Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100138
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor潘述元zh_TW
dc.contributor.advisorShu-Yuan Panen
dc.contributor.author林育誼zh_TW
dc.contributor.authorYu-I Linen
dc.date.accessioned2025-09-24T16:37:16Z-
dc.date.available2025-09-25-
dc.date.copyright2025-09-24-
dc.date.issued2025-
dc.date.submitted2025-08-13-
dc.identifier.citation(1) Alexsandro Jhones dos Santos; Emily Cintia Tossi de Araújo Costa; Djalma Ribeiro da Silva; Sergi Garcia-Segura; Martínez-Huitle, C. A. Electrochemical advanced oxidation processes as decentralized water treatment technologies to remediate domestic washing machine effluents. Environ. Sci. Pollut. Res. 2018, 25 (7), 7002-7011, Article. DOI: 10.1007/s11356-017-1039-2.
(2) UN. Transforming our World: The 2030 Agenda for Sustainable Development; A/RES/70/1; United Nations, 2015.
(3) van der Hoek, J. P.; de Fooij, H.; Struker, A. Wastewater as a resource: Strategies to recover resources from Amsterdam's wastewater. Resour. Conserv. Recycl. 2016, 113, 53-64. DOI: 10.1016/j.resconrec.2016.05.012.
(4) Fan, H.; Huang, Y.; Yip, N. Y. Advancing ion-exchange membranes to ion-selective membranes: principles, status, and opportunities. Frontiers of Environmental Science & Engineering 2022, 17 (2), 25. DOI: 10.1007/s11783-023-1625-0.
(5) Alvarado, L.; Chen, A. Electrodeionization: Principles, Strategies and Applications. Electrochimica Acta 2014, 132, 583-597. DOI: https://doi.org/10.1016/j.electacta.2014.03.165.
(6) Alkhadra, M. A.; Su, X.; Suss, M. E.; Tian, H.; Guyes, E. N.; Shocron, A. N.; Conforti, K. M.; de Souza, J. P.; Kim, N.; Tedesco, M.; et al. Electrochemical Methods for Water Purification, Ion Separations, and Energy Conversion. Chem Rev 2022, 122 (16), 13547-13635. DOI: 10.1021/acs.chemrev.1c00396.
(7) Ruan, H.; Gao, S.; Li, Y.; Yu, S.; Liao, J.; Ang, E. H.; Xu, Y.; Shen, J. Optimization of the mass ratio of siloxane crosslinkers for poly (2, 6-dimethyl-1, 4-phenylene oxide) anion exchange membranes to improve acid enrichment by electrodialysis. Journal of Membrane Science 2024, 695, 122487. Cui, H.; Ruan, H.; Wei, H.; Ang, E. H.; Dong, Y.; Lu, H.; Liu, H.; Liao, J.; Xu, Y.; Shen, J. Innovative sodium acrylate wastewater resource recovery through electrodialysis with integrated bipolar membranes. Journal of Environmental Chemical Engineering 2024, 112278.
(8) Gurreri, L.; Tamburini, A.; Cipollina, A.; Micale, G. Electrodialysis Applications in Wastewater Treatment for Environmental Protection and Resources Recovery: A Systematic Review on Progress and Perspectives. Membranes 2020, 10 (7), 93, Review. DOI: 10.3390/membranes10070146.
(9) Yao, Y.; Lu, Y.; Li, Y.; Ma, Y.; Ang, E. H.; Xu, J.; Ding, H.; Shi, Y.; Chen, Y.; Liao, J. Eco-infused interfacial enhancement of the anti-biofouling activity in anion exchange membranes for electrodialysis desalination. Chemical Engineering Journal 2024, 482, 149071.
(10) Xu, G.; Wang, B.; Xu, J.; Ang, E. H.; Liao, J.; Shen, J. Dually-crosslinked anion exchange membranes with PVDF semi-interpenetrating polymer network for improved electrodialysis desalination. Separation and Purification Technology 2024, 127844.
(11) Wenten, I. G.; Khoiruddin, K.; Alkhadra, M. A.; Tian, H. H.; Bazant, M. Z. Novel ionic separation mechanisms in electrically driven membrane processes. Advances in Colloid and Interface Science 2020, 284. DOI: 10.1016/j.cis.2020.102269.
(12) Mani, A.; Bazant, M. Z. Deionization shocks in microstructures. Physical Review E 2011, 84 (6). DOI: 10.1103/PhysRevE.84.061504.
(13) Dydek, E. V.; Zaltzman, B.; Rubinstein, I.; Deng, D. S.; Mani, A.; Bazant, M. Z. Overlimiting current in a microchannel. Phys Rev Lett 2011, 107 (11), 118301. DOI: 10.1103/PhysRevLett.107.118301.
(14) Li, M.; Anand, R. K. Recent advancements in ion concentration polarization. Analyst 2016, 141 (12), 3496-3510. DOI: 10.1039/c6an00194g.
(15) Pan, S. Y.; Snyder, S. W.; Lin, Y. J.; Chiang, P. C. Electrokinetic desalination of brackish water and associated challenges in the water and energy nexus. Environmental Science-Water Research & Technology 2018, 4 (5), 613-638. DOI: 10.1039/c7ew00550d.
(16) Fu, R.; Wang, H.; Yan, J.; Li, R.; Jiang, C.; Wang, Y.; Xu, T. Asymmetric bipolar membrane electrodialysis for acid and base production. AIChE Journal 2023, 69 (3), e17957.
(17) Oener, S. Z.; Foster, M. J.; Boettcher, S. W. Accelerating water dissociation in bipolar membranes and for electrocatalysis. Science 2020, 369 (6507), 1099-1103.
(18) Castano, S. V.; Shu, Q. D.; Shi, M.; Blauw, R.; Fosbol, P. L.; Kuntke, P.; Tedesco, M.; Hamelers, H. V. M. Optimizing alkaline solvent regeneration through bipolar membrane electrodialysis for carbon capture. Chemical Engineering Journal 2024, 488. DOI: 10.1016/j.cej.2024.150870. Cao, T. N.-D.; Snyder, S. W.; Lin, Y.-I.; Lin, Y. J.; Negi, S.; Pan, S.-Y. Unraveling the Potential of Electrochemical pH-Swing Processes for Carbon Dioxide Capture and Utilization. Ind. Eng. Chem. Res. 2023, 62 (49), 20979-20995.
(19) Li, Y.; Wang, R.; Shi, S.; Cao, H.; Yip, N. Y.; Lin, S. Bipolar Membrane Electrodialysis for Ammonia Recovery from Synthetic Urine: Experiments, Modeling, and Performance Analysis. Environmental Science & Technology 2021, 55 (21), 14886-14896. DOI: 10.1021/acs.est.1c05316.
(20) Hakim, A. N.; Khoiruddin, K.; Ariono, D.; Wenten, I. G. Ionic Separation in Electrodeionization System: Mass Transfer Mechanism and Factor Affecting Separation Performance. Separation and Purification Reviews 2020, 49 (4), 294-316. DOI: 10.1080/15422119.2019.1608562.
(21) Kumar, S.; Bhushan, M.; Manohar, M.; Makwana, B. S.; Shahi, V. K. In-sight studies on concentration polarization and water splitting during electro-deionization for rapid production of ultrapure water (@18.2 M Omega cm) with improved efficiency. Journal of Membrane Science 2019, 589. DOI: 10.1016/j.memsci.2019.117248.
(22) Pan, S.-Y.; Snyder, S. W.; Ma, H.-W.; Lin, Y. J.; Chiang, P.-C. Development of a Resin Wafer Electrodeionization Process for Impaired Water Desalination with High Energy Efficiency and Productivity. ACS Sustain. Chem. Eng. 2017, 5 (4), 2942-2948. DOI: 10.1021/acssuschemeng.6b02455.
(23) Pan, S.-Y.; Snyder, S. W.; Lin, Y. J.; Chiang, P.-C. Electrokinetic desalination of brackish water and associated challenges in the water and energy nexus. Environmental Science: Water Research & Technology 2018, 4 (5), 613-638. DOI: 10.1039/c7ew00550d.
(24) Rukowicz, B. Electrodeionization for the Bio-Succinic Acid Production Process. Acs Sustainable Chemistry & Engineering 2023, 11 (31), 11459-11469. DOI: 10.1021/acssuschemeng.3c01285.
(25) Alkhadra, M. A.; Gao, T.; Conforti, K. M.; Tian, H. H.; Bazant, M. Z. Small-scale desalination of seawater by shock electrodialysis. Desalination 2020, 476. DOI: 10.1016/j.desal.2019.114219.
(26) Alkhadra, M. A.; Conforti, K. M.; Gao, T.; Tian, H. H.; Bazant, M. Z. Continuous Separation of Radionuclides from Contaminated Water by Shock Electrodialysis. Environ. Sci. Technol. 2020, 54 (1), 527-536. DOI: 10.1021/acs.est.9b05380.
(27) Tian, H. H.; Alkhadra, M. A.; Conforti, K. M.; Bazant, M. Z. Continuous and Selective Removal of Lead from Drinking Water by Shock Electrodialysis. Acs Es&T Water 2021, 1 (10), 2269-2274. DOI: 10.1021/acsestwater.1c00234.
(28) 李孟珊、許桓瑜、闕蓓德、侯嘉洪. 以環境友善思維探討電容去離子技術於產業應用之優勢. 工業污染防治 2020, 第 150 期.
(29) Wang, L.; Violet, C.; DuChanois, R. M.; Elimelech, M. Derivation of the Theoretical Minimum Energy of Separation of Desalination Processes. Journal of Chemical Education 2020, 97 (12), 4361-4369. DOI: 10.1021/acs.jchemed.0c01194.
(30) Suss, M. E.; Porada, S.; Sun, X.; Biesheuvel, P. M.; Yoon, J.; Presser, V. Water desalination via capacitive deionization: what is it and what can we expect from it? Energy & Environmental Science 2015, 8 (8), 2296-2319. DOI: 10.1039/c5ee00519a.
(31) Elimelech, M.; Phillip, W. A. The Future of Seawater Desalination: Energy, Technology, and the Environment. Science 2011, 333 (6043), 712-717. DOI: 10.1126/science.1200488.
(32) Kim, S. J.; Ko, S. H.; Kang, K. H.; Han, J. Direct seawater desalination by ion concentration polarization. Nat Nanotechnol 2010, 5 (4), 297-301. DOI: 10.1038/nnano.2010.34.
(33) Conforti, K. M.; Bazant, M. Z. Continuous ion‐selective separations by shock electrodialysis. AIChE Journal 2020, 66 (1), e16751.
(34) Pan, S.-Y.; Snyder, S. W.; Ma, H.-W.; Lin, Y. J.; Chiang, P.-C. Energy-efficient resin wafer electrodeionization for impaired water reclamation. J. Clean Prod. 2018, 174, 1464-1474. DOI: 10.1016/j.jclepro.2017.11.068.
(35) Wenten, I. G.; Khoiruddin, K.; Alkhadra, M. A.; Tian, H. H.; Bazant, M. Z. Novel ionic separation mechanisms in electrically driven membrane processes. Advances in Colloid and Interface Science 2020, 284, 16, Article. DOI: 10.1016/j.cis.2020.102269.
(36) Deng, D.; Dydek, E. V.; Han, J. H.; Schlumpberger, S.; Mani, A.; Zaltzman, B.; Bazant, M. Z. Overlimiting current and shock electrodialysis in porous media. Langmuir 2013, 29 (52), 16167-16177. DOI: 10.1021/la4040547.
(37) Dydek, E. V.; Bazant, M. Z. Nonlinear dynamics of ion concentration polarization in porous media: The leaky membrane model. Aiche Journal 2013, 59 (9), 3539-3555. DOI: 10.1002/aic.14200.
(38) Lee, H.; Kim, D.; Kang, J. Y.; Bong, K. W.; Lee, S. H.; Kwak, R. Nonlinear dynamics of ion concentration polarization in capacitive deionization. Desalination 2019, 458, 14-24. DOI: 10.1016/j.desal.2019.01.032.
(39) Cho, M.; Han, S.; Lee, S.; Kim, J. B.; Kim, B. Enhanced Salt Removal of Fresh Water by Recovery-Reduced Ion Concentration Polarization Desalination. Membranes 2024, 14 (3), 56.
(40) Schlumpberger, S.; Lu, N. B.; Suss, M. E.; Bazant, M. Z. Scalable and Continuous Water Deionization by Shock Electrodialysis. Environmental Science & Technology Letters 2015, 2 (12), 367-372. DOI: 10.1021/acs.estlett.5b00303.
(41) Tian, H. H.; Alkhadra, M. A.; Bazant, M. Z. Theory of shock electrodialysis II: Mechanisms of selective ion removal. Journal of Colloid and Interface Science 2021, 589, 616-621. DOI: 10.1016/j.jcis.2020.11.127.
(42) Alkhadra, M. A.; Jordan, M. L.; Tian, H.; Arges, C. G.; Bazant, M. Z. Selective and chemical-free removal of toxic heavy metal cations from water using shock ion extraction. Environmental Science & Technology 2022, 56 (19), 14091-14098.
(43) Schlumpberger, S.; Smith, R. B.; Tian, H. H.; Mani, A.; Bazant, M. Z. Deionization shocks in crossflow. Aiche Journal 2021, 67 (8). DOI: 10.1002/aic.17274.
(44) Wiegerinck, H. T. M.; Kersten, R.; Wood, J. A. Influence of Charge Regulation on the Performance of Shock Electrodialysis. Industrial & Engineering Chemistry Research 2023. DOI: 10.1021/acs.iecr.2c03874.
(45) Tian, H.; Alkhadra, M. A.; Bazant, M. Z. Theory of shock electrodialysis I: Water dissociation and electrosmotic vortices. Journal of Colloid and Interface Science 2021, 589, 605-615. DOI: 10.1016/j.jcis.2020.12.125.
(46) Conforti, K. M.; Bazant, M. Z. Continuous ion-selective separations by shock electrodialysis. Aiche Journal 2020, 66 (1). DOI: 10.1002/aic.16751.
(47) Cizek, J.; Cvejn, P.; Marek, J.; Tvrznik, D. Desalination Performance Assessment of Scalable, Multi-Stack Ready Shock Electrodialysis Unit Utilizing Anion-Exchange Membranes. Membranes 2020, 10 (11). DOI: 10.3390/membranes10110347.
(48) M. C. SAUER, J., P. F. SOUTHWICK, K. S. SPIEGLER, AND M. R. J. WYLLIE. Electrical Conductance of Porous Plugs ION EXCHANGE RESIN-SOLUTION SYSTEMS. INDUSTRIAL AND ENGINEERING CHEMISTRY 1995, Vol. 47, No. 10.
(49) Alvarado, L.; Rodríguez-Torres, I.; Balderas, P. Investigation of Current Routes in Electrodeionization System Resin Beds During Chromium Removal. Electrochimica Acta 2015, 182, 763-768. DOI: 10.1016/j.electacta.2015.09.124.
(50) Lu, J.; Wang, Y.-X.; Zhu, J. Numerical simulation of the electrodeionization (EDI) process accounting for water dissociation. Electrochimica acta 2010, 55 (8), 2673-2686.
(51) Lu, J.; Wang, Y.-X.; Lu, Y.-Y.; Wang, G.-L.; Kong, L.; Zhu, J. Numerical simulation of the electrodeionization (EDI) process for producing ultrapure water. Electrochimica acta 2010, 55 (24), 7188-7198.
(52) Jun Lua, X.-Y. M. a. Y.-X. W. Numerical simulation of the electrodeionization (EDI) process with layered resin bed for deeply separating salt ions. Desalination and Water Treatment 2016.
(53) Palakkal, V. M.; Valentino, L.; Lei, Q.; Kole, S.; Lin, Y. P. J.; Arges, C. G. Advancing electrodeionization with conductive ionomer binders that immobilize ion-exchange resin particles into porous wafer substrates. Npj Clean Water 2020, 3 (1). DOI: 10.1038/s41545-020-0052-z.
(54) Verbeek, H. M.; Furst, L.; Neumeister, H. Digital simulation of an electrodeionization process. Computers & Chemical Engineering 1998, 22, S913-S916. DOI: 10.1016/s0098-1354(98)00179-3.
(55) Tanaka, Y. Ion exchange membranes: fundamentals and applications; Elsevier, 2015.
(56) Jordan, M. L.; Valentino, L.; Nazyrynbekova, N.; Palakkal, V. M.; Kole, S.; Bhattacharya, D.; Lin, Y. J.; Arges, C. G. Promoting water-splitting in Janus bipolar ion-exchange resin wafers for electrodeionization. Mol. Syst. Des. Eng. 2020, 5 (5), 922-935, Article. DOI: 10.1039/c9me00179d.
(57) Harris, C. K.; Roekaerts, D.; Rosendal, F. J. J.; Buitendijk, F. G. J.; Daskopoulos, P.; Vreenegoor, A. J. N.; Wang, H. Computational fluid dynamics for chemical reactor engineering. Chemical Engineering Science 1996, 51 (10), 1569-&. DOI: 10.1016/0009-2509(96)00021-8.
(58) Dong, F. J.; Jin, D. X.; Xu, S. M.; Xu, L.; Wu, X.; Wang, P.; Leng, Q.; Xi, R. Y. Numerical simulation of flow and mass transfer in profiled membrane channels for reverse electrodialysis. Chemical Engineering Research & Design 2020, 157, 77-91. DOI: 10.1016/j.cherd.2020.02.025. Fazlali, A.; Khondabi, V. G.; Tayyebi, A.; Moraveji, M. K. CFD simulation of seawater desalination through a rectangular electrodialysis cell. Desalin. Water Treat. 2019, 139, 88-94, Article. DOI: 10.5004/dwt.2019.23178.
(59) Jeon, Y. S.; Cheong, S. I.; Rhim, J. W. Design Shape of CDI Cell Applied with APSf and SPEEK and Performance in MCDI. Macromolecular Research 2017, 25 (7), 712-721. DOI: 10.1007/s13233-017-5064-2. Shin, D. H.; Rhim, J. W. Design of Newly Shaped Membrane Capacitive Deionization (MCDI) Cell to Enhance the Treatment Capacity and Its Performance Study. Polymer-Korea 2017, 41 (5), 850-859. DOI: 10.7317/pk.2017.41.5.850.
(60) Gong, Y. W.; Cheng, X. N. Numerical investigation of electroosmotic mixing in a contraction-expansion microchannel. Chemical Engineering and Processing-Process Intensification 2023, 192. DOI: 10.1016/j.cep.2023.109492.
(61) Chandra, A.; Pathiwada, D.; Chattopadhyay, S. COMSOL simulation and experimental validation of promoter geometries facilitating citric acid transport in electrodialysis. Chemical Engineering Research & Design 2019, 142, 386-411. DOI: 10.1016/j.cherd.2018.12.024.
(62) Lin, Y.-I.; Pan, S.-Y.; Lin, Y. J.; Tseng, P.-C. An integrated approach to optimizing concentration shock wave electrodialysis using 2D multicell simulation and response surface models. Chemical Engineering Journal 2024, 153693.
(63) Kamcev, J.; Paul, D. R.; Manning, G. S.; Freeman, B. D. Ion Diffusion Coefficients in Ion Exchange Membranes: Significance of Counterion Condensation. Macromolecules 2018, 51 (15), 5519-5529. DOI: 10.1021/acs.macromol.8b00645.
(64) Wang, Y.; Wang, S. Evaluation and modeling of PEM fuel cells with the Bruggeman correlation under various tortuosity factors. International Journal of Heat and Mass Transfer 2017, 105, 18-23. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.030.
(65) Generous, M. M.; Qasem, N. A. A.; Zubair, S. M. The significance of modeling electrodialysis desalination using multi-component saline water. Desalination 2020, 496. DOI: 10.1016/j.desal.2020.114347.
(66) Nikonenko, V. V.; Pismenskaya, N. D.; Belova, E. I.; Sistat, P.; Huguet, P.; Pourcelly, G.; Larchet, C. Intensive current transfer in membrane systems: Modelling, mechanisms and application in electrodialysis. Advances in Colloid and Interface Science 2010, 160 (1), 101-123. DOI: https://doi.org/10.1016/j.cis.2010.08.001.
(67) Schlumpberger, S.; Smith, R. B.; Tian, H.; Mani, A.; Bazant, M. Z. Deionization shocks in crossflow. AIChE Journal 2021, 67 (8). DOI: 10.1002/aic.17274.
(68) Lin, Y.-I.; Tseng, P.-C.; Lin, Y. J.; Pan, S.-Y. Multicell Pair Shock-Wave Electrodialysis for Recovering Nutrients and Chemicals from Waste Streams. In 2025 ASABE Annual International Meeting, St. Joseph, MI; 2025.
(69) Handojo, L.; Wardani, A. K.; Regina, D.; Bella, C.; Kresnowati, M. T. A. P.; Wenten, I. G. Electro-membrane processes for organic acid recovery. RSC Advances 2019, 9 (14), 7854-7869. DOI: 10.1039/c8ra09227c.
(70) Mehta, N.; Shah, K. J.; Lin, Y.-I.; Sun, Y.; Pan, S.-Y. Advances in Circular Bioeconomy Technologies: From Agricultural Wastewater to Value-Added Resources. Environments 2021, 8 (3), 20. DOI: 10.3390/environments8030020 (acccessed 2021-03-21T12:20:57).
(71) Lu, F.; Wang, Z.; Zhang, H.; Shao, L.; He, P. Anaerobic digestion of organic waste: Recovery of value-added and inhibitory compounds from liquid fraction of digestate. Bioresour Technol 2021, 333, 125196. DOI: 10.1016/j.biortech.2021.125196.
(72) Zeng, D. F.; Wang, S.; Jiang, Y. F.; Su, Y. Y.; Zhang, Y. F. Recovery and upcycling of residual lactic acid and ammonium from biowaste into yeast single cell protein. Separation and Purification Technology 2023, 314. DOI: 10.1016/j.seppur.2023.123632.
(73) Talebi, S.; Garthe, M.; Roghmans, F.; Chen, G. Q.; Kentish, S. E. Lactic Acid and Salt Separation Using Membrane Technology. Membranes 2021, 11 (2). DOI: 10.3390/membranes11020107.
(74) Ryu, H. W.; Kim, Y. M.; Wee, Y. J. Influence of Operating Parameters on Concentration and Purification of L-lactic Acid Using Electrodialysis. Biotechnology and Bioprocess Engineering 2012, 17 (6), 1261-1269. DOI: 10.1007/s12257-012-0316-7.
(75) Dufton, G.; Mikhaylin, S.; Gaaloul, S.; Bazinet, L. How electrodialysis configuration influences acid whey deacidification and membrane scaling. J Dairy Sci 2018, 101 (9), 7833-7850. DOI: 10.3168/jds.2018-14639 From NLM.
(76) Lee, M. H.; Kim, J. H.; Hwang, Y. K.; Jang, H. Y. Ir(triNHC)-Catalyzed Upcycling of Waste PET for Lactic Acid Production with Sustainable Isolation via Bipolar Membrane Electrodialysis. Angewandte Chemie-International Edition 2024, 63 (36). DOI: 10.1002/anie.202410003.
(77) Neu, A. K.; Pleissner, D.; Mehlmann, K.; Schneider, R.; Puerta-Quintero, G. I.; Venus, J. Fermentative utilization of coffee mucilage using <i>Bacillus</i> <i>coagulans</i> and investigation of down-stream processing of fermentation broth for optically pure L(+)-lactic acid production. Bioresource Technology 2016, 211, 398-405. DOI: 10.1016/j.biortech.2016.03.122.
(78) Pleissner, D.; Demichelis, F.; Mariano, S.; Fiore, S.; Gutiérrez, I. M. N.; Schneider, R.; Venus, J. Direct production of lactic acid based on simultaneous saccharification and fermentation of mixed restaurant food waste. J. Clean Prod. 2017, 143, 615-623. DOI: 10.1016/j.jclepro.2016.12.065.
(79) Papadopoulou, E.; González, M. C.; Reif, D.; Ahmed, A.; Tsapekos, P.; Angelidaki, I.; Harasek, M. Separation of lactic acid from fermented residual resources using membrane technology. Journal of Environmental Chemical Engineering 2023, 11 (5). DOI: 10.1016/j.jece.2023.110881.
(80) Jiang, M.; Qiao, W.; Ren, Z.; Mahdy, A.; Wandera, S. M.; Li, Y.; Dong, R. Influence of operation conditions on methane production from swine wastewater treated by a self-agitation anaerobic reactor. International Biodeterioration & Biodegradation 2019, 143, 104710.
(81) Loughrin, J. H.; Vanotti, M. B.; Szogi, A. A.; Lovanh, N. Evaluation of Second‐Generation Multistage Wastewater Treatment System for the Removal of Malodors from Liquid Swine Waste. Journal of environmental quality 2009, 38 (4), 1739-1748.
(82) da Silva Mazareli, R. C.; Duda, R. M.; Leite, V. D.; de Oliveira, R. A. Anaerobic co-digestion of vegetable waste and swine wastewater in high-rate horizontal reactors with fixed bed. Waste management 2016, 52, 112-121.
(83) Ma, H. Z.; Yue, S. Y.; Li, H. G.; Wang, Q. H.; Tu, M. B. Recovery of lactic acid and other organic acids from food waste ethanol fermentation stillage: Feasibility and effects of substrates. Sep. Purif. Technol. 2019, 209, 223-228. DOI: 10.1016/j.seppur.2018.07.031.
(84) Li, X.; Guo, J. B.; Dong, R. J.; Ahring, B. K.; Zhang, W. Q. Properties of plant nutrient: Comparison of two nutrient recovery techniques using liquid fraction of digestate from anaerobic digester treating pig manure. Sci. Total Environ. 2016, 544, 774-781, Article. DOI: 10.1016/j.scitotenv.2015.11.172.
(85) Levy, A.; de Souza, J. P.; Bazant, M. Z. Breakdown of electroneutrality in nanopores. Journal of Colloid and Interface Science 2020, 579, 162-176.
(86) Berzina, B.; Anand, R. K. Tutorial review: Enrichment and separation of neutral and charged species by ion concentration polarization focusing. Analytica Chimica Acta 2020, 1128, 149-173.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100138-
dc.description.abstract在於全球水資源短缺與資源匱乏危機下,發展循環技術以從廢水中回收有價值資源,已成為備受關注議題;電力驅動分離技術相較於傳統分離技術,具潛力以較低能耗直接從水中去除離子和微量污染物,同時可減少化學品使用和二次廢棄物產生,且不僅可淨化水質,亦可從廢水中回收寶貴資源,符合循環水經濟之概念。其中,可操作於過電流(Overlimiting Current,簡稱OLC)條件下之電動力分離技術,例如:震波電透析(Shock Wave Electrodialysis,簡稱SWED)及電去離子(Electrodeionization,簡稱EDI)等,因具可提高程序之能源效率或降低成本等優勢於近年受矚目。有鑑於此,本論文旨在研析多孔導體介質於OLC條件下,對於離子分離機制與脫鹽績效之影響,研究目的包括:(1) 建立結合理論機制利用COMSOL Multiphysics數值模擬,研析多孔導體材料驅動之過電流離子分離之機制,例如震波形成、離子傳輸行為與過電流分離效能之關鍵機制;(2) 建立並操作可模組化之 SWED 系統,包含進行實驗室規模過電流驅動離子分離模組設計與關鍵孔洞帶電材料製備,以探討不同操作條件與幾何設計對於實驗回收表現的影響與分離關鍵績效指標之關係,並鑑別關鍵操作參數;(3) 建立並驗證離子交換樹脂複合材料產生過電流之機制性物理模型,量化不同傳輸相(例如:陽離子樹脂、陰離子樹脂、溶液)對整體導電度之貢獻,提供設計電透析與電去離子(EDI)材料之依據。具體研究結果包括:
1. 建立震波電透析技術之質量傳輸模型
本研究使用 COMSOL Multiphysics 建構二維多單元之震波電透析模型,模擬震波形成、解析離子傳輸機制,並在不同操作條件下評估其分離效能。該模型整合 Nernst-Planck 模式、Darcy 定律與一階電滲流(Electroosmosis)理論,以描述 SWED 單元內部的離子濃度分佈、離子通量、電流分佈與流體速度等參數。藉由濃度、速度與電位分佈的等高線圖,清楚描繪各種傳輸現象,有助於掌握最佳操作條件,並提供可擴展系統設計之依據。模擬結果分析顯示,表面電荷密度、施加電壓及流速為影響震波發展與分離效率的關鍵參數;此外,進一步提出兩項關鍵指標, 「震波高度」與「震波長度」,以描述脫鹽區域之發展狀態,作為評估震波電透析系統效能之定量依據,並可用為預測脫鹽去除率。
2. 開發可模組化之震波電透析技術及其脫鹽效能評估
本研究提出首個具有多單元的可擴展模組化 SWED 裝置,該系統擁有 4000 mm² 之有效膜面積及 2.5 mL/min 之流速,處理能力為既有文獻中裝置之十倍以上。透過本研究實驗驗證,證實在過電流操作區間能顯著提升脫鹽效率,尤其在降低流道中孔洞帶電(矽酸鹽玻璃)間隔層厚度時效果更為顯著。當矽酸鹽間隔層厚度由 1.0 cm 減少至 0.4 cm 時,以兩組厚度為 4 mm 的多孔矽酸鹽玻璃濾材作為通道配置,結果顯示可連續操作於脫鹽率維持在 90%以上,能耗約為 45 kWh/m³,對應電流效率約為 75%。本研究證實 SWED 系統可於實際較大規模水處理及資源回收領域之可行性與能源效率,為未來推動 SWED 技術示範之重要參考依據。
3. 建立離子導體材料於電透析技術之離子傳輸模型及機制
本研究提出一基於體積比例之離子導體材料(Ionically Conductive Materials,簡稱ICMs)離子傳輸物理模型,描述離子於離子交換樹脂(Ion Exchange Resin,簡稱IER)複合材料中之傳輸行為。此模型架構於體積比例加權,可成功預測陽離子、陰離子與溶液相在空間中分佈下之比電導,結果顯示:此模型成功預測不同材料組成下之比電導行為(Specific Electrical Conductance),並透過固定型樹脂片(IER Wafer)與傳統鬆散型樹脂(Loose Resin)系統之實驗數據進行驗證,顯示高度符合性與統計可靠性,模型迴歸判定係數(R²)均高於 0.95,本研究證實ICMs材料提升離子傳輸效率之機制,未來可適用於電去離子(EDI)相關系統之模型預測與優化。此外,本研究亦將此 ICMs整合至 SWED 系統,實驗結果顯示在施加 0.12 A、0.25 A 與 0.50 A 之電流下,稀釋側的去除效率穩定維持在約 30%,各電流條件下變化不大;然而,濃縮側的濃度提升則隨電流增加而明顯上升,由 ~15% 增加至超過 50%。該結果顯示,雖然導電性複合多孔材料可引發 OLC 現象,但無法形成典型衝擊波。
綜合以上,本研究深化對於 OLC 機制之理解,同時提供SWED技術設計與放大高效分離系統的實務建議。未來研究方向建議聚焦於導電多孔材料之開發、系統可擴展性評估,以及擴大應用(例如有機溶液分離)技術之探討。綜合以上,本研究促進對 OLC 分離技術機制的認識,並提供具體物理意義解釋,以有助於未來廢水資源化與可擴展電化學分離系統設計之研發與應用突破。
zh_TW
dc.description.abstractAccess to clean water is essential for achieving the United Nations Sustainable Development Goal 6, yet global water scarcity remains a critical challenge. Electrically-driven electrokinetic separation technologies offer energy-efficient, low-carbon alternatives to conventional methods by directly removing ions and trace pollutants while minimizing chemicals use and secondary waste. Embracing circular water economy principles, these technologies enable not only water purification but also the recovery of valuable resources from wastewater, contributing to sustainable water, food, and energy systems. Recent advances, such as shock wave electrodialysis (SWED) and electrodeionization (EDI), have demonstrated potential for enhancing ion transport under overlimiting current (OLC) conditions. The OLC condition is a regime associated with improved energy efficiency, enhanced membrane performance, and greater applicability to complex wastewater streams. The objectives of this research include to (1) construct and simulate two-dimensional Multiphysics models to investigate shock-wave formation, ion transport dynamics, and separation performance under OLC conditions; (2) experimentally validate the model by fabricating and operating multicell SWED systems under varying operational and geometric parameters; and (3) develop and validate a mechanistic conductivity model that describes ion transport within IER-based composite materials, providing predictive insight for material design in electrodialysis and EDI applications. To achieve these goals, this study investigates the development, modeling, and experimental validation of OLC separation technology, with a focus on SWED systems and ionically conductive materials (ICMs).
1. Modeling the Mass Transfer in SWED
A two-dimensional multicell SWED model was developed using COMSOL Multiphysics to simulate shock wave formation, analyze ion transport mechanisms, and assess separation performance under varying operational conditions. The model incorporates the Nernst-Planck equation, Darcy’s law, and first-order electroosmosis to capture the local concentration profiles, ionic fluxes, current distribution, and fluid velocity within SWED cells. Contour plots of concentration, velocity, and electric potential are presented to visually illustrate transport phenomena and assist in identifying optimal operating conditions for scalable system design. Key parameters such as surface charge density, applied voltage, and flow velocity were shown to significantly influence shock wave development and, consequently, separation efficiency. Furthermore, two defining characteristics, i.e., shock wave height and length, were proposed as metrics for evaluating performance in cross-flow deionization systems.
2. Evaluating Experimental Performance of Salt Separation by Scalable SWED
To complement the simulation results, we experimentally verified the occurrence of extreme salt depletion in the multi-cell SWED system, attributed to OLC and the formation of a deionization shock. We presented the first scalable SWED device with multiple cell pairs, designed for desalination. The system features an active membrane area of 4000 mm² and a flow rate of 2.5 mL/min, offering over ten times the capacity of existing devices. Experimental validation with this scalable SWED stacks confirmed that operating in the OLC regime enhances desalination efficiency, particularly when reducing the thickness of silicate glass spacers. It highlights that a reduction in silica spacer thickness from 1.0 cm to 0.4 cm significantly improves performance, and channel setups can benefit from these effects. For the configuration with 2 cells of 4 mm thickness porous silicate glass frit media, it shows continuous salt rejection exceeding 90% with energy consumption is about 45 kWh/m³, corresponding current efficiency was around 75%. This work represents a significant step toward realizing SWED as a practical, energy-efficient solution for large-scale water treatment and resource recovery.
3. Constructing a Model to Elucidate Ion Transport Mechanisms in ICMs
A mechanistic conductivity model was developed to describe ion transport within the ICM composites. The model, based on a volume-fraction-weighted framework, successfully predicted specific conductance by accounting for the spatial distribution of cationic, anionic, and solution phases. Validation against experimental data showed strong agreement with all coefficients of determination (R2) > 0.95, supporting its applicability in electrodialysis and EDI contexts. Furthermore, IER wafers (one type of ICMs) were integrated into the SWED system. The experimental result shows that at applied currents of 0.12 A, 0.25 A, and 0.50 A, the removal efficiency in the dilute stream remains relatively constant at around 30%, with only minor variation across different current conditions, while concentration enrichment increases significantly with current, rising from approximately 15% to over 50% at 0.5 A. It demonstrates that although OLC behavior could also be triggered by composite conductive media, the formation of a shock wave could not be formed.
Finally, this study not only deepens the mechanistic understanding of OLC phenomena but also offers practical insights for the design and scaling of advanced separation systems. Future research directions are proposed in the areas of conductive porous media development, system scalability, and application to organic solution separations. In conclusion, this study deepens the mechanistic understanding of OLC separation and provides practical insights for designing scalable, energy-efficient systems for wastewater resource recovery.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-24T16:37:16Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-24T16:37:16Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員會審定書 i
Declaration ii
謝辭 iii
摘要 v
Abstract viii
Contents xi
List of Figures xiv
List of Tables xx
Nomenclature xxi
Chapter 1. Introduction 1
1.1. Background 1
1.2. Research Objectives 6
Chapter 2. Literature Reviews 9
2.1. Electrokinetic Separations for Ion Separation and Desalination 9
2.1.1. Electrokinetic Separations Methods for Desalination 9
2.1.2. Energy demand for ion separation 14
2.2. Electrokinetic Separation Technologies Operating at OLC 19
2.2.1 ICP and OLC for Separation 19
2.2.2 Principles of Shock Wave Electrodialysis and Key Materials 26
2.2.3 Ion Bridge of ICMs in EDI 32
2.3. Mechanism of OLC-based Separation 38
2.3.1 Diffusion of Ionic Species in the Feed Stream to Charged Porous Material 38
2.3.2 Electric Transport of Ions via Porous and Ion Exchange Materials 41
2.3.3 Water Dissociation Reaction in Electrokinetic Separation System 43
2.3.4 Computational Fluid Dynamics Simulation 46
Chapter 3. Materials and Methods 49
3.1. Research Flowchart 49
3.2. Modeling and Simulation by COMSOL Multiphysics 50
3.2.1 Model Geometry Development 51
3.2.2 Define Material Properties and Input of Parameter 54
3.2.3 Physics Definition and Governing Equations 56
3.2.4 Boundary Conditions 59
3.2.5 Meshing and Study for Solution 61
3.3. Experimental Materials and Methods 63
3.3.1 Porous Ion-Conductive Media with Surface Charges 63
3.3.2 Experiment Setup 68
3.3.3 Experimental Designs 70
3.3.4 Analytical Instruments 72
3.4. Data Analyses 75
3.4.1 Diffusion-Limited Current 75
3.4.2 Key Performance Indicators 76
3.4.3 Statistical Analysis 78
Chapter 4. Results and Discussion 79
4.1. Development and Simulation of Mass Transfer Model for SWED 79
4.1.1 Simulation of Shock Wave Development in 2D Cross-Flow Scenario 79
4.1.2 Effect of Operating Conditions on Concentration Profile and Separation Performance 89
4.1.3 Key Parameters Governing Shock Wave Formation in Multicell SWED 97
4.2. Experimental Performance of Salt Separation by Scalable SWED 103
4.2.1 Characteristic of Silicate glass frit porous media 103
4.2.2 SWED with Silicate Glass Frit for Desalination 106
4.2.3 Comparison of Simulation Results and Experimental Data 113
4.3. Incorporating Ion Transport Mechanisms of ICMs in OLC Processes 119
4.3.1 Model Development for Ion Transport and Specific Electrical Conductance via ICMS 119
4.3.2 Experimental Validation and Physical Interpretation of Developed Model 125
4.3.3 Model Verification and Performance Assessment 137
4.3.4 Integrating ICMs to SWED for Desalination 142
4.4. Limitations, Perspectives, and Prospects 149
4.4.1 Advancing Conductively Porous Materials for OLC Processes 149
4.2.2 Potential Application of OLC-based Separation on Agricultural Water 157
4.4.3 Key Considerations in Engineering Design, Scalability, and Feasibility 170
Chapter 5. Conclusions and Recommendations 173
5.1. Conclusions 173
5.2. Recommendations 178
Chapter 6. References 181
Appendix 193
-
dc.language.isoen-
dc.subject再生水zh_TW
dc.subject孔隙材料zh_TW
dc.subject微流道zh_TW
dc.subject濃差極化現象zh_TW
dc.subject循環技術zh_TW
dc.subject電動力分離zh_TW
dc.subject極限電流zh_TW
dc.subjectPorous Mediaen
dc.subjectLimiting Currenten
dc.subjectElectrokinetic Systemen
dc.subjectCircular Technologiesen
dc.subjectIon Concentration Polarizationen
dc.subjectMicrofluidicsen
dc.subjectWater Purificationen
dc.title研析多孔導體介質驅動過電流下離子分離機制與脫鹽績效zh_TW
dc.titleEffect of Overlimiting Current with Porous Conductive Media on Ion Separation Mechanisms and Desalination Performanceen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee范致豪;侯嘉洪;黃志彬;林俊德;曾惠馨zh_TW
dc.contributor.oralexamcommitteeChihhao Fan;Chia-Hung Hou;Chihpin Huang;Justin Chun-Te Lin;Hui-Hsin Tsengen
dc.subject.keyword再生水,孔隙材料,微流道,濃差極化現象,循環技術,電動力分離,極限電流,zh_TW
dc.subject.keywordWater Purification,Porous Media,Microfluidics,Ion Concentration Polarization,Circular Technologies,Electrokinetic System,Limiting Current,en
dc.relation.page193-
dc.identifier.doi10.6342/NTU202504156-
dc.rights.note未授權-
dc.date.accepted2025-08-14-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物環境系統工程學系-
dc.date.embargo-liftN/A-
Appears in Collections:生物環境系統工程學系

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
  Restricted Access
8.3 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved