物無效或其他併發症。因此,術後影像確認導管尖端位置是臨床照護中不可或缺的步驟。儘管目前最常用的影像工具為胸腔X光(Chest Radiograph, CXR),但其影像對比度較低,使得人工解讀耗時、易受主觀經驗影響,特別在兒科影像中更為困難。兒童胸腔解剖與成人存在差異,例如氣管與心房距離較短、肋骨與椎體比例不同、膈肌位置較高等,使得成人常用之定位基準(如氣管隆突或 T4–T5 椎體)不再適用。因此,需發展專為兒童設計的導管定位與深度評估方法。本研究提出一套以肋骨為參考的深度學習系統,用於兒童 中央靜脈導管位置的自動偵測與深度分類。我們建立一個多任務模型,結合導管尖端偵測(使用 YOLOv9)與肋骨分割(使用 U-Net)模組,再透過自行開發的 Rib Score Algorithm產生肋骨代表點,進而將尖端分類為過淺、適當或過深。資料來自台大兒童醫院胸腔X光影像,我們共建構三種測試組合:(a)混合組(包含未遮蔽、遮蔽與無導管影像)、(b)未遮蔽組、(c)遮蔽組,以評估模型在不同可視條件下的泛化能力。評估指標包含平均精確率(mAP50)、IoU、中心距離誤差、準確率、召回率與F1-score。實驗結果顯示,本系統在混合組達到 mAP50 = 0.987、mAP50–95 = 0.515,平均 IoU 為 0.71,中心誤差為 5.8 ± 2.1 像素,並在遮蔽條件下仍維持高準確性,顯示本系統具備良好空間準確性。進一步地,導管深度分類的平均準確率達 96%,大幅減少傳統人工判讀所需的時間與主觀誤差。系統亦具備可視化功能,可顯示導管與肋骨結構之對應關係,提供放射科醫師直觀且可解釋的判讀依據。本研究除提供一套即時、自動且具臨床適用性的 中央靜脈導管定位工具外,亦展現以肋骨為參考架構的潛力,未來可應用於其他胸腔結構之定位,例如肺炎區塊對應肺葉位置、膈肌抬升程度監測等。此外,肋骨標記機制亦可推進序列性影像追蹤分析,使臨床醫師可監控導管在病患住院期間的移動情形,進一步發展預測導管移位風險的模型。總結而言,本研究建立了一個具準確性、可擴展性與臨床價值的影像分析系統,為兒童中央靜脈導管定位問題提供創新解決方案。zh_TW
dc.description.abstractCentral venous catheters (CVCs) are widely used in pediatric intensive care for various clinical purposes, including drug administration, nutritional support, hemodynamic monitoring, and blood sampling. However, improper placement of the catheter tip after insertion can lead to serious complications such as arrhythmia, vascular perforation, embolism, treatment failure, or other adverse events. Therefore, post-operative imaging to confirm the tip position is an essential step in clinical care. Although chest radiographs (CXR) are the most commonly used imaging modality, their low contrast makes manual interpretation time-consuming and highly subjective—especially in pediatric cases. Anatomical differences between children and adults, such as shorter distances between the trachea and atrium, differing rib-to-spine proportions, and higher diaphragm position, render traditional adult-based landmarks (e.g., the carina or T4–T5 vertebrae) unsuitable for pediatric use. This necessitates the development of dedicated catheter localization and depth assessment methods for children.

In this study, we propose a rib-based deep learning system for automatic detection and depth classification of pediatric CVC tip positions. We developed a multi-task model combining a YOLOv9-based tip detection module and a U-Net-based rib segmentation module. A custom-designed Rib Score Algorithm is used to generate anatomical reference points along the ribs, allowing the tip position to be classified as shallow, appropriate, or deep. The dataset comprises pediatric chest X-ray images from National Taiwan University Children’s Hospital. We constructed three test sets to evaluate generalizability under different visibility conditions: (a) a mixed group (including unoccluded, occluded, and no-catheter images), (b) an unoccluded group, and (c) an occluded group.

Evaluation metrics include mean average precision (mAP50), mAP50–95, intersection over union (IoU), center point error, accuracy, recall, and F1-score. Our system achieved strong spatial performance in the mixed group (mAP50 = 0.987, mAP50–95 = 0.515), with a mean IoU of 0.71 and a center point error of 5.8 ± 2.1 pixels. Even under occluded conditions, the system maintained high accuracy. For depth classification, the average accuracy reached 96%, significantly reducing the time and subjectivity associated with manual interpretation.
The system also provides visual outputs linking the catheter and rib structures, offering intuitive and interpretable references for radiologists. Beyond being a real-time, automated, and clinically applicable CVC localization tool, our rib-based framework shows promise for broader thoracic applications, such as identifying pneumonia regions by lung lobe, monitoring diaphragmatic elevation, and enabling longitudinal tracking. The rib labeling mechanism may further support sequential imaging analysis to monitor catheter migration during hospitalization and facilitate the development of predictive models for dislocation risk.
In summary, this study presents an accurate, scalable, and clinically valuable image analysis system, offering an innovative solution for pediatric CVC localization.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-24T16:44:57Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-24T16:44:58Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES x
Chapter 1 Introduction 1
1.1 Background 1
1.2 The Standard of CVCs Insertion 1
1.3 The CVCs in Children 2
1.4 Machine Learning on Medical Images 6
1.5 Objectives 10
1.6 Article Structure 11
Chapter 2 Methodology 13
2.1 Data Source and Dataset Composition 13
2.2 Machine Learning Model Training Process 15
2.3 Data Pre-processing 17
2.3.1 Anatomical Region Standardization 17
2.3.2 Contrast Enhance 18
2.3.3 Input Resolution Normalization 20
2.4 Ground Truth Annotation 21
2.4.1 The Bounding Box of CVC Tips 21
2.4.2 The Segmentation Mask of Ribs 22
2.5 Multitask Deep Learning Framework 24
2.5.1 YOLOv9-Based Tip Detection Module 25
2.5.2 U-Net-Based Segmentation Model 26
2.5.3 Key Point Generation via Rib Score Algorithm 28
2.6 Visibility-Adaptive Transfer Learning Strategy 31
2.7 Evaluation Strategy 33
2.7.1 Yolov9 33
2.7.2 Key point from Unet segmentation mask 35
2.8 Implementation 36
Chapter 3 CVC Tips Detection 39
3.1 CLAHE Enhancement for Our Data 39
3.2 Performance on the Representative Mixed Test Set 40
3.3 Spatial Accuracy Analysis: IoU and Distance Error 42
3.4 Effectiveness of Visibility-Adaptive Transfer Learning 45
3.4.1 Detection Accuracy 45
3.4.2 Interpretation of mAP Performance 47
3.4.3 Summary Comparison 47
Chapter 4 Key Points of Ribs 51
4.1 Overview of Rib Segmentation and Landmark Extraction 51
4.2 Accuracy and Qualitative Assessment of Rib Key Points 51
4.3 Comparisons with Prior Work 58
Chapter 5 Assessment of Insertion Depth 61
5.1 Overview of Insertion Depth Classification 61
5.2 Case Studies of Depth Classification 62
5.3 Analysis Distribution of Insertion Depth in the Clinical Test Set 64
5.4 Summary 66
Chapter 6 Conclusions and Outlook 68
6.1 Conclusions 68
6.2 Discussion 68
6.3 Future Works and Outlook 71
REFERENCE 73
-
dc.language.isoen-
dc.subject中央靜脈導管zh_TW
dc.subject兒童胸腔X光zh_TW
dc.subject深度學習zh_TW
dc.subject導管定位zh_TW
dc.subject肋骨標記zh_TW
dc.subject影像輔助診斷zh_TW
dc.subjectdeep learningen
dc.subjectCVCen
dc.subjectcomputer-aided diagnosisen
dc.subjectrib labelingen
dc.subjectcatheter localizationen
dc.subjectpediatric chest radiographen
dc.title以機器學習方法應用於小兒中央靜脈導管 插管深度評估之研究zh_TW
dc.titleMachine Learning Approach for the Assessment of Central Venous Catheter Insertion Depth in Childrenen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張鑾英;吳恩婷;吳政宏zh_TW
dc.contributor.oralexamcommitteeLUAN-YIN CHANG;EN-TING WU;Jeng-Hung Wuen
dc.subject.keyword中央靜脈導管,兒童胸腔X光,深度學習,導管定位,肋骨標記,影像輔助診斷,zh_TW
dc.subject.keywordCVC,pediatric chest radiograph,deep learning,catheter localization,rib labeling,computer-aided diagnosis,en
dc.relation.page77-
dc.identifier.doi10.6342/NTU202504330-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-15-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
dc.date.embargo-lift2030-08-08-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
3.69 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved